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Developing technologies for coupling neural activity and artificial neural components,
is key for advancing neural interfaces and neuroprosthetics. We present a biohybrid
experimental setting, where the activity of a biological neural network is coupled to a
biomimetic hardware network. The implementation of the hardware network (denoted
NeuroSoC) exhibits complex dynamics with a multiplicity of time-scales, emulating 2880
neurons and 12.7 M synapses, designed on a VLSI chip. This network is coupled to a
neural network in vitro, where the activities of both the biological and the hardware
networks can be recorded, processed, and integrated bidirectionally in real-time. This
experimental setup enables an adjustable and well-monitored coupling, while providing
access to key functional features of neural networks. We demonstrate the feasibility to
functionally couple the two networks and to implement control circuits to modify the
biohybrid activity. Overall, we provide an experimental model for neuromorphic-neural
interfaces, hopefully to advance the capability to interface with neural activity, and with
its irregularities in pathology.

Keywords: neural engineering, brain-machine interfacing, neural networks, neuromorphic networks,
neural coupling

INTRODUCTION

Developing interfaces between brain activity and electrical circuits could bring new perspectives for
basic research and medical applications, as therapeutic brain stimulation or neuroprosthetics. The
development of such interfaces involves multiple challenges and expertise, spanning the fields of
neurobiology, electrophysiology, bioengineering, computational neuroscience, and neuromorphic
electrical engineering. Among the challenges are the different organizational levels of the neural
systems involved, from in vitro to the whole brain; the different methodologies for stimulating and
recording neural activity; various signal processing tools for detecting neural activity; biomimetic
designs in hardware; and a variety of neural networks modeling approaches (Broccard et al., 2017;
Chiolerio et al., 2017). The attempts which have been made to implement such interfaces show
great promise (O’Doherty et al., 2011; Capogrosso et al., 2016; Joucla et al., 2016), and therefore,
immense efforts are invested in tackling this challenge.

For example, novel neurotherapeutic devices [see Greenwald et al. (2016) for review], use
neural stimulation to help with epilepsy (Vagus Nerve Stimulation Study Group, 1995; Fisher and
Velasco, 2014), chronic pain (Kumar et al., 2007), and rehabilitation following spinal cord injury
(Harkema et al., 2011; Angeli et al., 2014). Other studies use bidirectional stimulation to develop
motoric feedback interfaces (O’Doherty et al., 2011; Vato et al., 2012), or to reinstate the input
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output relations of brain regions (Berger et al., 2012). These
methods often modify the stimulation parameters based on
response biomarkers, at the time of initiation of the procedure or
in real-time. However, it is yet unclear whether impacts of such
therapeutic stimulation paradigms are also reflected indirectly in
other downstream modular networks.

Here we present the outcome of a consortium under the
European Union Seventh Framework Program (CORONET),
targeted at developing a biohybrid interface between biological
and artificial neural networks. We describe the designed setup
and show how it can integrate the activities of neural networks
in vitro with biomimetic hardware networks.

The hardware components are a CMOS-based VLSI, denoted
the NeuroSoC system. These components may be integrated,
functionally and physically, with neural systems. The overall
NeuroSoC system, is built of nine individual NeuroSoCs and a
support system realized on a commercial Field Programmable
Gate Array (FPGA). This design allows routing of action
potentials and communicating with both a host PC and the neural
biological network. The NeuroSoC implements biophysical
short-term dynamics and a large network size (320 neurons
and up to 1.4 million presynaptic spike inputs per chip), for a
realistic counterpart to the biological network. Output spikes of
the neuron influence both its spike frequency adaptation (SFA)
as well as its downstream presynaptic short-term plasticity (STP).
The biological neural network is connected in a closed-loop
to the NeuroSoC system via Ethernet, where the host PC is
running a Matlab Simulink program which enables real-time
configuration, monitoring and control of the experiment, with a
sub-milliseconds delay.

We couple the hardware network to a biological network,
comprises a large-scale, random network of cortical neurons
in vitro. These networks develop from a culture of dissociated
neurons, which form functional connections via synapses. It
has been shown that such networks maintain properties of
cortical networks in vivo, such as the cell type distribution
and the response dynamics (Marom and Shahaf, 2002). When
embedded on Micro-Electrode Arrays (MEAs), this experimental
setup enables stimulation and recording from tens to hundreds
of neurons simultaneously, at high spatio-temporal resolution
(Gross et al., 1977, 1993; Jimbo et al., 1998; Massobrio et al., 2015).
Therefore, it has been a very useful experimental model for neural
connectivity, cellular and synaptic physiology, learning and
synchronization (Shahaf and Marom, 2001; Chiappalone et al.,
2008; Shahaf et al., 2008; Gal et al., 2010; Le Feber et al., 2010;
Wallach et al., 2011; Kaufman et al., 2014; Keren and Marom,
2014, 2016; Reinartz et al., 2014; Haroush and Marom, 2015).

The coupling is configured by feeding the output of the 60
MEA channels, following spike detection, to a predefined subset
of all 2880 neurons of the NeuroSoC network. The connection is
made via Ethernet and the host PC enables the configuration, live
experiment monitoring and control. The strength of recurrent
and background connections is finely balanced for the hardware
network to experience short population spikes.

Such neural networks in vitro have been already integrated
with electronic devices, in order to record and stimulate activity
(Wagenaar et al., 2005; Bontorin et al., 2007; Rolston et al., 2010;

Keren and Marom, 2014). Moreover, progress in very-large-scale
integration (VLSI) has advanced the design of complex integrated
circuits and system-on-chip (SoC) devices (Greenwald et al.,
2016). Bidirectional neural interfaces have become a focus for
investigation, where stimulation and PID control parameters are
explored (Liu et al., 2017), and advancements are also made in the
coupling to in vitro networks (Chou et al., 2015).

Here we describe an advanced hybridization setup – where
the integrated hardware device is an artificial neural network
demonstrating complex architecture and response dynamics, and
the coupling is with short, millisecond range, processing, and
stimulation delays.

We first present the feasibility to functionally couple the
biomimetic hardware network with an in vitro neural network.
Then, we demonstrate the tightness of the coupling by
implementing a closed-loop control circuit – where the hardware
network activity is modified via an indirect stimulation, which is
provided to the biological network. We show also that modifying
the activity of the biological network, affects functional properties
of the hardware NeuroSoC network. These examples raise
questions regarding possible impacts of local stimulation on other
networks in modular constructs. Whether such long-range effects
of stimulation are a desirable target or not, they are important to
study when developing neural control interfaces.

RESULTS

For coupling the in vitro networks with the biomimetic network,
it was configured on all 2880 neurons of the NeuroSoC system
(Figure 3A). Specifically, we can obtain bursting behavior as
observed in cultured networks (Shahaf and Marom, 2001) (see
Figure 3B for obtainable behavior range). We use the bursting
behavior seen in graph 2 of Figure 3B as viable counterpart to the
in vitro network.

The feasibility to couple the hardware network with the
biological culture, is demonstrated first by showing a congruent
synchronization between the two networks, when transferring
all biological spiking activity in real-time as inputs to the
hardware network. We show that due to the tight coupling,
it is also feasible to implement a control circuit which reads
the activity of one network while providing stimulation to the
other (hence, considers the two as a unified compartment).
This design creates a bidirectional interaction between the
networks – while the hardware network receives as inputs the
spiking activity from the biological network, also the biological
activity is stimulated in an intensity which represents the activity
level of the hardware network (as illustrated in Figure 4A).
The circuit is comprised of the following steps: Sampling the
activity of the hardware by a subset of 60 neurons, similarly, to
the recording of the culture activity; This activity is then sent
to a PI controller algorithm, which calculates the appropriate
stimulation amplitude to be applied next; This stimulation is
provided to the biological network. The transmission of data
packets from culture to hardware and back spans the order of
1 ms. The control parameter is the probability of a network
synchronization event to occur following a stimulation. This
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measure reflects the general activity level, as evoked activity is
dominating the network under such stimulation frequency. The
control target value of probability was of a sin shape (inset of
Figure 4B). Both networks followed this target [see also Wallach
et al. (2011) and Keren and Marom (2014) for further technical
details of the control algorithm]. The control efficiently modified
the activity level of both networks to the target pattern, while
eliminating the typical random fluctuations (even though in
fact no direct stimulation is provided to the hardware network.
See Figure 4C).

Next, we explore how alterations in activity levels in the
biological network are reflected in the hardware network. Under
this design, the biological network activity level is controlled
to maintain two different activity levels, each for more than
an hour, while being coupled to the hardware network. This is
shown in Figure 5A by three such coupling experiments. Due
to the coupling, both the biological and the hardware networks
are, similarly, changing between high and low activity levels
(Figure 5A, depicted blue and black, respectively). To modify
the activity level of the biological network, a similar control
algorithm is used to calculate the stimulation amplitude required
to either increase or decrease the activity level (Figure 5B). The
hardware network activity, however, is not exposed directly to
stimulation, hence, any changes are evoked by the activity of
the biological network (Figure 5C). Nevertheless, the hardware
network activity is being efficiently controlled indirectly via
stimulating the biological network.

Moreover, while the activity level of both networks is being
congruently modified, we find that additional characteristics
are affected as well on both sides. Propagation becomes
faster during high activity level. Propagation speed in this
context is derived from propagation delays, calculated as the
inter-spike-intervals during the recruitment rate of an evoked
synchronization. Figure 6A demonstrates that this effect on

propagation times, occurs congruently in both networks of
the biohybrid. Congruently, synchronization latencies are also
altered during high activity level, becoming shorter (inset to
Figure 6A). We also find that network synchronization duration
is altered between high and low activity levels, in a similar
direction in both biological and hardware networks. From
a spatial perspective, we find that maintaining the activity
level at a higher or lower level, results in an exploitation
of different propagation paths across the biological network
(Figure 6B, left, a pair-wise similarity matrix, between all
response recruitment orders. Note two distinguished groups of
responses). This is reflected to some extent in the hardware
network as well (Figure 6B, right panel). Of all features,
it seems that propagation paths are more affected by the
intensity of stimulation, as this feature is mainly altered in
the biological network which received the stimulation intensity
directly. Therefore, this result suggests that while it can
be possible to modify propagation paths using stimulation
intensity, it might not be as efficiently modified in another
downstream network.

All the described examples for coupling experiments (each
comprised of three experiments), were set to a connectivity
strength of 20%, but were then replicated with a connectivity of
10% without affecting the results.

DISCUSSION

We present a setup for coupling a biological neural network
with a neuromorphic hardware network. This experimental
setting enables to design a real-time functional communication
between neural networks, which is well-monitored from one
hand while allowing access to complex features of neural
networks from the other.

FIGURE 1 | The Neuromorphic System-on-Chip (NeuroSoC) (A) The overall NeuroSoC system, with nine individual NeuroSoCs in combined operation; a support
system realized on a commercial Field Programmable Gate Array (FPGA) supplies action potential routing and configuration between the individual NeuroSoC chips;
Also, the FPGA backplane enables communication to the host PC and the neural culture. (B) The NeuroSoC implements biophysical short-term dynamics and a big
network size (320 neurons and up to 1.4 million presynaptic spike inputs per chip) for a realistic counterpart to the neural culture. (C) Circuit of one of the 10 neuron
groups contained on the NeuroSoC, each with 32 neurons realized in switched capacitor technique (see red insert), each with five types of conductance based
synaptic input.
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The bidirectional coupling between the networks is
implemented by: transferring in real-time the biological
spiking activity as inputs to the hardware nodes; modifying
the stimulation input provided to the biological network
according to the hardware activity. Here, the biological spiking
parameters being transferred to the hardware are spike time
and electrode identity. The hardware activity is affecting the
stimulation of the biological network, by changing its stimulation
amplitude. However, this setup allows simple modification
of this experimental design and the characteristics of the
coupling. For example, the feedback from the hardware to the
biological network can be implemented using other stimulation
parameters, as stimulation frequency, the spatial pattern of
stimulation, etc.

There are various possibilities for implementing such
interfaces, which are being currently investigated. These designs
can include an in vivo or an in vitro biological network,
can use intracellular or extracellular recording electrodes, can
be implemented in a hardware or a software level, can use
discrete components or integrated circuits (IC), and digital or
analog data processing (Reger et al., 2000; Jung et al., 2001;
Masson et al., 2002; Carmena et al., 2003; Nowotny et al.,
2003; Oprisan et al., 2004; Whittington et al., 2005; Potter
et al., 2006; Bontorin et al., 2007; Novellino et al., 2007).
Here, the hardware NeuroSoC network is a SC circuit, which
exhibits significantly more robust and reproducible behavior than
conventional subthreshold neuromorphic circuits. Even though
SC circuits have been typically used with simple membrane
leakage current and synaptic transmission (Vogelstein et al.,
2007; Folowosele et al., 2009), we implement a more biologically
realistic model with conductance-based synapse types and
spike-frequency adaptation (Noack et al., 2014, 2015).

We show that using this implementation we can generate a
similar pattern and dynamics of activity in the two networks.
Such tight coupling between the networks is achieved also
under sparse connectivity (tested as low as 10% of connection
probability). Moreover, during this coupling, various activity
features are also altered congruently between the coupled
networks. In both networks, propagation of evoked synchronies
is faster when activity is pushed to higher levels by a closed-loop
control stimulation. This potentially reflects increased excitatory
resources when activity is pushed to higher rates (Haroush and
Marom, 2015). Both networks also show shorter latencies to
synchronization during higher activity rates. This might suggest
that even though the stimulation altering the activity rate is local,
it has the potential to alter activity features also of other sparsely
connected networks. This is an example of how this experimental
design can be relevant to questions of impacts of stimulation
on neural functional properties, when embedded in a modular
organization (for evidence of such impacts in single networks, see
Jimbo et al., 1998, 1999; Madhavan et al., 2006; Chao et al., 2007;
Chiappalone et al., 2008; Vajda et al., 2008; Bologna et al., 2010;
Le Feber et al., 2010; Keren and Marom, 2014). Interestingly,
changes in stimulation amplitude and in response probability,
did not affect consistently the network response amplitude.
This could be related to more heterogenous neural latencies
under higher stimulation amplitudes (Keren and Marom, 2014):

FIGURE 2 | Logical organization of the NeuroSoC system. (A) Single
NeuroSoC and its processing elements with sample spike processing chain
illustrated in the green, dashed line. A spike enters via the address decoder
and gets transmitted to the respective multi-synapse; this in turn generates a
conductance change (excitatory or inhibitory) on the SC-neuron. Output
spikes of the neuron influence its spike frequency adaptation (SFA) as well as
its downstream presynaptic short-term plasticity (STP). The spike address
plus its four STP values are concatenated into a pulse packet and sent
off-chip. (B) The FPGA backplane contains playback memory for background
stimulation and the routing table between the NeuroSoCs; as well, it enables
communication with the neural culture setup and the controlling host PC.
(C) Neural cultures are connected in a closed loop to the NeuroSoC system
via Ethernet; the host PC enables configuration, live experiment monitoring
and control.

if neurons reach their firing peak at different times, there
would not be a consistent change in the overall synchrony
amplitude. This suggests that the changes in hardware response
probability are not elicited by differences in the overall biological
network response, but by individual neurons properties during
the recruitment time. The biological network is being controlled
by the intensity of stimulation which causes faster/more spread
direct responses, and the hardware network is then, respectively,
controlled by these individual responses properties (propagation
delays, firing rate and individual neurons latency changes).

Overall, we present an experimental setup for studying
neural-neuromorphic coupling dynamics and impacts
of stimulation on such modular constructs. This setup
enables to integrate the activities of an in vitro MEA setup
with a hardware network, in real-time, with a short time
delay. Specifically, such experimental setup provides the
feasibility to explore many important questions, from signal
propagation in modular constructs, functional transference
between networks, impacts of the density of modular
connections, local versus global stimulation effects to external
intervention in activity of modular constructs. Hopefully,
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FIGURE 3 | Configuration of the NeuroSoC system. (A) Hardware network structure, with background stimulus provided by the FPGA and a single excitatory
population configured with all 2880 neurons available; spike activity from the culture is added as additional synapses into a fraction of the excitatory network. Each
circle denotes a population of neurons/spike sources (e.g., the Poisson background provided by the FPGA at the top). N denotes the number of neurons/spike
sources in said population, with the arrows indicating linkages and synapse direction; p is the connection probability between each pair of pre- and postsynaptic
neuron of the two populations and g the conductance of the synapse. (B) Four sample population behaviors (population average firing rate, normalized to single
neuron); the parameters of the excitatory network and the background stimulus can be configured for a range of behaviors; for similarity with the neural culture
behavior, behavior type 2 was chosen, resulting in the parameters given in A.

the efficient experimental access to these questions, would
enable to expose significant considerations for developing
brain-neuromorphic interfaces.

MATERIALS AND METHODS

Hardware System
While we do not give a fully detailed description of the
hardware circuits, we do describe to some extent the hardware
part of the system in the following section. A more detailed
overview of our Neuromorphic System-on-Chip (NeuroSoC,
Figure 1B) can be found in Noack et al. (2014). As the
NeuroSoC should only replicate short-term dynamics, it
omits the usual synaptic matrix with its long-term plasticity
computation (Qiao et al., 2015). Thus, instead of the conventional
neuromorphic chip layout with presynaptic adaptation at
the input, a synaptic matrix and postsynaptic neurons, the
NeuroSoC can be thought of as a collection of neuron building
blocks, the neuron elements (see right half of Figure 1,
respectively, Figure 2A for an organizational overview).
The neuron elements are grouped in 10 groups of each
32 neuron elements (for a total of 320 neuron elements
per chip). Overall, the system in Figure 1A contains 9
NeuroSoCs with 2880 neurons, 14400 conductance-based
multi-synapses (equivalent to 12.7 M synapses) and 11520
presynaptic STP circuits. Analog biasing voltages for neurons
and synapses (e.g., synaptic reversal potentials, membrane

resting potentials, etc.) are generated via digital-analog
converters on chip.

Figure 2 gives an organizational overview of the hardware
system. The incoming synapses are conductance-based. Five
individually configurable multi-synapses per neuron allow to
model five separate synapse characteristics of either AMPA,
NMDA, or GABA type. One inhibitory conductance is triggered
by the neuron itself and thus acts as spike-frequency-adaptation.
The output of the neuron feeds into four digital short-term
adaptation modules. Each of these can be configured individually
and thus provide the neuron with different types of synaptic
adaptation for its downstream connections. All pulses are routed
via an FPGA (Figure 2B) that also handles the routing in
between the nine NeuroSoC chips that make up the system.
Routing was designed to allow for arbitrary network topologies.
Each of the four STP outputs of every neuron has 3.4 k
routing entries in the FPGA routing table, which can either
target individual multi-synapses of neurons inside the system or
addresses outside, the latter being used for communication with
other devices such as the neural cultures setup. Each routing
entry includes a 6-bit synaptic weight, which is sent to the
NeuroSoC together with the adaptation state of the source STP
circuit. Both values are multiplied on-chip giving the resulting
synaptic efficacy value to be added to the target multi-synapse.
The NeuroSoC receives the incoming FPGA pulses via an address
decoder, while an arbiter handles conflicts between outgoing
pulses. The FPGA also handles the host communication and
control (Figure 2C). The green arrows illustrate a sample spike
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FIGURE 4 | Hybrid coupling and control circuits. (A) Scheme of the coupling and control between the culture and neuromorphic device: a PI controller receives the
activity of the hardware network, calculates the required stimulation amplitude to reach a predefined activity level in hardware, but then this stimulation is applied to
the biological network. (B) The output of synchronization probability of an example experiment, where a culture and hardware networks are coupled (see methods
for the control algorithm). (C) Extracts of aligned activity as recorded in the biological network (blue) and hardware (black). Each point depicts a single spike detected
in one of the electrodes (indexed in the vertical axis). Arrows depict stimulation times and shaded regions depict the time window for detection of an evoked burst
(10–800 ms after stimulation).

path from/to the culture. The Ethernet-based interface to the
neural cultures is also implemented on the FPGA (George et al.,
2015). For simplicity, the clock for the SC circuits is supplied
by the FPGA but could in principle also be generated on chip
(Eisenreich et al., 2009).

Hardware Components
The neurons and synapses on the NeuroSoC are carried out
in the Switched Capacitor (SC) circuit technique. This means
that conductances are determined by the switching frequency
in connection with the capacitance (see Figure 1C). This
reliance on frequencies and capacitance ratios, instead of process-
dependent transistor parameters, lets the NeuroSoC exhibit
very robust and reproducible behavior, ideal for biological
experiments. A specialized switching circuit has been used to
reach the necessary timescales in the order of 1 s (Mayr et al.,
2016), which are otherwise hard to obtain in semiconductor
circuits due to leakage currents (Roy et al., 2003). Figure 1C
shows the analog circuits comprising the neuron element.
In essence, this is a differential SC realization of a Leaky
Integrate-and-Fire neuron with spike-frequency-adaptation and
conductance-based multi-synapses at the input. The NMDA
synapses constitute a special case as they exhibit a non-linear
dependence on the membrane voltage plus a saturation.

We have approximated this by an analog computation along
a piecewise linear curve (Noack et al., 2014). The biological
realism we aimed for in our SC circuits compares favorably
with the literature, i.e., SC circuits were previously only used
for simple membrane leakage current generation and synaptic
transmission (Vogelstein et al., 2007; Folowosele et al., 2009;
Noack et al., 2015).

When modeling the synaptic conductance in SC technique, a
fixed frequency would result in a fixed conductance. Therefore,
a digital circuit generates an exponentially-decaying frequency
to emulate an instantaneous-onset, exponentially-decaying
synaptic conductance. Each of the five synaptic conductances is
implemented as a multi-synapse, meaning that multiple synaptic
connections are modeled by overlaying them linearly on the
same synaptic circuit. Hence the instantaneous increase will be
re-triggered for each synaptic input on that conductance type and
subsequent exponential decay performed on the accumulated
value. Due to its widely configurable behavior range, we employ
a model of presynaptic STP in the NeuroSoC (Markram et al.,
1998). A fully digital translation of the model is used, as it was
comparable in power and area to an SC implementation and
offered superior programmability and repeatability. It transmits
its 6-bit adaptation state off-chip for further routing in the
FPGA. This state is used at the input of the next NeuroSoC
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FIGURE 5 | Coupling during different activity levels. (A) Three experiments
exemplifying coupling while the biological network is controlled to high and
low activity levels (blue). Trace margins are standard deviation values across
the three cultures. Hardware network activity is depicted black. (B) The
stimulation amplitudes required for controlling one of the biological networks,
as computed by the control algorithm. Higher stimulation amplitudes are
required for maintaining higher activity level (shown for one of the cultures,
although all three experiments showed a similar trend). (C) The evoked
synchronization sizes of the three cultures show no consistent relation to the
activity level, hence this is not the feature that modifies the hardware network
activity.

as a dynamic synaptic weight value. In the same spirit as the
multi-synapses, we did not implement a specific presynaptic
adaptation circuit per single synapse configured in the system.
Instead, four different realizations of the STP circuit driven by
the same neuron provide for differently-configured flavors of
presynaptic adaptation to postsynaptic neurons. That is, one STP
channel could be configured for facilitation, one for depression,
one for combined facilitation and depression (Noack et al., 2011)
and each postsynaptic neuron can be configured in the FPGA

FIGURE 6 | Activity features modified across both biohybrid networks.
(A) Propagation delays of synchronizations, under either high or low activity
leve l (blue depicts the biological network and black the hardware one). Inset
shows the respective alteration of synchronization latency, calculated as the
time from stimulation to the synchronization peak. Right panel: average
latency values across three coupling experiments, error bars show standard
deviation (p < 0.05 in a t-test between the activity levels for both biological
and hardware networks). (B) Synchronization recruitment order in the
biological (left) and the hardware (right) networks, during high and low activity
levels, of a single coupling experiment. Pair-wise difference between
propagation paths are presented (calculated with the Levenshtein distance
metric), for the first five responding electrodes, across all evoked bursts
consecutively [see Shahaf et al. (2008) for details]. The distance between
order vectors of evoked burst i and j is color coded in pixel (i,j) between red (0,
identical order) and blue (5, no identity in order). Different propagation paths
between the high and the low activity levels, would result in a
non-homogenous image with two visible squares (where the within-level
comparison square has a warmer shade, i.e., lower differences).

routing table to receive one of those flavors. Please note that the
multi-synapses do not implement long term plasticity, as this is
usually a monosynaptic process, i.e., it would need individually
realized synapses. This was intentionally omitted as we are only
replicating short-term effects of the biological network. Due to
the corresponding savings in silicon area, this in turn allowed us
to realize more neurons per chip and it also allowed potentially
very densely connected networks via the multi-input synapses.
However, we could still implement long-term plasticity on
the permanent weights via a plasticity processor on the FPGA
similar to Friedmann et al. (2013) and George et al. (2015), as the
FPGA has access to the weights as well as to, e.g., the pre- and
postsynaptic spike trains.

Biomimetic Network
Figure 3A shows the topology employed for the biohybrid
experiment on the NeuroSoC system. At its center, all
2880 neurons of the system (distributed across the nine
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NeuroSoCs) are configured as an excitatory recurrent network
with SFA. This network size approximately resembles the
number of neurons present in the region of the MEA.
For parametrization of the network, we use a theory-guided
approach (Giulioni et al., 2012; Partzsch et al., 2019), employing
mean-field theory. While smaller neuromorphic systems have
been employed for a mean-field approach (Giulioni et al., 2012),
the underlying diffusion approximation asks for synaptic fan-in
being significantly smaller than the network size, which is a
second motivation for fully utilizing the hardware system. In
turn, recurrent connection probability was set to a low value of
0.007, i.e., on average a single neuron is recurrently connected
to 20 other neurons. Feeding into this network is a background
stimulus of 25 Poisson spike sources at 10 Hz, with each spike
source connected to the recurrent network with p = 0.3 and a
maximum synaptic conductance of g = 20 nS. Also feeding into
this network is the output of the spike detection operating on the
60 MEA channels, i.e., 60 channels of biological spikes. Aided
by the good statistical adherence of our implementation to the
model behavior, we can configure the recurrent network for a
wide range of dynamical regimes, guided by mean-field theory
(Giulioni et al., 2012; Partzsch et al., 2019), see Figure 3B. For
the hybrid experiments in this paper, the SFA strength, strength
of recurrent connections and the background are finely balanced
for the network to experience short population spikes, as shown
in behavior 2 of Figure 3B. Parameters of this configuration
are given in Figure 3A. In this setting, the network can
have spontaneous population spikes driven by the background
stimulus as well as evoked spikes driven by the input from the
neural cultures.

Cell Preparation
Cortical neurons were obtained from newborn rats
(Sprague-Dawley) within 24 h after birth using mechanical
and enzymatic procedures described in earlier studies
(Marom and Shahaf, 2002). Rats were anesthetized by CO2
inhalation according to protocols approved by the Technion’s
ethics committee. The neurons were plated directly onto a
substrate-integrated multi electrode array and allowed to develop
into functionally and structurally mature networks over a
period of 2–3 weeks. The number of plated neurons was of
the order of 450,000, covering an area of about 380 mm2.
The preparations were bathed in MEM supplemented with
heat-inactivated horse serum (5%), glutamine (0.5 mM), glucose
(20 mM), and gentamycin (10 µg/ml), and maintained in
an atmosphere of 37◦C, 5% CO2 and 95% air, also during
electrophysiological recording.

Electrophysiology
An array of Ti/Au extracellular electrodes, 30 µm in diameter,
spaced 500 µm from each other and located in the center,
was used (MultiChannelSystems, Reutlingen, Germany).
A commercial amplifier (MEA-1060-inv-BC, MCS, Reutlingen,
Germany) with frequency limits of 150–3,000 Hz and a gain
of ×1024 was obtaining data. Data was digitized using data
acquisition board (PD2-MF-64-3M/12H, UEI, Walpole, MA,
United States). Each channel was sampled at a frequency of

FIGURE 7 | Network synchronization parameters. A raster plot of a single
network burst, where each dot depicts an action potential by the time and
electrode index. The latency is calculated as the time from stimulation time
(yellow line), to the synchronization detection (red line). The amplitude of
synchronization is the maximal sum of action potentials, in 25 ms. Action
potentials occurring within the first 15 ms after stimulation are excluded from
the propagation path analysis, assuming these are caused by direct excitation
from the stimulation current. The propagation path is then identified by the
order of responding electrodes, in this case it the first 4 are electrodes 11
(red), 9 (green), 8 (yellow), 14 (purple). The propagation speed/delay, would be
in this case the time interval between these first spikes occurring in each of
the electrodes.

16 kHz. The sampling rate was defined to allow multiple samples
of the extracellular action potential, especially during the most
rapid voltage change phase. In an intracellular action potential,
the steepest voltage change lasts for about 200 µs, during the
depolarization. Therefore, the highest frequencies during an extra
cellular action potential are in this frequency range (Gydikov
and Trayanova, 1986; Mitra, 2007). The insulation layer (silicon
nitride) was pre-treated with polyethyleneimine (Sigma, 0.01% in
0.1 M Borate buffer solution). Data acquired was analyzed using
Matlab (Mathworks, Natick, MA, United States). Specifically,
Simulink was used to process, analyze and transfer data on-line.
Voltage stimulation was applied in a monophasic 200 µs square
pulse 100–1000 mV, through extracellular electrodes, using a
dedicated stimulus generator (MCS, Reutlingen, Germany). We
based the choice of these parameters on previous works which
focused on studying these aspects. These stimulation parameters
were shown to generate efficiently action potentials in single
neurons, for long time scales.

Analyses
Action potentials were detected by threshold crossing which is
defined separately for each of the recording channels at the
beginning of an experiment (6 × standard deviation of a 2 s
voltage trace). A refractory period of 6 ms was considered. The
detected activity in the electrodes can originate from one to
two neurons. Nonetheless, it has been shown that using this
spike detection method maintains the functional phenomena
observed when using spike sorting (Eytan and Marom, 2006;
Shahaf et al., 2008). Therefore, we found that for the purpose
of this study it is sufficient if activity is comprised of 1–2
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different neurons, which we consider here as an activation unit.
Spike sorting could be added to the algorithm if individual spike
shape properties are studied, for example. Detection of network
bursts (i.e., synchronization events) was performed on-line by
threshold crossing of the summed action potentials, binned to
25 ms. Exact threshold was determined according to 25% of
the active electrodes, typically 20 action potentials. See Figure 7
below for illustration of a network synchronization parameters:
each dot indicates a single action potential, described by its
time stamp (x-axis) and the recording electrode index (y-axis).
The solid blue line represents the sum of action potentials. The
figure indicates the electrical stimulation time (yellow vertical
line), the burst detection time (red vertical line), latency from
stimulation to occurrence of synchronization, the amplitude of
synchronization event and the propagation order.

PI Algorithm
A Proportional-Integral-Derivative (PID) controller was realized
on the xPC target system (Levine, 1996). The input to the
controller is the error signal,

en = P∗n − P̆n (1)

where P∗n and P̆n are the desired and estimated response
probabilities at the nth stimulus, respectively. The output of the
controller is generally composed of four components,

An = Abaseline + gPen + gPen + gI

n∑
i=1

ei + gD(en − en−1) (2)

where gP, gI, and gD are the proportional, integral, and
derivative gain parameters, respectively (typically gP is 1, 400 mV;
gPen + gI is 0.2, 80 mV; and gD is 0), and Abaseline is the baseline
amplitude bias (set to the amplitude which evokes the desired
response probability in an open loop stimulation prior to the
experiment). In this setup the stimulation amplitude range is
between 100 and 1150 mV. Reaching the limit of this stimulation
amplitude range, results in a saturation of the input signal
to a constant uncontrolled signal, while the integrative error

value steadily increases. Hence, for maintaining the control,
stimulation within this range is required.

On-Line Estimation of Network
Response Probability
The control algorithm uses a reduced binary response
characteristic, representing the occurrence of a synchronized
network response. Let si be an indicator function, so that si = 1
if the network generated a network burst within a predefined
interval after the ith stimulus and si = 0 otherwise. The time
interval for detecting an evoked synchronization event following
a stimulation was set to 10–800 s. This interval was chosen
according to previous studies which validated this time as
the optimal for separating evoked synchronization from a
spontaneous one (Gigante et al., 2015; Bauermeister et al., 2018).
We denote as P̆n the estimated probability, calculated at time
t > tn, based on the set of responses {s1,s2,. . . , sn} to stimuli given
at times {t1,t2,. . . , tn}. A weighted average was realized by using
the recursive formula,

P̃n = (1− e−
tn−tn−1

τ ) · sn + e−
tn−tn−1

τ · P̃n−1 (3)

the estimation time-constant, τ, was typically set to 250 s.
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