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Abstract

Background: Wild mallards (Anas platyrhychos) are considered one of the primary reservoir species for avian influenza
viruses (AIV). Because AIV circulating in wild birds pose an indirect threat to agriculture and human health, understanding
the ecology of AIV and developing risk assessments and surveillance systems for prevention of disease is critical.

Methodology/Principal Findings: In this study, mallards were experimentally infected with an H4N6 subtype of AIV by oral
inoculation or contact with an H4N6 contaminated water source. Cloacal swabs, oropharyngeal swabs, fecal samples, and
water samples were collected daily and tested by real-time RT-PCR (RRT-PCR) for estimation of viral shedding. Fecal samples
had significantly higher virus concentrations than oropharyngeal or cloacal swabs and 6 month old ducks shed significantly
more viral RNA than 3 month old ducks regardless of sample type. Use of a water source contaminated by AIV infected
mallards, was sufficient to transmit virus to naı̈ve mallards, which shed AIV at higher or similar levels as orally-inoculated ducks.

Conclusions: Bodies of water could serve as a transmission pathway for AIV in waterfowl. For AIV surveillance purposes,
water samples and fecal samples appear to be excellent alternatives or additions to cloacal and oropharyngeal swabbing.
Furthermore, duck age (even within hatch-year birds) may be important when interpreting viral shedding results from
experimental infections or surveillance. Differential shedding among hatch-year mallards could affect prevalence estimates,
modeling of AIV spread, and subsequent risk assessments.
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Introduction

Avian influenza viruses (AIV) is a term used to describe

influenza Type A viruses, which have been isolated from a wide

range of avian species throughout the world [1]. Wild birds,

predominantly waterfowl and shorebirds, serve as the natural

reservoir of influenza A viruses [2]. While AIV rarely cause disease

in their wild bird hosts, the potential transmission of AIV to hosts

of agricultural and human health importance is of concern. While

some AIV can be directly transmitted from wild birds to domestic

birds and/or mammals [3,4,5], AIV strains may also recombine

with mammalian-derived influenza strains, producing recombi-

nant influenza viruses capable of causing disease in humans, and

other species [4,5,6].

Surveillance of AIV in wild birds may be used to produce risk

assessments for poultry, humans, swine, and other animals. AIV

generally replicates in the respiratory and/or digestive tracts of

infected wild birds suggesting that infections may be monitored

with oropharyngeal swabs, tracheal swabs, cloacal swabs, or

environmental samples such as water and feces [7,8,9]. However,

when conducting a large-scale surveillance effort, the collection of

so many different sample types can be arduous and time

consuming for field personnel. Similarly, AIV isolation in the

laboratory can be lengthy, expensive, and AIV strain dependent.

Recently, real-time reverse-transcription polymerase chain reac-

tion (RRT-PCR) has been evaluated for rapid detection of AIV

[10,11,12,13,14,15]. While RRT-PCR cannot determine the

infectiousness of samples, the molecular assay is quicker, more

sensitive and less expensive than virus isolation for AIV screening

[14]. A major objective of this study was to determine the best

sampling method available for AIV detection by RRT-PCR. The

AIV subtype H4N6 is one of the most common subtypes found

through surveillance of wild waterfowl in North America [1,16,17]

and a wild bird isolate of an H4N6 virus was used in this study to

infect mallards (Anas platyrhychos). Various samples (oropharyngeal

swabs, cloacal swabs, fecal samples, and water samples) were

collected and evaluated for the ability to detect virus.

Additionally, because AIV is often shed in feces, and it has been

shown to survive for extended periods of time in laboratory water

[7,8,18,19], it has been hypothesized that water is one medium

through which wild birds both transmit and acquire the virus

[7,8,18,19,20,21]. An additional objective of this study was to
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investigate shared water sources as potential routes of AIV H4N6

infection of mallards.

Materials and Methods

Ethics Statement
All experiments were approved by the Institutional Animal Care

and Use Committee of the United States Department of

Agriculture, Animal and Plant Health Inspection Service, Wildlife

Services, National Wildlife Research Center (NWRC), Fort

Collins, CO, USA. (Approval number NWRC 1477).

Study Species
Mallards (ages 3 mo and 6 mo) were purchased from two game

bird farms (Game Birds Unlimited, Longmont, CO, USA and

Field Trial Game Birds, Fort Collins, CO, USA). Ducks were

quarantined for two weeks and the NWRC animal care husbandry

guidelines for waterfowl (SOP AC/CO 028.00) were followed. All

mallards were negative for antibodies to influenza A viruses by an

epitope-blocking ELISA[22]. Throughout the experiment ducks

were housed in an indoor aviary as cohorts of three or four ducks

per pen. Each pen contained a shallow water bowl, food bowl, and

a 375 L oval stock tank (Rubbermaid, Atlanta, GA) filled with

water for swimming and preening.

Oral inoculation and sample collection
Fifteen mallards were each orally inoculated with 1 mL of

approximately 106 EID50 of AIV (A/wildbird/PA/185996-06/

07(H4N6)). The strain was passaged only once through chicken

embryos to limit genetic mutations that may cause it to become

less adapted to wild birds. Cloacal swabs and oropharyngeal swabs

were collected from each duck daily through 8 days post

inoculation (dpi). Six fresh fecal samples were collected daily from

the floor of each pen and a 50 mL water sample was collected

daily from the water column of each water tank through 9 dpi.

Fecal samples were originally collected on a spatula and weighed.

However to facilitate comparisons with oropharyngeal and cloacal

swabs, we determined that an average fecal swab contained

0.092960.0089 g of feces. We present our fecal sampling results as

‘fecal swab equivalents.’

Inoculation via shared water source and sample
collection

On 5 dpi, six orally inoculated ducks were relocated from their

two original pens to two new pens and sampling continued as

stated above (see Oral inoculation and sample collection section). All

surfaces in the two original pens were decontaminated with a 10%

bleach solution leaving only the water in the water tanks as a

potential source of virus in the pen; eight naı̈ve ducks were

introduced the following day. Cloacal swabs, oropharyngeal

swabs, eight fecal samples, and a 50 mL water sample were

collected daily for an additional 6 days where 0 dpi was the day of

introduction to the contaminated water source.

Virus Detection
All samples were initially tested by RRT-PCR for viral RNA

detection and quantification. RNA was extracted using the

MagMAX-96 AI/ND Viral RNA Isolation Kit (Ambion, Austin,

TX). Primers and probe specific for the influenza type A matrix

gene developed by Spackman, et al [10] were used in conjunction

with the ABI one-step RT-PCR master mix and the ABI 7900

Real Time PCR system (Life Technologies Corp, Carlsbad, CA)

with thermocycler conditions developed by Agüero et al [23].

Calibrated controls with known viral titers (102 EID50/mL–

105 EID50/mL) were also analyzed with RRT-PCR to construct

4-point standard curves. Sample viral RNA quantities were

extrapolated from the standard curves and presented as PCR

EID50 equivalents/mL. Virus isolations (VI) in MDCK cells and/

or chicken embryos were performed following published protocols

[24] on a subset of water samples and cloacal samples. Isolations

were conducted to confirm the presence of infectious virions in a

subset of samples; viral titers were not calculated due to the cost of

assays and low concentrations.

Statistical Analysis
All statistical analyses were conducted using SASH (Version 9.1

for Windows, SAS Institute, Inc., Cary NC, USA). Statistical

methods were developed to estimate the effect of sample type

(oropharyngeal swab, cloacal swab, or fecal sample), route of

infection (oral inoculation or water transmission) and duck age

(3 mo or 6 mo) on viral RNA shedding rates. Specifically, viral

RNA shedding over the course of infection was analyzed using

multiple linear regression based on maximum likelihood estima-

tion. Analyses were performed using PROC GENMOD in SAS,

specifying a normal distribution and a log link. Because we did

not have individual duck identification for fecal samples, all data

were analyzed by pen. The mean sum of viral RNA shed over

eight days across all ducks in each pen was used as the dependent

variable. Pens contained a variable number of 6 mo and 3 mo

ducks, so we used the percent of 6 mo ducks in the pen as a proxy

for testing the impact of duck age on virus concentrations. In

addition to the three main explanatory variables (sample type,

route of infection, age) all two- and three-way interactions

between the main variables were also included in the statistical

models.

Multiple logistic regression (PROC LOGISTIC) was used to

estimate the probability of AIV detection for cloacal swabs,

oropharyngeal swabs, and fecal swab equivalents over the course

of infection. The purpose of this analysis was to compare the

efficacy of the different swab types for AIV detection. Therefore,

we used the positive/negative result for each swab rather than the

sample concentrations as above in order to determine the

probability of detecting a positive sample for each sample type.

The models tested four variables: 1. sample type (oropharyngeal,

cloacal, fecal), 2. dpi, 3. percent of 6 mo ducks in a pen, and 4.

route of infection (experimental inoculation, water transmission) as

well as all two way interactions and a quadratic term for dpi to

capture the polynomial shape of the shedding curve over time.

In both analyses, information-theoretic model selection was

used to identify the model that best explained the information in

the data [25]. Models were ranked using a second order bias

correction version of Akaike’s Information Criteria for small

sample sizes (AICc), where minimum AICc indicated the best

model explaining the data. We used Akaike weights as a measure

of the likelihood for each model, given the data, relative to other

models examined [25].

Results

Viral RNA shedding in orally inoculated ducks
The threshold for detection of our RRT-PCR assay was

determined to be approximately 100 EID50. During validation, it

was at this concentration where at least 50% of replicates were

positive (data not shown). Viral RNA was detected in cloacal swab

samples from 13/15 ducks for an average of 2.0 days (SE = 0.3) in

3 mo ducks and 4.1 days (SE = 0.3) in 6 mo ducks (Figure 1A). On

average, viral RNA concentrations in positive cloacal swabs peaked

H4N6 Infection in Mallards
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at 101.3 PCR EID50 equivalents/mL (Range of individual

peaks = 100.5–102.0) in 3 mo ducks and 104.1 PCR EID50 equiva-

lents/mL (Range of individual peaks = 102.2–104.9) in 6 mo ducks.

Viral RNA was detected in oropharyngeal swabs in all orally

inoculated ducks for an average of 2.3 days (SE = 0.5) in 3 mo ducks

and 4.1 days (SE = 0.5) in 6 mo ducks (Figure 1B). On average, the

viral RNA concentrations detected in oropharyngeal swabs peaked

at 101.6 PCR EID50 equivalents/mL (Range of individual

peaks = 100.4–102.3) in 3 mo ducks and 102.7 PCR EID50 equiva-

lents/mL (Range of individual peaks = 101.5–103.3) in 6 mo ducks.

Viral RNA was also detected in at least one fecal sample from each

pen for an average of 6.8 days (SE = 0.6) with a mean peak viral

RNA concentration among pens of 103.5 PCR EID50 equivalents/

mL (Range of individual pen peaks = 101.4–104.3) on approximately

3.0 dpi (SE = 0.3).

Transmission of H4N6 via a shared water source
Ducks were removed from two of the pens which had viral RNA

quantities of 103.1 PCR EID50 equivalents/mL and 102.8 PCR

EID50 equivalents/mL in their water tanks. Four naı̈ve ducks were

introduced to each pen and viral RNA was detected from cloacal

and oropharyngeal swabs of all eight ducks after introduction to

the contaminated water. Viral RNA was detected in cloacal swabs

for an average of 2.3 days (SE = 0.7) in 3 mo ducks and 4.3 days

(SE = 0.3) in 6 mo ducks (Figure 1A). The virus concentrations

detected in cloacal swabs from 3 mo ducks peaked at approxi-

mately 102.1 PCR EID50 equivalents/mL (Range of individual

peaks = 101.3–102.7) while the virus concentrations in 6 mo ducks

peaked at approximately 104.2 PCR EID50 equivalents/mL

(Range of individual peaks = 103.6–104.6). Viral RNA was detected

in oropharyngeal swabs for an average of 3.8 days (SE = 0.3) in

Figure 1. Mean shedding of H4N6 AIV RNA by mallards infected via oral inoculation or water transmission. (A) Cloacal shedding, (B)
Oropharyngeal shedding. RRT-PCR was used to detect and quantify viral RNA in cloacal and oropharyngeal swabs. Values were extrapolated from a
standard curve and presented as PCR EID50 equivalents/mL on a log scale. Each point represents the arithmetic mean of 6 mo mallards (n = 11) or
3 mo mallards (n = 12). On average, the shedding curves differed between 6 mo and 3 mo mallards. The dashed line represents our RRT-PCR
threshold of detection as 100 PCR EID50 equivalents/mL.
doi:10.1371/journal.pone.0012851.g001

H4N6 Infection in Mallards
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3 mo ducks and 4.7 days (SE = 0.2) in 6 mo ducks (Figure 1B) with

viral RNA concentrations that peaked at approximately 103.3 PCR

EID50 equivalents/mL (Range of individual peaks = 101.6–103.8)

and 103.6 PCR EID50 equivalents/mL (Range of individual

peaks = 101.8–104.0) respectively. Viral RNA was also detected

daily in at least three fecal samples per pen with a mean peak viral

RNA concentration among pens of 104.4 PCR EID50 equivalents/

mL (Range of peak shedding = 104.2–104.5) for the duration of the

study. Viral RNA concentrations detected in the water tanks were

also maintained (Figure 2). No viral RNA was detected in any

samples (swabs, feces, or water) for two negative control ducks co-

housed in a nearby pen.

Virus isolation
In order to further demonstrate transmission of AIV from orally

inoculated ducks through water to naı̈ve ducks, we documented the

presence of infectious virions in swab and water samples. Although

several studies have shown that AIV isolation is unsuccessful in

confirming RRT-PCR positive results approximately 25–35% of

the time [14,23,26,27], we were able to confirm the presence of

infectious virus throughout the suspected transmission cycle. Due to

the cost and time associated with AIV isolation in chicken embryos,

we initially tested all samples by virus isolation in MDCK cells. At

least one cloacal swab from each of the six orally-inoculated ducks

tested positive for infectious AIV in MDCK cells. Similarly, at least

one cloacal swab from 6/8 introduced ducks tested positive for

infectious AIV after they were exposed to the shared water source.

Water samples collected from the two water tanks were negative for

infectious AIV in MDCK cells but positive for infectious AIV after

two passages in chicken embryos.

Comparison of Sampling Methods
Based on minimum AICc, the best multiple linear regression

model identified for the mean sum of viral RNA shed through

8 dpi included sample type, duck age, and route of infection and

an interaction between duck age and route of infection. This result

indicates that sample type, duck age, and route of infection may all

be important predictors of viral RNA shedding. Fecal swab

equivalents had significantly higher virus concentrations (p,0.05)

than oropharyngeal or cloacal swabs (Figure 3) and 6 mo ducks

shed significantly more viral RNA (p,0.05) than 3 mo ducks for

each sample type. Ducks inoculated experimentally shed viral

RNA at higher rates in feces than ducks infected via contaminated

water. On the other hand, experimentally inoculated ducks shed at

lower rates than water transmission ducks in oropharyngeal and

cloacal samples.

While the multiple linear regression model above identified

variables likely to impact shedding concentrations, the logistic

model identified variables important for detecting a positive

sample (e.g., during surveillance efforts). Based on minimum AIC,

the best multiple logistic regression model included sample type,

duck age, and dpi indicating that the probability of detecting a

positive sample was associated with the type of sample, the age of

the duck sampled, and the dpi the sample was collected. For 1–

2 dpi, on average, fecal samples had a somewhat lower probability

of detection compared to cloacal or oropharyngeal samples

(Figure 4). At 3 dpi, all three sample types showed a similar

probability of detecting a positive sample, but for 4–8 dpi, fecal

samples showed a higher probability of detection. Overall, this

model predicted that the probability of detecting AIV for a single

swab collected within 8 dpi, was 33.0% (95% CI = 30.1, 47.3) for a

cloacal swab, 44.2% (95% CI = 35.6, 53.1) for an oropharyngeal

swab, and 52.1% (95% CI = 45.76, 58.34) for a fecal swab

equivalent.

Discussion

This is the first time that water has been documented as a

source of infection for waterfowl, although it has long been

Figure 2. AIV RNA detected in water tanks. AIV RNA was detected and quantified by RRT-PCR in the water tanks housing orally-inoculated
mallards (represented by solid markers). Quantities were extrapolated from a standard curve and presented as PCR EID50 equivalents/mL on a log
scale. On 5 dpi, mallards were removed from two of the pens (69 and 70). These pens were disinfected, leaving only the AIV contaminated water in
water tanks. When naive ducks were exposed to the AIV contaminated water, they became infected and maintained the virus concentration
(represented by open markers) for the duration of the experiment. The dashed line represents our RRT-PCR threshold of detection as 100 PCR EID50

equivalents/mL.
doi:10.1371/journal.pone.0012851.g002
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hypothesized as the most likely route of AIV transmission among

ducks in their natural, aquatic habitat [8,19,21,28,29,30,31,32].

Additional evidence supporting this transmission route is the

longevity of AIV in distilled water (estimated up to 207 days at

17uC and 102 days at 28uC) [18]. In contrast, infectious fecal

material experimentally diluted in river water remained infectious

to chicken embryos for only 32 days at 4uC and 7 days at 22uC [8].

Tap water used in our study was maintained at approximately

20uC and remained relatively stagnant with the only effluent and

influent resulting from splashing and the daily addition of small

amounts of fresh water. Under our experimental scenario, naı̈ve

ducks that were exposed to a water source used by ducks shedding

AIV H4N6 also became infected (presumably through their

mucous membranes encountering infectious water). Two succes-

sive passages in chicken embryos were required to detect infectious

virions in the water. This suggests that the viral concentrations

were too low to calculate the infectious virus titer. However,

quantitative RRT-PCR estimated the viral RNA concentration in

Figure 3. Mean H4N6 AIV RNA detected using 3 different sampling methods. AIV RNA quantities detected in cloacal swabs, oropharyngeal
swabs, and fecal samples were compared. Because fecal samples were originally weighed (not swabs), we determined that an average fecal swab
contained 0.092960.0089 g of feces and present these data as ‘fecal swab equivalents.’ Estimated virus concentrations in fecal swab equivalents were
higher than the concentrations detected in cloacal and oropharyngeal swabs regardless of the age of ducks or route of infection. Error bars represent
standard errors.
doi:10.1371/journal.pone.0012851.g003

Figure 4. Comparison of probability of detecting H4N6 AIV RNA using 3 different sampling methods. Fecal samples show a significantly
higher probability of detection 4–8 dpi. Overall, the predicted probability of detecting AIV for a single swab is 38% for a cloacal swab, 44% for an
oropharyngeal swab, and 52% for a fecal swab equivalents.
doi:10.1371/journal.pone.0012851.g004
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these water sources to be approximately 103.0 PCR EID50

equivalents/mL. Evidence for aerosol transmission was not

observed as two negative control ducks in a nearby pen did not

become infected. The ducks presumably infected via the H4N6

contaminated water continued to shed AIV RNA at higher or

similar levels as experimentally-inoculated ducks, and maintained

the quantity of detectable viral RNA in the water throughout the

study.

Researchers testing cloacal swabs from wild waterfowl for AIV

RNA concluded that hatch-year ducks (,1 year old) were 1.7

times more likely to be positive for AIV RNA than after-hatch-

year ducks ($1 year old) [33]. A separate study experimentally

inoculated different age classes of hatch-year mallards including

2 wk old, and 1-, 2-, 3- and 4- mo ducks [34]. Their findings

suggested a difference in viral shedding between some of these age

classes, which may impact transmission of AIV within the wild

bird reservoir system. We also detected differences in viral

shedding between our two age groups, 3 mo and 6 mo, with

6 mo ducks shedding significantly more viral RNA (as detected

with oropharyngeal and cloacal swabs) than 3 mo ducks. This

observed ‘age-effect’ between 6 mo and 3 mo ducks in our study

could be due to stresses of sexual maturity and egg production or

differences in receptor distribution between age groups. It was

evident from egg production and gonad size at necropsy that some

ducks were sexually mature, but we cannot definitively say

whether or not this influenced AIV shedding. In humans, it has

been reported that the distribution of influenza receptors in the

lungs may change with age [35].

While cloacal swabs and oral swabs (oropharyngeal or tracheal)

have historically been used to detect AIV infection in waterfowl

[7,36], our research shows that water samples and fecal samples

may be useful additions or alternatives to sampling of individuals.

Not only were high AIV RNA concentrations detected in feces

and water samples for longer periods than cloacal or oropharyn-

geal swabs, but these samples require fewer resources and time for

field collection. For water, our results indicate that samples

exhibiting 102.8 PCR EID50 equivalents/mL are adequate to cause

infection in mallards so water collection could be used to

determine the risk of AIV spread from a water body. For fecal

samples, the increased probability of detecting viral RNA in feces

compared with oropharyngeal or cloacal swabs indicates that

collecting a fresh fecal sample when available would improve

surveillance efficiency. Finally, duck age is another important

variable to consider when modeling AIV transmission and/or risk.

While age is often classified as ‘‘hatch-year’’ or ‘‘after-hatch-year,’’

there appear to be significant shedding differences even within

hatch-year birds. While immune systems and reproductive status

may play a role in AIV shedding, it is not completely understood.

Therefore, more research is needed to address how AIV shedding

rates (and ultimately AIV transmission) are affected by age.

We have experimentally shown that AIV can be transmitted

from infected mallards to naı̈ve mallards through a common water

source, which has important ecological and surveillance implica-

tions. Instead of looking at individual ducks as the source of

infection of other ducks, researchers may want to focus on water

sources used by infected ducks, which have the potential to infect

naı̈ve ducks using those sources. This may be especially important

during migration, where an infected water source can spread AIV

across large areas by infecting ducks using those water sources as

stopover areas and which then move AIV to other areas as they

continue migrating.
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