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Abstract: With advantageous features such as minimizing the cost, time, and sample size
requirements, organ-on-a-chip (OOC) systems have garnered enormous interest from researchers
for their ability for real-time monitoring of physical parameters by mimicking the in vivo
microenvironment and the precise responses of xenobiotics, i.e., drug efficacy and toxicity over
conventional two-dimensional (2D) and three-dimensional (3D) cell cultures, as well as animal models.
Recent advancements of OOC systems have evidenced the fabrication of ‘multi-organ-on-chip’ (MOC)
models, which connect separated organ chambers together to resemble an ideal pharmacokinetic
and pharmacodynamic (PK-PD) model for monitoring the complex interactions between multiple
organs and the resultant dynamic responses of multiple organs to pharmaceutical compounds.
Numerous varieties of MOC systems have been proposed, mainly focusing on the construction of
these multi-organ models, while there are only few studies on how to realize continual, automated,
and stable testing, which still remains a significant challenge in the development process of MOCs.
Herein, this review emphasizes the recent advancements in realizing long-term testing of MOCs to
promote their capability for real-time monitoring of multi-organ interactions and chronic cellular
reactions more accurately and steadily over the available chip models. Efforts in this field are still
ongoing for better performance in the assessment of preclinical attributes for a new chemical entity.
Further, we give a brief overview on the various biomedical applications of long-term testing in
MOCs, including several proposed applications and their potential utilization in the future. Finally,
we summarize with perspectives.

Keywords: long-term testing; multi-organ-on-chip; microfluidic technology; biosensors; multisensor-
integrated systems; drug testing; disease modeling

1. Introduction

Despite the successes and critical advancements in developing various approaches over the past
few decades, it is increasingly recognized that the preclinical stages of current drug development
pipeline have failed to fulfill the requirements of accurate predictions of drug responses and their
extrapolation to humans. Several cell culture systems in vitro are widely used, since they have allowed
for more rapid drug discovery studies and disease modeling, and because they provide a controllable
environment where cellular growth and activities can be explicitly observed and tested [1,2]. However,
conventional 2D culture systems, in which the cells can be cultivated in a monolayer, fail to replicate
the biochemical environment in vivo, and other mechanical properties. Moreover, drug diffusion
kinetics cannot be demonstrated accurately in 2D cell cultures, where the drug doses are effective in 2D
but universally manifest as being ineffective in a real human body, these culture models usually do not
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maintain their differentiated cell functions [3–6]. To address the lack of physiological relevance, which
is the major drawback of 2D cell cultures, 3D culture models have gained attention with the improved
tissue organization and enhanced expression of cell functions [7]. On the other hand, optimal 3D
culture models also suffer from a shortcoming of reproducing the characteristics of living organs,
which are crucial for their functions, including tissue–tissue interfaces, temporal and spatial gradients
of chemicals and oxygen, and the mechanically active microenvironment [3]. To this end, preliminary
investigations in vivo using animal models are regarded as the gold standard, and an absolutely
necessary step in the drug development process, as they maintain the significant intricacies lying in
living systems, evaluate organ–organ crosstalk, and allow for the determination of pharmacological
attributes as well as toxicological issues, among others. However, these models also suffer from
several limitations, such as the phylogenetic discrepancy between laboratory animals and humans,
which makes it difficult to observe and precisely extrapolate from effects and responses on inherently
complex interconnected tissues [2,8–10]. Therefore, it is increasingly being recognized that preclinical
assessments that are based on animal models often end with poor predictions in many cases [11,12].
In addition, several other drawbacks such as the high cost and time, and ethical concerns have all
limited the use of animal models as powerful tools for biological and pharmaceutical research [13].

Recently, organ-on-a-chip (OOC) systems, predominantly based on microfluidic technology, have
emerged as alternatives to traditional aforementioned cell culture models, combining cell culture with
flow systems that mimic the physiologically relevant conditions and functionalities of organs [14–17].
Conventionally, numerous OOC models have been fabricated using polydimethylsiloxane (PDMS)
elastomer, in which UV lithography has been utilized to create an overall chip architecture, and on the
other hand, soft lithography has also been used to generate an imprint of those structures to create
microscale fluid channels. In this framework, the PDMS template provides more design flexibility for
OOC models, due to its remarkable elasticity. Meanwhile, it can also improve the utilization of normally
used optical measuring technologies, and promote their integration with the OOC systems [18,19].
Nevertheless, these models suffer from a few shortcomings, such as the requirements of several
labor-intensive steps and specialized equipment, which makes it expensive and hinders rapid iterations
of the design, and the difficulty of mimicking the complex structures of the microenvironment
in vivo [20]. Recently, 3D bioprinting technology emerged as the most advanced technology for
microfluidic device fabrication, and it has been applied to the development of OOC systems due to
its processing versatility, rapid generation of microfluidic channels at a high efficiency, user-friendly
equipment, and the significant methods that have been developed, using various natural bioinks,
bioactive molecules, and cells to construct 3D tissue models in vitro [21–23]. 3D bioprinting, usually
including stereolithography and extrusion-based printing, creates 3D structures by precisely controlling
the spatial distribution, and assembling cells, extracellular matrix (ECM), and other biomaterials
layer-by-layer with computer-aided design (CAD) models [20,24–27]. Based on the characteristics of
rapid and continuous model generation, testing, and redesign, 3D bioprinting technology will play a
significant role in the fabrication of OOCs with human anatomical as well as physiological features
in the future [20,21]. In addition to the benefits of better reflecting the interactions between organs
in vivo, OOC approaches generally require much less resources for evaluation, in terms of time and
cost [28]. In this framework, various organs that have been significantly replicated and focused on
include lungs, liver, blood vessels, intestines, heart, kidneys, and tumor microenvironments [29–43].
However, these models are largely based on single-cell types, whose architectures are still far from
their respective functional units of organs in the human body. Therefore, over the past years, OOC
technology has progressed towards the integration of multiple organ functions on a chip [12,44–47].
Drugs are generally categorized by the biopharmaceutical classification system (BCS) based on their
physical and chemical properties, as well as pharmacokinetic and pharmacodynamic (PK-PD) profiles
that result from the complex processes of absorption, distribution, metabolism, and elimination,
collectively known as ADME [48–52]. The inaccurate prediction of the PK-PD profile of any drug can
increase the failure rate of its development process [53,54]. Thus, it is highly crucial to construct an ideal
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PK-PD model in order to aid the drug development process [55,56]. Termed as ‘multi-organ-on-chip’
(MOC), sometimes referred as ‘body-on-a-chip (BOC)’, this device combining microscale technology
with mathematical PK-PD modeling has separate chambers connected by microfluidic flow channels
precisely emulating blood circulation, which provides an approach for monitoring the dynamic
responses of multiple organs to pharmaceutical compounds [57]. Despite success in the utilization
of MOC systems, there have been several factor in the drug development process that are yet to be
addressed, such as the fact that plenty of drugs trigger chronic cellular reactions or induce delayed
cell responses. These severe consequences resulted in a number of efforts towards the long-term
testing of drugs in MOC systems. Realizing long-term testing using MOC systems can enhance the
capability to more accurately and stably detect real chronic cellular reactions in the human body,
as well as the interactions of organs in the dynamic ADME process over extended periods of time,
which can significantly improve the overall performance of drugs. Despite most of the attention in the
field of MOC platforms being on the fabrication of biomimetic multi-organ models, how to realize
the long-term investigations using MOCs still remains a significant challenge [3,40,58–61]. So, in the
subsequent sections of this review, we have summarized the recent progress to realize long-term testing
using MOCs (Figure 1). First, we describe the basis for utilizing microfluidic technology, highlighting
its importance in simulating the circulation system by interconnecting several tissues or organs in
the human body. This innovative technology plays an important role in providing a controlled
microenvironment for long-term co-culture of multiple tissues in vitro [62]. Second, we emphasize
several biomedical sensors as a critical part of achieving long-term and real-time monitoring of
multi-organ platforms by measuring microenvironmental parameters (e.g., O2, pH) and microelectrode
arrays (MEAs) technology, in detecting and recording the electrophysiological responses of organs to
xenobiotic compounds. Third, we introduce the utilization of multisensor-integrated microfluidic MOC
systems for long-term testing of organoid behaviors. Then, we discuss various biomedical applications
of long-term testing in MOCs, including some proposed applications, predominantly focusing on drug
testing/toxicology and disease modeling, and the potentials for drug screening, cancer metastasis,
biomarker detection, and personalized medicine in the future. Finally, we summarize the different
viewpoints and suggest future directions for the MOC field.
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and the various proposed and potential biomedical applications of long-term testing in MOC systems.

2. Development of Long-Term Testing in MOC Systems

As mentioned earlier, the long-term testing of MOCs is desired to promote the capability for
analyzing multi-organ interactions more accurately and steadily, which bridges the gap between the
chronic cellular responses to medications in multi-organ models in vitro, and the real ones in the
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human body. Herein, we elaborate on the discussion of the efforts to achieve long-term testing in MOC
systems and their use with a set of examples.

2.1. Advances in Microfluidic Technology for Long-Term Investigations

In traditional 3D cell culture systems, it is extremely difficult to fabricate a testing system
with a biomimetic microenvironment to realize functional analyses, the supply of nutrients to cells,
trans-cellular transport, removal of cellular by-products, and secretion as well as biochemical analysis
of the cultured cells [63–66]. To fill the gap between in vivo and in vitro conditions, microfluidic
approaches have been utilized in OOC technology to simulate organ functions by facilitating the
effective transportation [67]. In this framework, the microfluidic flow channels, as well as bioreactors,
can provide a steady and sustained flow of culture medium, and connect various organ compartments
together for maintaining homeostasis, with which OOC systems have been developed for performing
long-term cultivation of cells [68–70]. In recent years, several microfluidic perfusion MOCs have
been proposed for use in long-term co-cultures of multiple tissues, and continuous observation of
the pharmacokinetic ADME process of various drugs. Commonly, traditional perfusion chips use
costly and bulky external pumps for the stable flow of the culture medium [71,72]. Micropumps
integrated within the chips have now substituted these external pump sources [73–75]. In one case,
Horland and colleagues constructed an MOC platform equipped with a peristaltic on-chip micropump,
interconnecting liver microtissues and skin biopsy culture compartments. This MOC system, providing
a controlled medium flow without external media circuits, supported a co-culture of the two tissues
for a period of up to 28 days [62]. To further improve upon the fluid dynamics in such multi-organ
platforms, Maschmeyer et al. established a four-organ chip for the co-culture of human intestine,
liver, skin, and kidney equivalents with two microfluidic circuits. One of the on-chip micropumps
assured a near-physiologic fluid flow by interconnecting four tissue culture domains. The second
microfluidic flow circuit was used to discharge the liquid secreted by the kidney epithelial cell layer.
This microfluidic multi-tissue co-culture device also provided long-term testing of drug candidates over
28 days [46] (Figure 2). However, the utilization of on-chip micropumps is limited, due to the complex
manufacturing process, difficulties in integration with the setup, and the requirement of external
power supplies for operation, which has resulted in a high demand for simpler alternatives [76].
Accordingly, passively driven perfusion microfluidic MOCs based on gravity-driven perfusion offer
the required features, such as a simple design, and have been proposed, as they are inexpensive in
manufacturing and operation. In this context, Miller and coworkers designed a pumpless system using
a gravity-driven flow system connecting at least 14 chambers for different tissue types. Moreover,
they used straight channels across the compartments, and applied the appropriate channel sizes to
achieve the optimal flow rates. With the above properties, this approach presented the capability for
long-term co-culture of various tissues as well [77]. However, this gravity-induced-perfusion pumpless
system circulated fluid bidirectionally, which caused oscillating shear stress, possibly affecting shear
stress-sensitive tissues (e.g., vasculature, kidneys, and lungs) [77,78]. Recently, in an attempt to better
accommodate shear stress-sensitive tissues, Wang and colleagues utilized the ‘UniChip’ design, which
combined specially fabricated supporting channels and passive valves with gravity-driven flow on a
BOC platform to achieve recirculating unidirectional perfusion [78] (Figure 3). The results of this study
demonstrated that the UniChip design allowed for long-term culture of shear stress-sensitive tissues,
and provided a backflow-proof mechanism for the stable chronic operation of BOC systems.
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Figure 2. The microfluidic four-organ-chip device at a glance. (A) 3D view of the device, comprising
two polycarbonate cover-plates, the PDMS-glass chip (footprint: 76 mm × 25 mm; height: 3 mm)
accommodating a surrogate blood flow circuit (pink) and an excretory flow circuit (yellow). Numbers
represent the four tissue culture compartments for the intestine (1), liver (2), skin (3), and kidneys
(4). A central cross-section of each tissue culture compartment aligned along the interconnecting
microchannel is depicted. (B) Evaluation of fluid dynamics in the 4OC using µPIV (micro-scale
particle image velocimetry, an optical method of flow visualization used to obtain instantaneous
velocity measurements and related properties in fluids in microscale). Top view of the four-organ-chip
layout, illustrating the positions of three measuring spots (i, ii, and iii) in the surrogate blood circuit,
and two spots (iv, v) in the excretory circuit. (C) Average volumetric flow rate plotted against the
pumping frequency of the surrogate blood flow circuit and the excretory circuit. Co-culture experiments
were performed at 0.8 Hz and 0.3 Hz, respectively, as indicated by the vertical lines. Error bars are
the standard error of the mean. Reproduced from [46], with permission from the Royal Society of
Chemistry, 2015.
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Figure 3. Schematic of UniChip operation. A demonstration UniChip is placed on a rocker platform
that flips, tilting between +18◦ (A) and −18◦ (B) periodically. When tilted at +18◦ (A), flow in b1 is
halted by the capillary force at the air–liquid interface in the passive valve v1. Flow is directed from
reservoir I through a1, a2, Cu, and b2 into reservoir II. When tilted at −18◦ (B), flow in b2 is halted by
valve v2, and flow is directed from reservoir ii through a2, a1, Cu and b1 into reservoir II. Under either
condition, the flow direction in the cell perfusion channel, Cu, is kept the same, as shown by the green
arrows. Reproduced from [78], with permission from the Royal Society of Chemistry, 2018.
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2.2. Biomedical Sensors for Long-Term as well as Real-Time Monitoring of MOC Platforms

Real-time monitoring and analysis of cell metabolism are significant for evaluating the effects of a
drug over an extended period [79–81]. Because of the labor-intensive demands and the complexity
of the integration with low-volume bioreactors, conventional methods such as mass spectroscopy
and enzyme-linked immunosorbent assay (ELISA) are inadequate to meet the needs of continual
monitoring [82]. Miniature biomedical sensors appear as an effective tool to assess the dynamic
metabolic process of living cells with high selectivity and sensitivity [83]. Incorporating biosensors
into microfluidic devices contributes to the enhancement of sensing capabilities by improving the
delivery of analytes [66]. Biosensors, originally used for the detection of some biomacromolecules;
e.g., DNA [84,85], enzymes [86,87], peptides [88,89], and proteins [90,91], have now been widely
used for different purposes when combined with microfluidic chips [92–96]. The utilization of these
biosensors in the advancement of OOC platforms provides the ability for continual observation and
analysis of chronic or retardant cellular responses to precise measurements of analytes or conditions
in drug screening, disease modeling, and several other in vitro pharmacological or toxicological
attributes [28,82].

Biochemical parameters in the microenvironment of the microfluidic platforms, such as changes
in pH level and oxygen concentration, can be measured and read out by these efficient microsensor
systems, which ensure consistently optimal physiological conditions and control over cell culture, as
well as organoid behaviors [28,83,97]. However, it should be noted that the inappropriate extracellular
acidity or oxygen tension may lead to undesirable variations in the physiology of the organoids, and
lead to inappropriate detection accuracy of the OOC systems during drug screening studies [98–102].
Previously, some traditional electrode-based approaches were applied in this field for monitoring pH
and oxygen. Nevertheless, they have now been replaced by low-cost optical sensing that is based on
the detection of variations in the light absorption or fluorescent intensity of oxygen and pH indicators
when the oxygen or pH of the microenvironment is changed, and this enables time-lapse studies to be
conducted without interfering with the settings [103]. The optical sensing approach demonstrates the
advantages of the construction of a compact and miniature detection device, compared with bulky
spectrophotometry or microscopy technologies [104]. Biosensors for quantifying other parameters
(e.g., glucose, lactate) used in this field are mostly based on the respective enzymes that are involved
in their conversion. The first generation of biosensors had a fixed enzyme on a membrane, or a matrix
located directly on the electrode. With the production of their respective by-products (e.g., H2O2),
the enzyme (e.g., oxidase enzyme) oxidizes or reduces the analytes at a properly polarized electrode
(e.g., platinum) [28]. Several attempts to incorporate pH and oxygen optical sensing systems and optical
sensors for glucose and lactate into microfluidic platforms have been proposed [79,105–111]. In this
framework, a microfluidic glass chip has been fabricated by combining cell culture and metabolic
monitoring equipment with fully integrated biosensors. The pH and oxygen sensors showed a
long-term stable, linear response in the cell culture area, and biosensors for lactate and glucose
connected downstream by microfluidics exhibited linear, long-term stable, selective, and reversible
behavior within the desired range [79] (Figure 4). This device provides a low-cost, easy-fabrication
and convenient-operation analytical platform that can be applied in many microfluidic MOCs for
continuous and real-time measurements of values of pH, dissolved oxygen levels, and concentrations
of glucose and lactate, for drug screening in vitro. However, they have not been widely used in the
metabolic detection of in vitro cell cultures compared to enzyme-based sensors.
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Figure 4. Sensor characterization in a cell culture medium at 37 ◦C at a flow rate of 2 µL·min−1: (a)
Transient pH measurement. (b) Calibration for pH. (c) Current response of a 3-step chronoamperometric
dissolved oxygen measurement protocol, with and without oxygen. (d) Calibration for dissolved
oxygen. (e) Transient glucose measurement for glucose and a blank electrode, by spiking a medium
containing glucose. (f) Glucose calibration with the blank signal subtracted. (g) Transient lactate
measurement for lactate, and blank electrode in medium without FBS. (h) Lactate calibration with
the blank signal subtracted. Reproduced from [79], with permission from the Royal Society of
Chemistry, 2014.

Incessant monitoring of cellular and micro-organ activities also plays a critical role in realizing
the long-term testing of MOCs. The electrophysiological responses produced in cardiomyocytes
and neurons have caused plenty of issues for emulating the environments of cardiac tissues
and nerve tissues, and have affected the prediction of drugs in preclinical studies. In order to
generate an appropriate electrochemical microenvironment, the mimicries of the heart and nerves
are interconnected with electrodes [66]. Some conventional techniques, such as amperometry and
patch-clamp, have been successfully used to evaluate the effects of drugs, with high sensitivity at the
level of a single cell. However, they lack high-throughput screening, as they require intensive labor
and limit the investigation of effects to a single pattern of action [112]. Alternatively, MEAs technology
has been extensively used in electrophysiological experiments for monitoring the electrochemical
signals in disease modeling of heart or nerve systems [113,114], drug testing [115], and toxicological
models [116,117] in vitro, and it has been used to convey electric currents to cells in a process called
microstimulation [118]. Different from intracellular monitoring techniques, this approach can shape
non-invasive interfaces by directly contacting with cells, enabling quite a long window of time for
recording cellular behaviors from active membranes of the cells and delivering electrical currents
to stimulate the cells [119]. In a heart–liver multi-organ pumpless microfluidic system, Oleaga
and colleagues used multi-microelectrode array chips, which were customized as two rows of five
electrodes each, for monitoring electrochemical behaviors. Signals from the noninvasive interface
between cells and the MEA chips were recorded with an amplifier to track the cardiac and hepatic
functions [120] (Figure 5). This device enabled the long-term determination and more accurate
predictions of xenobiotics toxicity, with lower costs in toxicology models, which emphasized the
importance of the integration of MEAs technology in long-term testing of MOCs.
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Figure 5. Characterization of the heart–liver system—serum-free and flow—with non-invasive
measurements for seven days. Human cardiomyocytes and hepatocytes were studied over seven
days in HSL3 medium. Representative morphology images are shown for human cardiomyocytes (A)
in mono-culture (top) or co-culture (bottom) (80 µm scale) and hepatocytes in co-culture (B) after seven
days in the housing (50 µm scale). Cardiac function was measured over seven days in the presence (red
square) or absence (blue diamond) of hepatocytes. Cardiac function is plotted as conduction velocity,
spontaneous beat frequency, mISI (or QT interval), and contractile force (C). Two-way ANOVA was
performed to study the effects of culture time and the presence of the hepatocytes on the different
cardiac functional parameters; conduction velocity (p = 0.8, 0.03), beat frequency (p = 0.8, 0.2), mISI
(p = 0.3, 0.2) and force (p = 0.7, 0.9). Hepatic function was studied after seven days in the system with
cardiomyocytes, and compared to the static mono-culture conditions. No significant differences were
evident through a t-test for the 1A1 (p = 0.09) and 3A4 (p = 0.7) enzymes (D). For interpretation of
the references to color in this Figure legend, the reader is referred to the Web version of this article.
Reproduced from [120], with permission from Elsevier, 2018.

2.3. Multisensor-Integrated MOC Systems

As discussed above, multiple organoid models combining microfluidic technology with
non-invasive biosensing systems offer several advantages over traditional models, such as better
simulation of the physiology of human organs in vivo, and monitoring the biochemical attributes
of these miniaturized organoid models in situ [121,122], while traditional analytical methods for
the miniaturized MOC models are not suitable anymore, due to their large operating volumes and
frequent system interference [121]. A large number of MOCs combining microfluidic technology with
biomedical sensors to realize long-term testing of MOC platforms have been proposed. However,
they are still limited in continually analyzing multi-organ interactions in situ and a lack of automated
capability [61]. Thus, a system that seamlessly integrates various biomedical sensors into microfluidic
multi-organ models, which can ideally work in an automated and continuous manner for a
long period of time, is required. To address this limitation, Zhang and colleagues integrated a
continuously and automatically operating sensing units that included a gold microelectrode set-based
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electrochemical immunobiosensors for capturing biomarkers, optical biosensors for monitoring
microenvironmental parameters and microscopes for observing organoid morphologies and behaviors
into a microfluidics-controlling breadboard based MOC system [61,123] (Figure 6). This platform
with continual cell culture and different automated monitoring functions into microfluidic MOCs
significantly enhanced the performance of long-term testing of drugs. Nevertheless, this approach of
multisensor-integrated MOC platform using PDMS is not optimal as the applicability is limited due
to absorption of hydrophobic small molecules and drugs by PDMS [61,124,125]. Further efforts on
improving the fabrications and integrations of such multisensor-integrated microfluidic MOC models
are very much desired to realize more efficient long-term testing and more accurate predictions of
drug efficacy and toxic side-effects on MOCs for biomedical applications.
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Figure 6. Integrated automated multiorgan-on-a-chip and sensing platform. (A) Schematic of a
full system where the multiorgan-on-a-chip platform is encased in an in-house designed benchtop
incubator, and of automated pneumatic valve controller, electronics for operating physical sensors,
potentiostat for measuring electrochemical signals, and a computer for central programmed integration
of all of the commands. (B) Schematic of the integrated microfluidic device consisting of modular
components, including microbioreactors, breadboard, reservoir, bubble trap, physical sensors, and
electrochemical biosensors. The inset shows the photograph of an integrated platform. Reproduced
from [61], with permission from the Proceedings of the National Academy of Sciences of the United
States of America, 2017.
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3. Biomedical Applications of Long-Term Testing in MOC Platforms

More often, the OOC systems are preferred over conventional approaches to precisely record
drug performances with minimal resources in terms of time and cost, so that these models have gained
popularity in the fields of therapeutic development over the past years [14,40,59,126,127]. In order to
better mimic the interaction of in vivo human organs and the complex ADME process, several MOCs
have recently emerged to displace the single OOC systems in biomedical applications. As listed in
Table 1, there are four main proposed applications, including drug testing or toxicity studies, disease
modeling, drug screening, and cancer metastasis. Among these studies, some lay more stress on the
applications of long-term testing in MOC systems in therapeutic areas.

Table 1. Biomedical applications of MOC platforms.

Application Multi-Organ/Tissue
System

Fabrication Approach Outcome References

Drug
testing/toxicology

Liver, tumor, and
marrow

This model combined a
three-compartment

microscale cell culture
analog (µCCA) device
exposed to a pumpless

gravity-induced flow with a
mathematical

pharmacokinetic and
pharmacodynamic (PK-PD)

model.

This model promoted the
analysis and prediction of
the effects of 5-fluorouracil

(5-FU).

[128]

Liver, intestine,
skin, and kidney

This model integrated two
peristaltic on-chip
micropumps and

microfluidic channels
connecting four tissue

culture chambers for two
microfluidic circuits into the

four-organ-chip.

This model was helpful for
repeated dose toxicity

testing of drug candidates
and further in vitro

absorption, distribution,
metabolism and elimination

(ADME) observation.

[46]

Liver, colorectal
tissues

These models cultured
spherical microtissues in
parallel, connected by a

microfluidic-channel
network, with liquid flow

controlled through a
hanging-drop device.

These models were helpful
for testing drug effects at
different concentrations.

[129–131]

Liver, nerve tissues This model connecting two
tissue compartments

exposed by microfluidic
channels was maintained in
a combined media circuit.

This model showed the
dose-dependent cytotoxicity

result of the neurotoxic
compound 2,5-hexanedione.

[132]

Liver, heart This model contained
human-induced pluripotent
stem cells (iPSCs)-derived

liver and heart tissues,
which were exposed to

serum-free medium flow
using a pumpless system.

This model was helpful for
the prediction of the

cardiotoxicity
transformation of drugs

through hepatic metabolism.

[120]

Liver, skin tissues This model used a single
polydimethylsiloxane

(PDMS) layer integrating the
respectively arranged

channels interconnecting the
tissue counterparts,
peristaltic on-chip

micropumps, media
reservoirs, and openings for

culture compartments.

This model tested the liver
toxicity of troglitazone at
different molecular levels.

[12]
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Table 1. Cont.

Application Multi-Organ/Tissue
System

Fabrication Approach Outcome References

Lung, gut, skin,
vascular, liver, and

kidney

This model, using
physiologically-based
pharmacokinetics with

pharmacodynamic
(PBPK/PD) models for

estimating ADME
parameters, was made of
PDMS and microfluidic
channels for connecting

different organ
compartments.

This model was helpful for
PBPK/PD modeling and

drug development in
different stages.

[133]

Disease modeling Liver, heart, and
vascular system

This model interconnected
iPSCs-derived

cardiomyocytes and
hepatocytes by 3D-printed

rigid filament networks of a
carbohydrate glass with

endothelial cells, and
perfused the networks with

high-pressure pulsatile
blood flow.

This model was helpful for
predictions of physiological

responses in the diseased
microenvironment.

[134]

Drug screening Liver, heart, lung,
and kidney

This model adopted
allometric scaling for
coupled non-linear

organ-on-a-chip (OOC)/
multi-organ-on-chip (MOC)

systems to create
micro-organs maintained by

a universal media.

This model was helpful for
the screening of new drugs
for efficacy and potential

side-effects

[60]

Liver, marrow,
megakaryoblast,
and cancerous

tissues

This model integrated a
µCCA device into a silicon

chip, on which four
functional tissues were

cultured in corresponding
chambers connected by
Pharmed tubing, with

recirculating flow being
provided by a peristaltic

pump.

This model was helpful to
predict the selectivity of

chemotherapeutic/modulator
mixtures for killing or
reducing the growth of

multidrug resistance (MDR)
tumor cells in vivo.

[135]

Liver, intestine,
and breast

carcinoma cells

This model containing
microtissues of liver,

intestine and the breast
carcinoma cells cultured in

the target components
consisting of a slide and

PDMS layers, having
microchannels made by

photolithography.

This model was helpful for
the evaluation overall

properties of orally ingested
drugs, foods, and chemicals.

[136]

Cancer metastasis Marrow,
mesenchymal stem

cells, and breast
cancer cells

This model bonded a bored
PDMS layer to a cover glass

to create microfluidic
channels with oxygen
plasma treatment, and

provided eight cell-culture
gel regions connected to the

central media channel.

This model was helpful to
mimic the dissemination of

breast cancer cells into bone.

[137]

Brain, bone, liver,
and lung

carcinoma cells

This model combined three
PDMS sheets and two thin

PDMS microporous
membranes to create three

parallel microchannels
connecting an upstream

micro-lung and three
downstream micro-organs.

This model was helpful for
observing lung cancer cell

behaviors in a
physiologically relevant

context.

[138]
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Table 1. Cont.

Application Multi-Organ/Tissue
System

Fabrication Approach Outcome References

Intestine, liver, and
colon carcinoma

tissues

This model, comprising two
independent cell-culture
chambers connected by a
circulating fluid flow, was

fabricated with a hyaluronic
acid-based hydrogel system

in which the metastatic
colon carcinoma tumor foci

were created.

This model was helpful for
studying the process of the

migration of colon
carcinoma cells.

[139]

Biomarker
detection

Heart, liver, and
lung

This model comprised lung
tissues based on the PDMS

model and bioprinted
spherical liver and heart

organoids, which are
connected via a central fluid

channel with fluid flow
driven by a peristaltic

micropump.

This model was helpful to
utilize enzyme-linked

immunosorbent assays
(ELISAs) to determine the

effect of bleomycin to
quantify the levels of

interleukin-8 (IL-8) and
interleukin-1β (IL-1β).

[140]

Liver, intestine,
cancer, and

connective cells

This model contained two
culture chambers

interconnected in each
culture unit via

microchannels with a
medium driven by a
sequential pneumatic

pressure-control system.

This model was helpful for
liquid chromatography

coupled with a mass
spectrometry (LC-MS)
system, to measure the

concentrations of
capecitabine and 5-FU in the

medium of the model.

[141]

3.1. Proposed Biomedical Applications of Long-Term Testing in MOC Systems

3.1.1. Drug Testing/Toxicology

The current process of drug development requires a high cost and an enormous lag of time.
Moreover, about merely 10% of drug candidates entering clinical trials are finally approved [50].
Unpredictable issues such as severe toxicity or a lack of efficacy until the later stages of clinical
trials are the main reasons for causing such a low efficiency rate; therefore, predicting drug toxicity
earlier would save a lot of resources in terms of time and cost [128]. Plenty of efforts toward this
goal have been proposed, for the application of in vitro multi-organ/tissue platforms into the field
of drug testing/toxicology [128–131,133,142]. Particularly, in some studies, researchers have paid
more attention toward long-term cultivation and continual testing by using MOCs [12,46,129,143].
In addition to the microfluidic four-organ chip based on a micropump for repeated dose systemic
toxicity testing of drug candidates and in vitro observations of the ADME process over 28 days,
which was introduced earlier [46], Materne et al. co-cultivated neurospheres and liver spheroids
based on a microfluidic MOC platform containing a micropump, which ensured a stable long-term
circulation of media to interconnect the two organ compartments over 14 days [132]. In this two-week
toxicity assay with a substance exposure to the neurotoxic 2,5-hexanedione, the cytotoxicity results
of such neurotoxins have shown dose-dependency. Similarly, an MOC platform designed with a
peristaltic micropump and media reservoirs provided long-term co-culture of a human liver equivalent
and a human skin biopsy. In this model, the liver microtissue displayed sensitivity to a diabetic
drug, troglitazone, with liver toxicity at different molecular levels, which enabled repeated dose
exposure of tissues to troglitazone for about seven days, fulfilling the potential for long-term systemic
substance testing [12]. To further improve the performance of measuring real-time cellular functions
with the maintenance of a cellular phenotype, an MOC device combining a microfluidic circuit with
MEAs technology was used to investigate the effect of hepatic metabolism on off-target cardiotoxicity.
By non-invasive monitoring of beat frequency, conduction velocity, QT-interval, and contractile force in
two drug models related to cardiac side-effects dependent on hepatic metabolism, cyclophosphamide
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(CP), and terfenadine (TER), the system was validated, which allowed for long-term testing for the
prediction of the cardiotoxicity transformation of drugs through hepatic metabolism [120].

3.1.2. Disease Modeling

Another significant application of long-term testing using MOCs is disease modeling. Diseased
tissues often show different responses to drugs, chemicals, or their metabolites, compared to
healthy tissues [143,144]. In a multi-organ disease modeling system, the model organs capture
human-specific features of a disease, which can enhance the authenticity of human pathophysiological
responses and increase the effectiveness of the therapeutic strategies compared to conventional in vitro
cell culture models and animal models [145]. To achieve long-term testing in an MOC disease
model, Vunjak-Novakovic and coworkers established a multi-tissue platform with human-induced
pluripotent stem cells (iPSCs)-based vascular, liver, and cardiac microtissues, which provided a faithful
representation of the human vascular network, replicating metabolizing hepatic lobules and working
myocardium for human biology research on health, injury, and disease over an extended period of
time (about 28 days). The iPSCs used in this work provided a large variety of normal cells, and cells
with genetic mutations for drug screening and disease modeling. The researchers also integrated
biosensors into the iPSCs to monitor the ADME process and functional readouts for tissue cells in
real time, which could offer profound insight into specific pathological mechanisms. This approach
demonstrated its utility for predictions of physiological responses in the diseased microenvironment
and the potential for the improvement of the translation of drug discovery [134].

3.2. Potential Applications of Long-Term Testing using MOCs

3.2.1. Drug Screening

Due to the strong desire for a thorough and accurate in vitro assessment of drug potency in the
processing of cancer therapeutics, multi-organ/tissue systems have emerged as a potential tool for
drug screening [5,60,135,136]. In an attempt at anti-cancer drug screening by using an MOC system,
a multi-tissue platform prepared by co-culturing HepG2/C3A (liver), MEG-01 (megakaryoblast, bone
marrow), MES-SA (normal cancerous tissue), and MES-SA/DX-5 (multidrug-resistant cancer tissue)
was designed to test the selective capability of a combination of drugs toward multidrug resistance
(MDR) in cancer without major varieties in side-effects for acute exposure of 24 and 72 hr. The results
illustrated the efficient prediction of the particular ability of chemotherapeutic/modulators mixtures
that kill or reduce the growth of MDR tumor cells in vivo, with tolerable side-effects in normal tissues,
demonstrating great potential for the screening of novel compounds [135]. However, almost all of the
MOCs applied in this field could only test for a short period. To meet the screening requirements of
drugs for chronic disease, long-term testing based on MOCs for drug screening are desired to detect
the cellular response to drugs for chronic disease for an extended period.

3.2.2. Cancer Metastasis

In addition to the several applications discussed above, another medical phenomenon that
requires the use of more than one type of organ in the model is cancer metastasis. The discovery of
novel anti-cancer and diagnostic tools [146] has been progressing steadily by revealing the specific
signals of the cancer microenvironment and affecting the tumor growth, malignancy [147–151], and
transvascular migration [152,153]. These multi-tissue metastasis-on-a-chip platforms contain multiple
organoids that enable cancer cells to migrate from one site to another, to facilitate the detection of the
dissemination of circulating tumor cells (CTCs), and their intravasation into capillaries during cancer
metastasis [154,155]. Although some effort in this field has been made to observe cancer cell behaviors
and to analyze tissue–tissue interactions in the physiologically relevant context by detecting variations
of cancer cells, there are still only few attempts applying long-term testing in MOC systems into cancer
metastasis modeling [137–139]. However, we believe that with the excellent properties mentioned
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above, the application of long-term testing in cancer metastasis modeling has the potential for better
understanding of cancer biology and making significant progress with drug discovery in the future.

3.2.3. Biomarker Detection

In the applications of MOCs, the determination and quantification of biomarkers or target
metabolites are also key steps for analyzing biological reactions and the metabolism of drugs [156].
Often, the miniature-sized culture volume and the small number of cells in the MOC systems results
in technical problems related to detection sensitivity. These issues have been solved by applying
various analytical methods to biomarkers into the MOC models. As a conventional biosensing
technology, enzyme-linked immunosorbent assay (ELISA) has been used in biomarker detection to
assess the functions or conditions of cells in the MOCs [157]. In a recent study, an MOC system
comprising lung tissues based on the PDMS model and bioprinted spherical liver and heart organoids,
which were connected via a central fluid channel with fluid flow driven by a peristaltic micropump
has been established, and the effects of bleomycin were determined by utilizing ELISA technology
to quantify the levels of interleukin-8 (IL-8) and interleukin-1β (IL-1β) [140]. In addition, drug
metabolites produced by cells provide complex and detailed information about organ responses,
which have been explored by applying liquid chromatography coupled with a mass spectrometry
(LC-MS) technology in MOC models to profile metabolomics in preclinical studies for high-throughput,
better sample separation, high efficiency, and accuracy for measurement and diagnosis [157]. Satoh and
coworkers developed an LC-MS system-coupled MOC platform containing tissues of liver, intestine,
cancer, and connective cells that were interconnected via microchannels with medium driven by
a sequential pneumatic-pressure-control system to detect the concentrations of capecitabine and
5-fluorouracil (5-FU) in the medium [141]. These models on the application of MOC systems in
biomarker detection enabled the determination of in vivo information, based on variations in the
composition and concentration of analytes in the medium [157]. Thus, we believe that as technologies
based on biomarker detection and long-term testing using MOCs advance, efforts at long-term
testing in MOCs towards this application to analyze the chronic organ responses and the long-term
pharmaceutical metabolism will be shortly become substantially feasible.

3.2.4. Personalized Medicine

A large number of MOC systems in vitro have so far been applied in the area of therapeutic
development, but these therapies are primarily designed for the average patient, with no consideration
of people’s diversity [158]. Prescribed treatments are usually based on the general success rate of drugs,
rather than the response of specific patients to drugs; thus, efficient tools in support of predicting
how a specific individual responds to a drug are greatly needed [155,159,160]. Microfluidic MOC
platforms containing cells taken from patients are currently emerging as a new tool for developing
personalized medicines. As described above, long-term testing in MOCs enables a better biomimicking
microenvironment, and the ability for continual observations of the ADME process of drugs, and more
accurate predictions of responses by multiple organs, gives us confidence that this approach will be
possible for defining appropriate drugs and dosages for individual patients before treatment, and this
will greatly change patient care and improve treatments for cancer and other diseases [155,158].

4. Conclusions and Perspectives

MOCs can emulate the key aspects of an in vivo human environment, and they are capable of
mimicking the organ–organ interactions and the complex ADME process. In this review, we have
discussed the advancements of realizing long-term testing of MOCs, which are greatly desired for
enhancing the capability of analyzing multi-organ interactions more accurately and stably, for better
detection of chronic cellular reactions in the human body. The first effort for this goal has been
achieved by using microfluidic technology to provide a steady and sustained flow of culture medium,
and to connect various organ compartments for a long-term multi-tissue co-culture approach. Then,
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incorporating biomedical sensors into MOC systems provides low-cost and convenient-operation
analytical platforms for the detection of microenvironmental parameters and electrophysiological
responses for real-time monitoring of MOC platforms. Finally, designing multisensor-integrated
microfluidic MOC systems promotes the performance of automated and continuous monitoring of the
metabolic processes of drugs and the conditions of the MOC systems. However, there are still a few
limitations in the proposed experiments, and further efforts on the integration of multisensor systems
in the future are still required to address these issues. In addition, we gave a brief overview of various
proposed biomedical applications of long-term testing in MOCs, mainly in drug testing/toxicology
and disease modeling. These applications of MOCs showcased the potential for predicting efficacy and
toxic side-effects with higher accuracy, to promote the development process of drugs and the discovery
of novel therapeutic strategies. Moreover, we introduced various potential applications for long-term
testing in MOC systems in drug screening for chronic disease, cancer metastasis modeling for better
understanding cancer biology, and making good progress in drug discovery, biomarker detection for
the analysis chronic organ responses and long-term pharmaceutical metabolism and personalized
medicine for more accurate predictions for specific individual responses to a drug, to improve the
treatment of cancer and other diseases.
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