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Abstract

A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently

been proposed to address the limitations of conventional single BCI system. Although some

hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy

and there is much to be done. Especially, since the hybrid BCI systems are so complicated

and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a

glance. Also, the complicated and complex systems make it difficult to evaluate the usability

of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid

BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs

with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be cat-

egorized with respect to 1) the source of brain signals, 2) the characteristics of the brain sig-

nal, and 3) the characteristics of operation in each system. In addition, we exhaustively

reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of

usability, we focused on task and measurement characteristics of BCI usability. We classi-

fied and summarized 31 BCI usability journal articles according to task characteristics (type

and description of task) and measurement characteristics (subjective and objective mea-

sures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems

according to three core-constructs: Satisfaction, effectiveness, and efficiency with recom-

mendations for further research. This paper can help BCI researchers, even those who are

new to the field, can easily understand the complex structure of the hybrid systems at a

glance. Recommendations for future research can also be helpful in establishing research

directions and gaining insight in how to solve ergonomics and HCI design issues surround-

ing BCI and hybrid BCI systems by usability evaluation.
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Introduction

Background and motivation

During the last decades, a new technology, called a brain-computer interface (BCI), has

emerged by allowing the human brain to directly communicate with the environment. The

BCI, also known as a brain-machine interface or a direct neural interface, is a non-muscular

communication system that does not depend on the brain’s normal output pathways of

peripheral nerves and muscles, so it can provide a direct connection from the brain to commu-

nicate and control devices [1]. Many BCI research projects have been produced to provide

alternate methods to interact with the outside world not only for healthy people [2–4], but also

for patients who cannot use their muscles due to an injury or a disease but are cognitively

intact [5–7]. These BCI studies found many useful applications for the technology, and have

been validated by target users with valuable and promising results [8–14].

Despite these advances and a considerable amount of ongoing research, current efforts in

the area of BCI research and development have uncovered significant gaps, ‘universality’

[15,16] and ‘non-stationarity’ [17–19]. First, in BCIs based on imagined movements approxi-

mately 20% of users do not exhibit BCI performance adequate enough for effective control, a

phenomenon called ‘BCI illiteracy’ [2,15,20–23]. This problem has been reported with other

major BCI approaches as well. For instance, some studies which explored universality with

P300 and steady-state visual evoked potential (SSVEP) BCIs found that these approaches may

work for a larger percentage of users, but not necessarily all of them [16,20,24,25]. Second,

brain signal patterns vary within a subject over time as well as between individuals, and this

non-stationarity makes it difficult to decode the brain signal properly and results in extensive

training being needed to effectively use the devices [18,19]. Various methods have been pro-

posed and applied to make BCIs more universal and to address non-stationarity, such as im-

proved training [26,27], distributing proper instructions to the end users [28], and improved

signal processing [29]. However, even with these new techniques, some of users still cannot

use a resulting BCI [15,21,30].

Recently, novel approaches have been proposed to address these issues in current BCI stud-

ies by combining a BCI system with other system(s) that utilize neurological signals, physiolog-

ical signals, and/or external signals. This new BCI technique is called a hybrid BCI or hBCI

[4,31–34]. Since each system in the hybrid BCI capable of applying different signal acquisition

methods with various signal features, hybrid BCIs consist of diverse input signals. For example,

input signals used in hybrid BCIs can be (1) two of the same types of brain signal (e.g., two

electroencephalographies, EEGs), (2) two different types of brain imaging methods (e.g., EEG

and functional Near-Infrared Spectroscopy, fNIRS), (3) one brain signal (e.g., EEG) and

another physiological signal (e.g., heart rate or HR variability), or (4) one brain signal (e.g.,

EEG) and another conventional input (e.g., eye tracker). Furthermore, various hybrid BCI sys-

tems have been constructed sequentially or simultaneously by combining one BCI system with

another system that is or is not BCI-based. In this case, each system in the hybrid paradigm

can have different roles such that one system can be used as a switch to initiate or stop another

system [31,35,36], both system can perform together for a common goal by supporting each

other [20,37,38], or each system has different goals such as two-dimensional control [39,40].

Some of these hybrid BCIs have been shown to reduce disadvantages of each conventional BCI

system so that the first BCI might be feasible for users who cannot use the second BCI, and

vice versa. Furthermore, hybrid BCIs can increase accuracy and Information Transfer Rate

(ITR). For example, Allison et al. [20] combined Event-Related Desynchronization (ERD) and

SSVEP features into a hybrid BCI, in which subjects imagined the left (or right) hand move-

ment while attending to the left (or right) flickering LED at different frequencies. The authors
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found that compared to the ERD and the SSVEP BCI condition the hybrid BCI (1) improved

classification accuracy, (2) reduced BCI illiteracy, and (3) had a level of workload comparable

to the ERD and the SSVEP BCI. Similarly, Combaz and Van Hulle [38] combined SSVEP and

P300 brain signals to improve ITR by increasing the speed of BCI performance and the num-

ber of targets. Scherer and colleagues [31] used heart rate responses to initiate a BCI-controlled

prosthetic under an asynchronous paradigm. Furthermore, Yin et al. [41] combined two brain

signals from EEG and fNIRS systems to improve the performance of decoding motor imagina-

tion by utilizing advantages of each brain imaging method. Finally, Lim et al. [35] utilized

SSVEP with eye tracking data to prevent errors from SSVEP-based BCI system.

Although some research studies have shown promising results using hybrid BCIs, the field

of hybrid BCIs is still so new that no topic area within this domain can be considered mature.

Although some areas in BCIs have been explored more extensively, the BCI community is only

recently beginning to understand how to develop and control certain aspects of hybrid BCIs.

Since its early research in hybrid BCIs, the field has made much progress and in a short time,

with a much wider variety of hybrid BCIs being developed. However, there are two issues that

should be addressed in order to achieve similar or better results in the forthcoming years.

The first issue of the current research studies is that the complicated and complex system

structure of the hybrid BCIs. As mentioned previously, the hybrid BCI system consists of at

least one system utilizing a neurological signal combined with other interface(s) using neuro-

logical, physiological, and/or an external signal. Furthermore, each system could have a differ-

ent role of operation such as complementary cooperation for a common goal, independent

duties for separate goals, an on-off switch, and a selector. Due to intricate combinations, it

becomes hard to understand the constituent and role of a hybrid BCI system at a glance. Some

researchers have tried to address this issue by applying taxonomic criterion to classify different

hybrid BCI types. Pfurtscheller et al. [34] classified hybrid BCIs with respect to different pro-

cessing types such as sequential and simultaneous BCIs. Severens et al. [42] categorized hybrid

BCIs with different brain signal measurement types, sensory types (modality), and neurophysi-

ological response types (signature). Allison et al. [4] named a hybrid system that included two

BCI systems as ‘a pure hybrid‘; one BCI system with other physiological systems as ‘a physio-

logical hybrid‘; and one BCI system with other external systems as ‘a mixed hybrid‘. However,

these definitions and terminologies are not consistent among hybrid BCI studies, and some

studies were misclassified as hybrid BCI systems which were actually not hybrid BCIs. Further-

more, some researchers have tried to propose taxonomical approaches for some features, such

as a role of operation and signal types to classify hybrid BCIs, but there are no comprehensive

review studies that can provide a clear and systematical taxonomy of hybrid BCIs with multiple

taxonomic criteria as of the publication of this paper. These issues make it difficult to under-

stand the structure of hybrid BCI studies, as well as select effective hybrid BCI systems accord-

ing to target users and goals of application [43–46].

The other issue is that complicated and complex hybrid BCIs make it difficult to evaluate

the system in terms of usability. Furthermore, additional communication channels and extra

features can increase interactions between users and systems, but it could also cause negative

effects on the user performance and satisfaction due to high mental workloads [47–50].

Recently a tremendous amount of studies related to usability in the field of Human-Computer

Interaction (HCI) have been published and as such researchers in BCI agree with these find-

ings that usability is an indispensable quality of BCI systems [51–56]. From this point of view,

several researchers are trying to conduct usability evaluations of BCI systems. For example,

BCI systems are mainly evaluated in the perspective of efficiency, such as classification accu-

racy and communication speed [57]. Usability dimensions, including efficiency measures,

workload and satisfaction, have been assessed by Riccio et al. [58] and Zander & Gaertner [59].
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Pasqualotto [60,61] investigated error rate and learnability of keyboard-controlled BCI proto-

types. However, there were some notable limitations in these previous studies. First, many

studies have only been focused on the performance measurement, such as accuracy and ITR

[62–66]. Since very few studies have been made on heuristic evaluation for usability of BCI sys-

tems, it is difficult to determine if the proposed BCI systems are easy to use for everyone. Sec-

ond, there is no well-structured usability framework which has a wide application for BCI

studies. As Charlton and O’Brien [67] maintained, evaluations are not always systematically

planned, but are often conducted based on the preference of the evaluator without careful

considerations of various issues of usability evaluation. This is likely to result in irrelevant or

useless results, and the evaluation efforts may turn out to be inefficient and unstructured.

Essentially, a practical support is required regarding the measurement of usability. A widely

accepted definition of usability implies that it should be measured in terms of effectiveness,

efficiency, and satisfaction [68]. It often gets fuzzy when the practitioners need to figure out

exactly what measures are representative for these three aspects. In the case of hybrid BCI sys-

tems, which utilize multiple biological signal or some traditional input devices, it is difficult to

use the results of previous studies related to usability of other devices including BCIs due to

varying and complex user experiences. Thus, a new framework is required for the hybrid BCI

usability evaluation methodology, which should be simple and useful to practitioners as well as

experts who conduct usability evaluations.

Review objectives

This review study was designed to present and analyze the current state-of-the-art hybrid BCIs

backed up with an elaborated taxonomy of hybrid BCIs that can provide additional insight

into the design space, as well as analytical and experimental comparisons. This study also

aimed to provide an in-depth discussion of usability in hybrid BCIs, along with an outline of

potentially useful approaches to tackle the challenges identified. To achieve these goals, we

investigated following two research questions based on these dimensions of analysis:

RQ1. What are the key criteria to establish a taxonomy of hybrid BCIs?.

• To provide a structural methodology for categorizing the current hybrid BCI studies

• To clarify the current research limitations for future research directions

To address RQ1, we summarized and clarified the criteria, such as brain signal measurement

types, role and mode of operation, strategy, signature, and modality of BCI systems which

were used in the previous studies to categorize the distinct characteristics of hybrid BCIs.

Based on the literature review, we proposed a taxonomy of hybrid BCIs to provide a structural

methodology to categorize the current hybrid BCI studies with respect to 1) diversity of input

signal, 2) role of operation, 3) mode of operation, 4) mental strategy, 5) brain signal signature,

and 6) stimulus modality. The proposed taxonomy, which includes the most important fea-

tures in a BCI system can help BCI researchers 1) classify hybrid BCIs systematically, 2) under-

stand hybrid BCI studies at a glance, and 3) choose effective hybrid BCI types according to

application goals [43–46]. Afterwards, we presented the grounds for an argument which elabo-

rates on which combinations would be appropriate for certain environments and conditions

based on the advantages and disadvantages of each hybrid BCI system. The proposed taxon-

omy can also clarify the current research limitations for future research directions.

RQ2. What are the key evaluation dimensions of usability in BCI usability studies?.

• To classify and summarize studies related to BCI usability according to task and measure-

ment characteristics
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• To drive suggestions to evaluate usability of hybrid BCIs

To address RQ2, we categorized BCI usability studies according to task and measurement

characteristics. From the results of classification, we proposed usability dimensions for BCI

systems. Then, we suggested further research related to usability evaluation of BCI and hybrid

BCI systems considering ergonomic issues of BCIs and hybrid BCI systems. The proposed

usability dimensions can help researchers and practitioners 1) understand BCI studies related

to usability evaluation, 2) choose proper metrics for usability evaluation, and 3) evaluate

usability of hybrid BCIs as well as general BCIs. Also, suggestions of future research directions

in this study can be helpful in establishing research directions and gaining insights under the

perspectives of ergonomics.

The remainder of this paper is organized as follows: Study 1 described an elaborated taxon-

omy based on the systematic literature review, followed by categorized current research studies

according to the proposed taxonomy. Study 2 presented usability evaluation metrics for BCIs

and hybrid BCI systems. Finally, the following sections explained opportunities for further

research of hybrid BCIs, and presented the major conclusions.

Study 1: Taxonomy of hybrid BCIs

Search methodology

In this review, a systematical approach, called the Preferred Reporting Items for Systematic

reviews and Meta-Analyses (PRISMA) [69], was utilized (see S1 Checklist). Articles were

sought out from five major search engines including IEEE Xplore, PubMed, Engineering Vil-

lage, Web of Science, and Scopus, since those engines cover engineering and medical topics, as

well as a broad-spectrum perspective [70]. Eligibility and exclusion criteria follow.

Information sources. Various online databases were searched in this study: (1) IEEE

Xplore to provide an electrical/electronic engineering perspective, (2) PubMed to provide a

medical perspective, (3) Engineering Village to provide an engineering perspective, (4) Web of

Science to provide a cross-disciplinary perspective, and (5) Scopus to provide a broad-spec-

trum perspective.

Inclusion and prescreening criteria. Inclusion criteria were journal articles written in

English from 2007 to 20 December 2016, since the first journal article related to the hybrid

BCI system was published in 2007 [31,32]. Other publication forms (e.g., proceeding papers,

unpublished working papers, master’s and doctoral dissertations, newspapers, and books, etc.)

were not included. Since journal articles indicate a high level of research, journal articles can

help both practitioners and academicians to obtain knowledge and spread their study findings.

Keywords used in search engines were 1) “Hybrid” and “Brain computer interface”, 2)

“Hybrid” and “Brain machine interface”, 3) combinations of either “Brain computer interface”

or “Brain machine interface” with “electromyography,” “heart rate”, gaze, “eye tracker”, and

“speech recognition”. After conducting the keyword search, 50, 164, 302, 345, and 331 articles

were found from each search engine respectively, and then addition records were identified

through other sources. Fig 1 shows the combinations of keywords and the number of studies

for each keyword combination from the online databases. The total number of papers in each

search engine was smaller than the summation of each keywords as shown in Fig 1, because

some papers were found more than one time with different keywords. For example, the paper

titled “Quantitative evaluation of a low-cost noninvasive hybrid interface based on EEG and

eye movement” [71] was searched with keywords “hybrid & brain computer interface”, as well

as with keywords “brain computer interface & eye tracker” in the IEEExplore. After the key-

word search, duplicates were removed, and 527 articles remained. Those articles were screened
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based on titles and abstracts which were related to hybrid BCI topics, and 163 research studies

were remained.

Eligibility criteria. Prescreened articles were checked for the eligibility via full-text

screening by following analyses of populations, interventions, comparisons, outcomes, and

study design (PICOS) [69]:

• Populations: Studies conducted with human subjects for any age, gender, or clinical condi-

tions met the inclusion criteria, but any studies with non-human subjects, such as primates,

were excluded.

• Interventions: All non-invasive hybrid BCI systems including at least one BCI system satis-

fied the eligibility.

• Comparators: Any study conditions such as multiple groups, single group, or case studies,

were considered, because the main objective of Study 1 was proposing a hybrid BCI taxon-

omy method.

• Outcomes: All studies including classification procedures to achieve the main goal of BCIs

met the inclusion criteria. However, some neuroscience studies that did not include classifi-

cation results, but only examined the characteristics of the brain signal were excluded.

• Study designs: Any study designs had applied multiple systems including at least one BCI

system were selected for further review.

Search results and discussion

Taxonomic criteria for hybrid BCIs. After eligibility screening, 75 studies remained for

the review from the initial 527 candidates. The selected journal articles were utilized to investi-

gate important BCI features for taxonomic criteria of hybrid BCIs, and to propose a novel

hybrid BCI taxonomy method (displayed in the following sections). Afterwards, the character-

istics of each type, such as advantages and disadvantages, experimental environment, and

applications, were discussed. Fig 1 shows the flow diagram of PRISMA with the results of key-

word searching.

Fig 1. PRISMA flow diagram of hybrid BCIs.

https://doi.org/10.1371/journal.pone.0176674.g001
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From the full-text review of articles, the following BCI features were found:

• Diversity of input signal: Single brain signal, multiple brain signals, brain signal(s) with

physiological signals, and brain signal(s) with other signals from external devices

• Mental strategy: Selective attention and operant conditioning

• Stimulus modality: Visual, auditory, tactile, and operant conditioning

• Brain signal signature: Transient, steady-state, and different cognitive efforts

• Role of operation: Simultaneous and sequential

• Mode of operation: Synchronous and asynchronous

Based on the selected BCI features, hybrid BCI systems can be classified in terms of 1) the

source of the signals, 2) the characteristics of the signal, and 3) the characteristics of operation

in each system. Thus, each feature will be used as a taxonomic criterion in the following sec-

tions, and be utilized as a basis for the proposed taxonomy of hybrid BCIs. Besides the afore-

mentioned features, brain signal recording methods, also known as brain imaging methods,

are also an important BCI feature. Brain imaging methods can be categorized as non-invasive

methods including EEG, fNIRS, and functional magnetic resonance imaging, and invasive

methods including electrocorticography and intracortical neuron recording. In this review,

only non-invasive methods were discussed due to limited applications of invasive technologies

requiring surgical interventions [11].

Diversity of input signal. In the hybrid BCI paradigm, a brain signal can be combined

with other brain signal(s), physiological signal(s), or external signal(s). For example, two or

more brain imaging methods can be combined in a hybrid BCI such that brain signals from an

EEG and fNIRS system in order to take advantage of each brain imaging technology [41,72–

75]. Some research studies applied other physiological signals, such as electromyography

(EMG) [32,76], electrooculogram (EOG) [77,78] and electrocardiography (ECG) [31,79] to

brain signal(s) to address common limitations of brain signals, such as lower amplitude, non-

stationarity, and vulnerability to muscle artifact. In addition, external signals can be added to

support BCI systems including eye-tracking [71,80], a gyroscope [81], a position sensor [82],

and a joystick [83,84]. Single BCI systems using one brain signal can also be classified into

hybrid BCIs by combining two brain signal signatures such as Event-related Potential (ERP)

and sensorimotor rhythm (SMR) induced by Motor Imagery (MI) [85,86], ERP and Steady

State Evoked Potential (SSEP) [87,88], and SMR and SSEP [89,90]. The different brain signal

signatures in the hybrid BCI will be discussed in the following section.

In this review, a hybrid system that combined a brain signal with other brain signal(s) was

defined as a homogeneous hybrid BCI system, while one combined with other physiological

signals (non-neurological), or external signals was defined as a heterogeneous hybrid BCI sys-

tem in terms of the signal diversity. Fig 2(A) illustrates a flow diagram to categorize hybrid

BCIs with respect to different signal types.

Characteristics of Different Input Signal: As defined in the previous section, hybrid BCIs

can consist of multiple brain signals, brain signal(s) with other non-neurological signal(s), or

even a single brain signal. Firstly, the advantages of a single-brain signal approach are simple

and easy to measure with a single brain imaging device [38,40]. Meanwhile, a multi-brain sig-

nal acquisition approach can resolve the inherent limitations of individual brain imaging

methods [41]. For example, EEG and fNIRS could be used complementary to one another to

measure brain signal features, because EEG has high temporal resolution and low spatial reso-

lution while fNIRS has high spatial resolution and low temporal resolution [41,72–75]. A
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Fig 2. Flow diagram of taxonomy for hybrid BCIs.

https://doi.org/10.1371/journal.pone.0176674.g002
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multi-physiological acquisition method has the advantage of higher classification accuracy

due to not only the application of the classification result with additional physiological signals,

but also the high signal-to-noise ratio of EMG and EOG signal [32,76–78]. Contrary to the

combinations of physiological signals, external inputs including joysticks, eye trackers, and

gyroscopes are directly utilized as a controller by modulating hand or body movements for

directional applications such as a navigation [59], robot control [91] and game control [83].

However, multiple physiological signals and external inputs have limitations on the usage

because of the need for physical movement, which can lead to electrode drift noise and muscle

artifact on brain signals [32]. Table 1 shows the combinations of input signals and the number

of studies for different diversities of input signals, and as shown in the table, most of the previ-

ous hybrid BCI research has been studied using a single-brain signal; and multiple physiologi-

cal signals, combined with external inputs, and multiple brain signals follow in the order.

Experiment Paradigm and Applications: The experimental environment varies with respect

to a goal of research studies. The studies using the single brain signal and multiple brain signals

cover general goals of BCI research. However, the research studies utilizing multiple physio-

logical signal and external inputs usually involve physical movements including hand, head,

and eyeball movements either to detect subject status or to improve the BCI performance.

For example, Li and Chung [81] analyzed EEG signals for different attention levels and head-

movement for yawning and rubbing face to detect a driver’s drowsiness in a driving simulation

environment. Ma et al. [77] used eye-movements including blinking, frowning, winking, and

gazing, to select a target action between different actions of robots by analyzing EOG signals,

while EEG signals were utilized to control a robot according to the selected action. On the

other hand, Park & colleagues [92] distinguished between navigational intentions (searching

images to obtain the information) and informational intentions (finding a predefined target

from images) by analyzing eye tracking data and EEG signal, and the authors reported that

the classification accuracy of combining eye movement and EEG features showed higher accu-

racy than that of the eye movement feature and EEG features alone (90.9%, 85.8%, and 83.9%,

respectively). From the literature review, we found that the role of each signal varies in experi-

mental conditions, and the physiological signals were usually utilized as a selector or switch to

support the neurological signal [76,93,94] while external inputs utilized direct control [83,84].

Mental strategy, signal signature, and stimulus modality. Brain signal can be either

evoked by a stimulus or modulated by operant conditioning with respect to mental strategy

[32,82,83]. Stimulus evoked brain signal requires selective attention on stimulus such as visual,

tactile, and auditory modalities. On the contrary, operant conditioning does not depend on an

external stimulus, but can be modulated by operant modalities, such as movement related

efforts, attention, mental speech, and memory tasks.

Table 1. The number of studies with each combination of biosignal.

Type Input Signal # of Studies

Single Brain Signal EEG EEG 44 (59%)

Multiple Physiological Signals EEG EOG 6 (8%)

EEG EMG 3 (4%)

EEG ECG 2 (3%)

Brain Signal with External Input EEG Eye Tracking 11 (15%)

EEG Joystick 2 (3%)

EEG Gyroscope 1 (1%)

Multiple Brain Signals EEG fNIRS 6 (8%)

https://doi.org/10.1371/journal.pone.0176674.t001
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In selective attention, stimuli can be categorized into either steady-state, or transient signa-

ture. The former can evoke SSEPs [89,90], and the latter elicits either ERPs or motion-onset

(visual) evoked potentials (mVEPs) with different sensory modalities [39,80,95,96]. The mVEP

signature was first employed by Guo et al. [97], and the motion-onset VEP-based BCI has the

advantages of less visual fatigue and discomfort compared to other visual-based BCI systems

[98]. For operant conditioning, Slow Cortical Potential (SCP) signatures can be modulated via

different operant modalities. However, many researchers have differentiated SCP modulated

by mental tasks from either movement related efforts or different attention levels elicited brain

signal patterns [99–101]. The former is classified as an SMR signature evoked by movement

related efforts, while the latter is known as a μ-rhythm signature. The movement related efforts

include motor execution, movement attempt, and MI. Motor execution indicates actual a

physical movement [81,102,103], while MI is mental movement imagination [40,89,90]. Move-

ment attempt is a special case of motor execution only occurring during a motor attempt that

involves paralyzed body parts [82,104]. Also speech and music imageries can be decoded to

different brain signal signatures [79,105], and these brain signal signatures were categorized as

SCP in this review. Fig 2(C) illustrates the flow diagram used to categorize hybrid BCIs with

respect to different mental strategies and brain signal signatures.

In the hybrid BCI paradigm, either one stimulus or multiple stimuli with respect to sensory

pathway such as visual (e.g., Steady-State Visual Evoked Potential or SSVEP), tactile (e.g., Steady-

State Somatosensory Evoked Potential or SSSEP), and auditory (e.g., steady-state auditory evoked

potential) modalities can be utilized. Similarly, ERP, also known as P300, can include visual, tac-

tile, and auditory stimuli. If the hybrid BCI includes SSVEP and visual P300, then this hybrid

BCI system is categorized as single modality [38,106]. On the contrary, if the hybrid BCI consists

of SSVEP and SSSEP, then this system has multi-modality. In this review, operant conditionings

including cognitive efforts, MI, and μ-rhythm, also belong to stimulus modality, because these

conditionings can be deal with internal stimulus elicited by mental tasks. Fig 2(B) shows the flow

diagram for categorizing hybrid BCIs with respect to stimulus modalities.

Characteristics of Different Strategies, Signatures, and Modalities: There are two main men-

tal strategies including the selective attention such as SSEP and ERP, and operant conditioning

such as SMR, SCP, and μ-rhythm [107]. Since selective attention only requires either focusing

on continuous stimuli or counting transient events, the advantages of selective attention are 1)

it is easier to perform BCI tasks, 2) a shorter training time is required, and 3) a higher classifi-

cation accuracy especially with visual stimulus than operant conditioning exists [87,106].

However, this approach relies on external stimuli such as visual, tactile, and auditory. On the

contrary, operant conditioning does not require any stimulus to evoke brain signal, but longer

training periods are usually required to achieve reasonable classification accuracy [101,108].

The other possible advantage of operant conditioning with SMR-based BCI tasks is the neuro-

plasticity by facilitating motor-related brain area [109].

As each BCI modality has different characteristics, their advantages and disadvantages are

also distinct [110]. Among different brain signal modalities, the advantages of visual modality

are 1) higher classification accuracy and 2) easy to apply stimuli in the experimental environ-

ment by using either an LCD or LED [37,111,112]. However, since participants attend visual

stimuli to evoke brain signals, they might feel annoyed, experience eye fatigue, and get even

disturbance [77]. This issue could be addressed by combining mVEP with less visual fatigue

and SMR without visual stimulation in multiple modalities and signatures [39]. The advantage

of tactile and auditory modalities is the dependence of visual sensory, but there are some limi-

tations of this application, such as lower classification accuracies and difficulties increasing the

number of stimuli due to the nature of tactile and auditory sensory [75,89]. Operant modality

such as MI is independent from visual stimulus but shows lower classification accuracy and
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needs longer training. For example, Allison et al. [111] utilized two different signatures and

modalities in one EEG signal, SMR and SSVEP, for simultaneous two dimensional cursor con-

trol, and Combaz and Van Hulle [38] combined multiple signatures in a single modality,

SSVEP and visual P300, to improve ITR. Yin et al. [41] measured both EEG and fNIRS brain

signals to improve the performance of decoding SMRs evoked by MIs, while Lim et al. [35]

combined SSVEP with eye tracking data to prevent errors in a SSVEP-based BCI system.

Experiment Paradigm and Applications: Visual-based BCIs are some of the more com-

monly studied BCI research studies because of the reliable results and short training time, and

most of them are for a BCI speller [87,113,114]. Furthermore, Li et al. [115] proposed a multi-

signature hybrid BCI system with visual P300 and SSVEP to control a wheelchair, while Pan

et al. [88] to detect awareness of patients with disorders of consciousness in a similar BCI sys-

tem. In addition, visual-based BCIs can be applied to games and virtual reality environments

because visual stimuli can easily be embedded in these systems. There are also many SMR-

based BCI studies that set out to control external devices such as a neuro-prosthesis, wheel-

chair, and exoskeleton [116,117], and the target users of these BCI systems are usually severely

disabled patients. However, due to the limitations of SMR-based BCI systems discussed in

the previous section, some SMR-based BCI research applied other modalities such as visual

[34,86,118] and tactile [89,119] to increase the accuracy and robustness of the classification

algorithms. Table 2 summarizes applications of each modalities with external signals braced

with parentheses from the literature review.

Role and mode of operation. A role of each system in the hybrid BCI can be different in

terms of usages [34]. For example, both systems can play the same role simultaneously to

achieve a certain goal. In this case, multiple input signals from different systems can be fed

into one classification algorithm, or each decision can be fused to make one final decision. Yin

et al. [113] utilized both SSVEP and visual P300 simultaneously to increase classification accu-

racy and ITR of a BCI speller, while Jiang et al. [131] fused MI features from EEG signals and

gaze directions from EOG signals to improve the BCI performance for a multi-class target

selection. It is also possible that one system can initiate the other system as a switch by detect-

ing a distinct signal. For instance, SSVEP-based BCI can be used to turn an MI-based BCI on,

then the MI-based BCI controls a hand orthosis to complete a hand grasping task [126]. Fur-

thermore, both BCI systems can play different roles simultaneously to achieve different goals

such as two-dimensional control [39,40,120]. For example, Ma et al. [39] combined SMR and

mVEP signatures simultaneously to realize a 2-dimensionla cursor control, while Li et al. [120]

utilized visual P300 and SMR signatures for the similar task. Finally, one system can decide to

choose a certain function as a selector, then the other system can control levels in a specified

sequence [124]. Fig 2(D) shows the flow diagram for categorizing hybrid BCIs with respect to

the role of operation, and Fig 3 represents three different roles of operation.

Any BCI experiment falls into two different modes of operation. One mode of operation is

defined as the BCI experiment being conducted under a synchronous, cue-paced scenario, and

the other is under an asynchronous, self-paced manner. Synchronous experiments rely on a

certain cue with a fixed time per trial, and the BCI systems control an application or provide

feedback by analyzing brain signals of the fixed time [72,116]. On the contrary, experiments

under asynchronous manner do not depend upon cues, but participants conduct BCI tasks

towards a certain goal at their own pace [99,126].

Characteristics of Each Operation: The advantages of simultaneous processing are that 1)

one-time signal processing is required, 2) multiple decisions can be made at one time, such as

2-demensional cursor control [120], and 3) the classification accuracy can be increased by

facilitating two classification results complementarily. However, this approach also has limita-

tions in applications of some BCI systems which involve multiple tasks occurring in a sequence
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such as sending an email [123] and controlling different levels between multiple functions

[126]. However, hybrid BCI systems with a sequential processing mode can address these

issues but this approach requires multiple BCI tasks to complete multiple steps.

Experiments under the synchronous mode are usually utilized to build parameters of classi-

fication algorithms [117,132]. Once the classifier is ready, participants can perform asynchro-

nous experiments with goal-oriented tasks without cues. Therefore, the brain signal should be

continuously monitored, and the BCI system will act only if the distinct signal is detected from

the classifier during a series of tasks [102]. These two modes can be applied to any BCI system,

and both modes have their own advantages and disadvantages discussed in the following sec-

tion. Fig 2(E) illustrates the flow diagram for categorizing hybrid BCIs with respect to the

mode of operation.

Experiment Paradigm and Applications: Both operation modes can be applied to many BCI

applications. Xu et al. [87] applied P300 and SSVEP simultaneously for a BCI speller, and

achieved higher accuracy and ITR than each BCI systems by combining two BCI features.

Simultaneous BCI can be utilized for 2-demensional space control, and Allison et al. [111]

showed promising results by apply MI for vertical movement and SSVEP for horizontal move-

ment at the same time. Malechka et al. [94] proposed a BCI system with graphical User Inter-

face (UI) to control activities of daily living applications by analyzing eye-tracker, SSVEP, and

Table 2. Applications of each modality in hybrid BCIs.

Applications Modalities & External Signals Studies

Mouse control Visual Operant: MI [40] [86] [120]

Virtual environment Visual Operant: MI [85] [121]

Wheelchair Visual Operant: MI [117] [122]

Visual Visual [115]

(Eyeball) Operant: MI [78]

Email client Visual Operant: MI [123]

Robot Visual Operant: MI [118] [124]

(Physical movement) Operant: MI [102]

(Eyeball) Operant: MI [91]

(Eyeball) Visual [77]

Neuroprosthetics μ-rhythm Operant: MI [125]

Visual Operant: MI [109] [126]

(Physical movement) Operant: MI [82]

(Eyeball) Operant: MI [116]

(Heart rate) Visual [31]

GUI Visual Operant: MI [94]

Driving simulation (Physical movement) Operant: Attention [81]

Game Visual Operant: Attention [101]

(Physical movement) Operant: MI [83] [84]

Speller Visual Visual [87] [106] [113] [114] [127] [128] [129]

(Eyeball) Visual [35] [80] [95]

(Physical movement) Visual [76]

(Eyeball) Operant: MI [93]

Detecting awareness Visual Visual [88]

Flight control (Eyeball) Operant: Attention [100]

Navigation Visual Operant: MI [59]

(Eyeball) Visual [130]

(Eyeball) Operant: MI [32]

https://doi.org/10.1371/journal.pone.0176674.t002
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MI signals. In this system, participants select a device via eye tracker, select submenus such as

volume and channel of radio by either SSVEP or MI. Kim et al. [100] built a BCI system to fly

a drone in a real environment by using eye tracking and EEG data. EEG data was used to select

two different modes, such as horizontal movements and vertical movements including turn-

ing. Afterwards, the results of the eye-tracker were used to control the drone. From the litera-

ture review, the applications of simultaneous mode were usually applied either to control two

functions at one time or to increase classification accuracies and ITR. BCI systems using

sequential processing were used either to control multiple functions with steps or to apply a

switch function in asynchronous mode.

The experiments under the synchronous manner are useful to validate a proposed BCI sys-

tem and to find user-specific classification parameters using offline analysis [117,132]. Since a

synchronous BCI relies on external cues and a fixed BCI task time is required to perform signal

processing, this approach has a practical limitation to apply in real-life tasks utilizing continu-

ous controls [116]. This issue can be addressed by applying asynchronous techniques in which

participants conduct BCI tasks towards a certain goal at their own pace without cues [99,126].

In this paradigm, the decisions are made in (near) real-time by classifying brain signals with

classification parameters defined in the offline analysis. However, due to the non-stationarity

of EEG signals [18], the classification accuracies under an asynchronous based system were

usually lower than that of a synchronous approach.

Table 3 shows the classified hybrid BCI types from the selected 75 journal articles according

to the proposed taxonomy, and non-neurological signals used in each study are braced with

parentheses similar to Table 2.

Study 2: Usability evaluation metrics for hybrid BCIs

Search methodology

For the systematic literature review, the PRISMA method was utilized similar to Study 1 [69].

A total of 279 articles dating from 2000 to January 2016 were obtained and reviewed (the first

Fig 3. Schematic diagram for three different roles of operation.

https://doi.org/10.1371/journal.pone.0176674.g003
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Table 3. Classified hybrid BCI types according to the proposed taxonomy.

Article Diversity of Input Signal Role of

Operation

Mode of

Operation

Stimulus Modality Signal Signature # of Subject (#

of Patient)Neurological Others

[20] EEG Simultaneous Synchronous Visual Operant SSVEP SMR 14

[31] EEG ECG Switch Asynchronous Visual SSVEP 10

[32] EEG EMG, EOG Simultaneous Asynchronous Operant SMR 3

[37] EEG Simultaneous Synchronous Visual Operant SSVEP SMR 14

[38] EEG Simultaneous Synchronous Visual Visual P300 SSVEP 9

[39] EEG Simultaneous Asynchronous Visual Operant mVEP SMR 6

[40] EEG Simultaneous Asynchronous Visual Operant P300 SMR 11

[41] EEG fNIRS Simultaneous Synchronous Operant SMR 6

[42] EEG Simultaneous Synchronous Tactile Tactile SSSEP P300 13

[59] EEG Eye tracking (Eyeball) Selector Asynchronous Operant SMR 10

[71] EEG Eye tracking (Eyeball) Selector Asynchronous Operant μ-rhythm 10

[72] EEG NIRS Simultaneous Synchronous Operant SMR 14

[73] EEG fNIRS Switch Asynchronous Operant SMR 6

[74] EEG NIRS Simultaneous Synchronous Operant SMR 14

[75] EEG fNIRS Simultaneous Synchronous Visual Auditory ERP 12

[76] EEG EMG (Wrist

movement)

Selector Synchronous Visual P300 11 (3)

[77] EEG EOG (Eyeball) Switch Asynchronous Visual P300 13

[78] EEG EOG (Eyeball) Switch Asynchronous Visual Operant P300 SMR 9

[79] NIRS ANS (EDA, ST, HR,

and RE)

Simultaneous Synchronous Operant SCP(Music

Imagery)

8

[80] EEG Eye tracking (Eyeball) Selector Synchronous Visual P300 10

[81] EEG Gyroscope (Head

movement)

Simultaneous Asynchronous Operant θ, α, β 6

[82] EEG Position Sensor

(Shoulder movement)

Switch Asynchronous Operant SMR 1 (1)

[83] EEG Joystick Simultaneous Asynchronous Operant Operant SMR SMR 14

[84] EEG Joystick Simultaneous Asynchronous Operant SMR 10

[85] EEG Selector Asynchronous Visual Operant P300 SMR 4

[86] EEG Simultaneous Asynchronous Visual Operant P300 SMR 5

[87] EEG Simultaneous Synchronous Visual Visual P300 SSVEP 12

[88] EEG Simultaneous Synchronous Visual Visual P300 SSVEP 8 (8)

[89] EEG Simultaneous Synchronous Tactile Operant SSSEP SMR 16

[90] EEG Simultaneous Synchronous Visual Operant SSVEP SMR 24

[91] EEG Eye tracking (Eyeball) Switch Asynchronous Operant SMR 7 (4)

[92] EEG Eye tracking (Eyeball) Simultaneous Synchronous Visual SCP 8

[93] EEG Eye tracking (Eyeball) Selector Asynchronous Operant SMR 7

[94] EEG Eye tracking (Eyeball) Selector Asynchronous Visual Operant SSVEP SMR 6

[95] EEG EOG (Eyeball) Simultaneous Synchronous Visual P300 10

[96] EEG Simultaneous Synchronous Visual Visual P300 mVEP 10

[99] EEG Simultaneous Asynchronous Visual Operant SSVEP μ-rhythm 6

[100] EEG Eye tracking (Eyeball) Selector Asynchronous Operant μ-rhythm 5

[101] EEG Selector Synchronous Visual Operant SSVEP μ-rhythm 19

[105] EEG Simultaneous Synchronous Operant SMR Speech

Imagery

7

[106] EEG Simultaneous Synchronous Visual Visual SSVEP P300 10

[108] EEG Eye tracking (Eyeball) Simultaneous Synchronous Operant SMR 30

(Continued )
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journal article related to BCI was published in 2000). Articles were found via computerized

search. A detailed explanation of the methodology used for extracting articles follows.

Information sources and inclusion criteria. The online databases searched in Study 2

were identical to Study 1. Original studies that conducted usability evaluation on BCI with sub-

jective measures or performance measures were included. This study covers only journal articles

published in English. Other publication forms (e.g., proceeding papers, unpublished working

papers, master’s and doctoral dissertations, newspapers, and books, etc.) were excluded.

Full-text review of articles includes the following analyses of populations, interventions,

comparisons, outcomes, and study design:

Table 3. (Continued)

Article Diversity of Input Signal Role of

Operation

Mode of

Operation

Stimulus Modality Signal Signature # of Subject (#

of Patient)Neurological Others

[109] EEG Selector Asynchronous Visual Operant SSVEP SMR 6

[111] EEG Simultaneous Synchronous Visual Operant SSVEP SMR 10

[112] EEG Simultaneous Synchronous Visual Visual P300 SSVEP 10

[113] EEG Simultaneous Synchronous Visual Visual P300 SSVEP 13

[114] EEG Simultaneous Synchronous Visual Visual P300 SSVEP 14

[115] EEG Simultaneous Asynchronous Visual Visual P300 SSVEP 8

[116] EEG EOG (Eyeball) Simultaneous Asynchronous Operant SMR 6 (1)

[117] EEG Simultaneous Asynchronous Visual Operant SSVEP SMR 7

[118] EEG Selector Asynchronous Operant Visual,

ERN

SMR P300,

ErRP

5

[119] EEG Simultaneous Synchronous Tactile Operant SSSEP SMR 11

[120] EEG Simultaneous Synchronous Visual Operant P300 SMR 10

[121] EEG Eye tracking (Eyeball) Selector Asynchronous Operant SMR 20

[122] EEG Switch Asynchronous Visual Operant SSVEP SMR 3

[123] EEG Selector Asynchronous Visual Operant P300 SMR 6

[124] EEG Selector Asynchronous Visual Operant P300, SSVEP SMR 5

[125] EEG Switch Asynchronous Operant Operant SMR μ-rhythm 2 (2)

[126] EEG Switch Asynchronous Visual Operant SSVEP SMR 6

[127] EEG Selector Synchronous Visual Visual P300 ErRP 12

[128] EEG Selector Synchronous Visual Visual P300 ErRP 12

[129] EEG Simultaneous Synchronous Visual Visual P300 SSVEP 12

[130] EEG Eye tracking (Eyeball) Simultaneous Asynchronous Visual ERP 10

[131] EEG EOG (Eyeball) Simultaneous Synchronous Operant SMR 4

[132] EEG Simultaneous Synchronous Visual Operant SSVEP SMR 12

[133] EEG Selector Asynchronous Visual Operant P300 SMR 5

[134] EEG Position sensor

(Shoulder movement)

Switch Asynchronous Operant SMR 1

[135] EEG Simultaneous Asynchronous Visual SSVEP 9

[136] EEG Selector Synchronous Visual Operant P300 SMR 12

[137] EEG Simultaneous Synchronous Auditory Tactile P300 P300 12

[138] EEG Selector Synchronous Auditory Auditory P300 ErRP 9

[139] EEG Simultaneous Synchronous Tactile Tactile P300 SSSEP 14

[140] EEG EMG (Hand

movement)

Selector Synchronous Visual SSVEP 10

[141] EEG fNIRS Simultaneous Synchronous Operant SMR 15

[142] EEG Simultaneous Synchronous Tactile Operant SSSEP SMR 14

https://doi.org/10.1371/journal.pone.0176674.t003
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• Populations: All populations were considered, but non-human subjects were excluded.

• Interventions: We screened for studies that measured the usability of BCI using subjective

measures or performance measures.

• Comparators: We did not screen for studies that included the results of some kind of func-

tional control comparison. Because our research goal focused on the investigation of usabil-

ity measure we did not consider studies that included experiment designs with a control

group or treatments.

• Outcomes: Studies were required to include objective/subjective measures of efficiency,

effectiveness, satisfaction. For studies that did not explicitly include such a component, we

screened for those studies the outcomes of which could be logically linked with usability.

• Study designs: Given the nature of BCI research, there is a narrow range of study designs

employed. Most frequently we encountered small-n, within-subject designs. Thus, we did

not screen for design type, beyond the requirement already stated that the design involve

human subjects.

Search strategy and limits. As few studies related to usability evaluation of hybrid BCIs

have been conducted, we focused on reviewing previous studies related to usability evaluation

of BCI. Afterwards, the results of the review were utilized to suggest usability evaluation met-

rics for hybrid BCIs. Thus, the general search strategy included key terms such as “Brain com-

puter interface”, and “Usability”.

Search results

First, the five online databases were searched for articles in the same way as Study 1, then addi-

tion records were identified through reference lists of included articles. The total number of

articles found was 317. The number of articles by each online database is as follows: Engineer-

ing Village (51), IEEE Xplore (8), PubMed (59), Scopus (84), and Web of Science (77). Next,

manual removal of duplicate records excluded 165 records, yielding 152 unique articles for

consideration. Examination of abstracts and titles excluded a further 98 articles, all due to not

adequately conforming to any of our research questions, leaving 54 articles for full-text analy-

sis. Full-text analysis of these articles excluded a total of 23 records, for the following reasons:

three articles were eliminated for being an inadequate type of publication (e.g., review paper,

conference paper); five articles were eliminated for not using any metrics to evaluate usability

of BCI; and 15 articles were eliminated for not addressing our research question, or otherwise

not meeting inclusion criteria.

Thus, a total of 31 articles for usability of BCI research met all the selection criteria. See Fig

4 for a PRISMA flow diagram summarizing the article review process.

Study characteristics

Participants. Among the 31 studies that we reviewed, the average number of participants

was 12.71, with a maximum of 39 and a minimum of 1. Some studies engaged a very small

group of subjects because they targeted a population of disabled persons [52,143–145]. The age

of participants varied depending on the study. Twenty out of 31 articles explicitly disclosed the

age information of their subjects; one article did not mention participants’ age [62,146]. Based

on the known information, the oldest participant was 73 years old [143], while the youngest

one was 16 [147]. Subjects with disabilities tend to be older and subjects in the healthy group

tend to be younger. Six articles reported the gender distribution of their participants
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[65,66,76,148–150]. Among most of them, the percentage of male subjects was more than 50%.

Sixteen studies recruited participants with disabilities [55,65,66,76,143–145,148–156]. The

most common type of disability was sclerosis [52,55,65,66,76,143–145,149–151,153–155].

Among them, two articles recruited multiple sclerosis patients, and nine articles recruited

amyotrophic lateral sclerosis patients. Seven articles included disabled participants that had

suffered from strokes [66,76,144,149,152,153]. Thirteen studies reported all healthy subjects

[58,63,64,146,147,157–164], and one study did not disclose this information [62].

Study design. Most of the studies conducted were proof of concept design or within-sub-

ject design because of the limited number of patient-subjects. In the studies, researchers intro-

duced their newly developed BCI system and evaluated its usability with or without existing

systems. Only four studies used a between-subject design and they conducted experiments

with only healthy subjects [147,157–159].

Study environment. Most of the experiments took place in a laboratory environment.

Only three studies utilized a “daily life” environment (e.g, in the subject’s home) [143,152,155].

Review results and discussion

Thirty-one articles were finally selected to address RQ2. These articles were categorized

according to task characteristics and measurement characteristics respectively.

Task characteristics. Collected articles were categorized according to the type of task

which is used for usability evaluation of BCI (See Table 4). The collected articles were catego-

rized into seven tasks:

• Spelling: the task to type given or free words via BCI systems.

• Movement control: the task to control the movement of system.

• Selection control: the task to target and choose the icons or buttons.

• Brain painting: the task to utilize the painting program.

• Mental task: kind of thinking activity such as imagination, mental calculation and etc.

• Cognitive rehabilitation task: is kind of strengthening activity of intellectual capacity.

Fig 4. PRISMA flow diagram of usability of BCI.

https://doi.org/10.1371/journal.pone.0176674.g004
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According to the characteristics of the task goal, we divided tasks into two types: open task

and closed task. If the user defines the outcome of the task, it is considered an open task. In the

case of a closed task, the experimenter gives pre-defined goals to users [165]. For example,

freely using the program is an open task experiment but using the program according to pre-

defined instruction is considered a closed task design. Again, we categorized closed task exper-

iments by the characteristics of strategy. If the user can freely choose the strategy to achieve the

pre-defined goal, it is a closed self-managing task. If users have no choice and just follow the

pre-defined strategy, it is a closed copying task. For example, typing words from the users’

own thought is considered a closed self-managing task but typing given words is a closed copy-

ing task.

In the BCI usability studies, spelling tasks were the most frequently used tasks. Control

tasks (e.g., movement and control) were often used too. In order of frequency of use, brain

painting task, mental task, and cognitive rehabilitation task were used. With consideration of

type of task, closed tasks were dominantly used and closed copying task was more used than

self-managing task. Type of open task is given only in the few studies which used movement

control, selection control, and brain painting as a task. In studies involving the spelling and

movement control task, closed copying task was used most frequently.

Measurement characteristics. Overall, 10 evaluation tools of subjective measures were

used in 31 BCI usability studies (see Table 5). NASA Task Load Index (NASA-TLX), Visual

Analogue Scale (VAS), Assistive Technology Device Predisposition Assessment (ATD-PA)

device form, System Usability Scale (SUS) survey, Quebec User Evaluation of Satisfaction with

assistive Technology 2.0 (QUEST 2.0), IBM’s computer usability satisfaction questionnaire

and Usefulness, Satisfaction, and Ease of use (USE) questionnaire were utilized. Some of them,

QUEST 2.0 and SUS survey, were also used as modified versions. IBM’s computer usability sat-

isfaction questionnaires and USE questionnaires were only used as modified versions. Lastly,

some studies proposed and conducted their own evaluation tools.

NASA-TLX is a popular mental workload assessment technique which relies on a multidi-

mensional construct. It derives overall workload based on 6 subscales: mental demand, physi-

cal demand, temporal demand, performance, effort and frustration [166]. VAS is one of the

methods of assessing a “feeling” [167]. It is usually conducted to assess the satisfaction of a sys-

tem in BCI usability studies. ATD-PA device form and QUEST 2.0 are specialized subjective

assessment tools used to evaluate the assistive devices. ATD-PA is a set of questionnaires used

to assess the match quality experienced between the person and the assistive technology [168].

In BCI usability studies, only a set of 12 items, called ATD-PA device form, is usually utilized

to ask users’ opinions of 12 aspects of using the proposed BCI system as an assistive device.

Table 4. Classification of articles by task characteristics.

Main categories Sub categories No. of articles References

Type of task Open task 3 [64,143,153]

Closed task (self-managed) 9 [52,58,145,147,152,154,158,159,163]

Closed task (copy) 21 [52,55,62,63,65,66,76,144–151,154,157,160–163]

Description of task Spelling 19 [55,58,63,65,76,144–146,148–152,154,157,161–164]

Control (moving) 9 [52,58,62,64,66,148,153,154,160]

Control (selecting) 9 [52,58,64,149,154–156,158,159]

Brain painting 2 [143,144]

Mental task 2 [63,147]

Cognitive rehabilitation task 1 [148]

https://doi.org/10.1371/journal.pone.0176674.t004
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QUEST 2.0 is an instrument used to evaluate users’ satisfaction with assistive technology. It

contains 12 items rated on a 5-point satisfaction scale with regards to the device and services

[169]. SUS survey and USE questionnaires are simple, yet effective tools used for assessing the

usability of various products. SUS survey contains 10-item scale giving a global view of usabil-

ity [170], and USE questionnaires contains 14-item scale consisting of four domains: satisfac-

tion, ease of use, ease of learning, and usefulness [171]. IBM computer usability satisfaction

questionnaires also measure user satisfaction with usability, but it is specialized on a computer

system [172]. Questionnaire for current motivation (QCM) is the subjective assessment tool

designed to measure users’ motivation with respect four motivational factors: mastery confi-

dence, incompetence fear, challenge, and interest [173].

To find out the frequently used subjective measures in each type of task, we categorized

studies by type of task and counted the number of studies separately. Among 19 spelling tasks,

NASA-TLX and VAS were the most frequently used subjective evaluation tools in both closed

copy tasks and self-managed tasks. In closed copy tasks, four studies proposed new subjective

measures. Proposed measures varied from study to study. For example, Deravi et al. [149]

evaluated aesthetic, attractiveness, cognitive workload, comfort, ease of use, effectiveness, func-

tionality, helpfulness, operability, safety, and usefulness of system through their own developed

set of questionnaires. Hohne & Tangermann [52] evaluated controllability, effectiveness, effi-

ciency, and exhaustion; and Nam, Li, & Johnson [161] evaluated preference. Won et al. [164]

evaluated comfort, and Nijboer et al. [162] did aesthetic, comfort, operability, and preference.

In movement control tasks, NASA-TLX and VAS were also most frequently used in all

types of task. Among the seven studies of movement control tasks, only three studies did not

use any subjective measures for usability evaluation of BCI [62,66,155]. In addition, Modified

QUEST 2.0, SUS survey, and modified SUS surveys were used in the closed copying task and

ATD PA device form was only used in closed self-managing tasks and QUEST 2.0 was only

used in open tasks. Among nine studies using selection control tasks, seven studies used sub-

jective measures, and one study proposed new measures in the closed copying task [149]. Only

two studies did not use subjective measures in the selection control task experiments [64,155].

In the cognitive rehabilitation and brain painting tasks, all studies used subjective measures.

One study using a brain painting task proposed a new measure in open task: exhaustion [52].

Among two studies using a mental task, only one study used subjective measures [147].

Weyand et al. [147] proposed the new measure “helpfulness of feedback”.

Overall, task accuracy and ITR were most frequently used for performance measures. The

rest of the measures were related to brain activity (e.g., amplitude, latency), time dependent

variables (e.g., task speed, task time, time for selection), and the difficulties of task completion

Table 5. Classification of articles by evaluation tool of subjective measures.

Evaluation tool No. of articles References

NASA-TLX 13 [52,55,58,76,143–145,148,152–154,157,163]

VAS 12 [52,58,76,143–145,148,150,152–154,157]

Proposed 8 [52,143,146,147,149,161,162,164]

Customized Questionnaire (Modified QUEST 2.0) 5 [52,143–145,148]

ATD PA Device Form 3 [52,143,144]

SUS survey 3 [55,154,163]

Customized Questionnaire (Modified IBM’s computer usability satisfaction questionnaires) 2 [158,159]

Customized Questionnaire (Modified SUS survey) 2 [149,160]

Customized Questionnaire (Modified USE Questionnaire) 2 [151,156]

QUEST 2.0 1 [153]

https://doi.org/10.1371/journal.pone.0176674.t005
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(e.g., error rate, feasibility of finishing the task, task completion rate). Also, there were some

studies that proposed new metrics for performance measures (e.g., effectiveness [152], effi-

ciency [63,144], WS score [147]).

To find out the frequently used performance measure in each type of task, we categorized

studies by type of task and counted the number of studies separately. Among 19 spelling task

studies, only one study did not use performance measures to evaluate usability of BCI [58]. In

both closed self-managed tasks and closed copy tasks, task accuracy and ITR were most fre-

quently used as performance measures. Because there were more studies using a closed copy

task than a closed self-managed task, performance measures, which were used in the copy task,

except task accuracy and ITR, varied depending on study. In movement control tasks, all stud-

ies used performance measures. Task accuracy was most frequently used, whereas ITR was

used in only one study [52]. One study of the brain painting task did not use performance

measures [143].

Since the objective of this study was to establish the usability dimensions measured in BCI

usability studies, we reorganized them in terms of usability dimensions. Table 6 presents a

summary of 40 measured subjective usability dimensions. A preliminary inspection of Table 6

shows that the constructs of satisfaction, cognitive workload, and ease of use are most com-

monly measured in BCI usability studies. All of these measures were defined in the work of

Han et al. [174] on the classification of performance and image/impression dimensions with

slight variations.

We reorganized performance measures (objective measures). Table 7 presents a summary

of 21 performance measures. From Table 7, task accuracy and ITR are most commonly mea-

sured in BCI usability studies. The remaining performance measures varied depending on

study.

Upon review of the measures’ frequency in the collected articles the three core-constructs

for the measurement of usability appear to be the following [175]:

• Efficiency: Degree to which the product is enabling the tasks to be performed in a quick,

effective, and economical manner, or is hindering performance.

• Effectiveness: Accuracy and completeness with which specified users achieved specified

goals in a particular environment.

• Satisfaction: The degree to which a product is giving contentment or making the user satisfied.

Most subjective measures take into account Satisfaction and Efficiency. The metrics for eval-

uating cognitive workload by NASA-TLX were used for assessment of efficiency of BCI systems.

Although various subjective measures were used and the definitions of each measure were dif-

ferent, the purpose of determining the usage of the measures except cognitive workload is to

assess user’s satisfaction on BCI systems. Performance measures varied depending on study. An

accuracy measure was typically used to assess the effectiveness of BCI systems. Among the col-

lected articles, ITR was typically used to assess efficiency of BCI systems. Because the measures

are related to how the user performs the task in a quick and effective manner, task speed time,

throughput time, the feasibility of finishing the task, and time for selection can be involved in

efficiency measures. A summary of usability dimensions is illustrated in Fig 5.

Opportunities for further research

Research question 1

After categorizing selected research studies in terms of the proposed taxonomy, three main

issues were found from the current hybrid BCIs. First, few hybrid BCI studies were validated
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by actual target users such as disabled patients while others recruited healthy subjects to test the

proposed system. To realize user-centered hybrid BCI systems, the actual target users should be

involved in the evaluation of proposed systems, because the ultimate goal of the BCI system is

to help severely disable people [34]. In addition to the recruitment issue, the sample size of cur-

rent hybrid studies were less than 15 subjects in all but five studies [90,101,106,108,121], and

these studies cannot guarantee duplicable results and they do not truly represent general target

Table 6. Frequency of subjective measures used in the reviewed articles.

Measures References Count %

Satisfaction [52,58,66,76,144–146,148,149,151–154,156–160] 18 58.06

Cognitive workload [52,55,58,76,143–145,148,149,152–154,157,163] 14 45.16

Ease of use [52,55,143–147,149–151,156,158,159,163] 14 45.16

Mental demand [52,55,58,76,143–145,150,152,163] 10 32.26

Comfort [52,143–145,149,158–160,162,164] 10 32.26

Effort [52,55,58,76,143–145,152,163] 9 29.03

Frustration [52,55,58,76,143–145,152,163] 9 29.03

Performance [52,55,58,76,143–145,152,163] 9 29.03

Physical demand [52,55,58,76,143–145,152,163] 9 29.03

Temporal demand [52,55,58,76,143–145,152,163] 9 29.03

Efficiency [52,58,76,143–145,154,163] 8 25.81

Learnability [52,55,143–145,149,151,156,163] 9 29.03

Usefulness [52,143,144,149,151,156,158,159] 8 25.81

Aesthetic [52,143–145,149,162] 6 19.35

Helpfulness [52,143–145,147,149] 6 19.35

Predictability [52,55,143,144,149,163] 6 19.35

Effectiveness [52,143–145,149] 5 16.13

Responsiveness [52,143–145,160] 5 16.13

Safety [52,143–145,149] 5 16.13

Adjustment [52,143–145] 4 12.90

Enjoyment [52,143,158,159] 4 12.90

Operability [55,149,162,163] 4 12.90

Physical accommodation [52,143–145] 4 12.90

Reliability [52,143–145] 4 12.90

Adaptability [52,143,144] 3 9.68

Complexity [55,160,163] 3 9.68

Consistency [55,149,163] 3 9.68

Exhaustion [52,143,146] 3 9.68

Expected technology benefit [52,143,144] 3 9.68

Familiarity [52,143,144] 3 9.68

Preference [58,161,162] 3 9.68

Privacy [52,143,144] 3 9.68

Security [52,143,144] 3 9.68

Willing to use [55,62,149,163] 3 9.68

Functionality [55,149,163] 2 6.45

Recommendability [158,159] 2 6.45

Attractiveness [149] 1 3.23

Clarity [146] 1 3.23

Controllability [143] 1 3.23

Mood [153] 1 3.23

https://doi.org/10.1371/journal.pone.0176674.t006
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users. To address this issue, future research should consider having expected users involved

from the system design stages to the experiment stages. The second issue is that the current

hybrid BCI systems still rely on non-neurological signals, such as physiological or conventional

external devices. Even though BCI systems can be applied to able-bodied persons, it cannot be

denied that current BCI systems are mainly targeting severely disabled patients who cannot

Table 7. Frequency of performance measures used in the reviewed articles.

Measures References Count %

Task accuracy [52,62,63,65,66,76,144–146,148–150,152,154,156,157,160,161] 18 58.06

Information Transfer Rate [52,55,76,144,145,150,152,157,161,163] 10 32.26

Classification accuracy [147,151,155,162–164] 6 19.35

Amplitude [150,157,161] 3 9.68

Task time [64,156,160] 3 9.68

Error rate [63,66] 2 6.45

Latency [157,161] 2 6.45

Proposed metric of efficiency [63,144] 2 6.45

Task speed [62,65] 2 9.68

Throughput time [65,76] 2 3.23

Abstentions [63] 1 3.23

Errors [64] 1 3.23

Hybrid system accuracy [76] 1 3.23

Proposed metric of effectiveness [58] 1 3.23

Real time to setup [162] 1 3.23

System accuracy [66] 1 3.23

Task completion rate [65] 1 3.23

The feasibility of finishing the task [160] 1 3.23

Time for correct selection [154] 1 3.23

Time for selection [76] 1 3.23

WS score [147] 1 3.23

https://doi.org/10.1371/journal.pone.0176674.t007

Fig 5. Usability dimensions for BCI systems.

https://doi.org/10.1371/journal.pone.0176674.g005
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utilize traditional external devices such as eye trackers. Therefore, a further direction of hybrid

BCI studies should incorporate a homogeneous hybrid BCI system. The last issue is that usabil-

ity of the hybrid BCI was evaluated only in two research studies [76,136], and this issue was dis-

cussed in Study 2.

Despite aforementioned issues, there were some interesting findings uncovered after apply-

ing the proposed taxonomy to the selected studies. Firstly, there were a substantial amount of

studies that used a single modality with multiple signatures in terms of brain signals, such as a

combination of either visual-based SSEP and ERP or tactile-based SSEP and ERP. However,

there was a lack of studies that utilized a single-signal signature with multi-modality such as a

combination of either multi-modal SSEPs (e.g., tactile and visual-based SSEPs) or ERPs (tactile

and auditory-based ERPs). Since both SSEP and ERP are the most reliable modalities should

produce more optimal results.

Research question 2

From the perspective of ergonomics design, BCI systems have several issues. First, standardiza-

tion is difficult to apply in BCI systems. Since previous studies have focused on improvement

in speed and accuracy of recognition methods (e.g., signature and classification algorithms),

several basic principles used to increase performance of BCI systems in the confined environ-

ment over a certain level have been identified. For instance, support vector machines, dynamic

classifiers, and combinations of classifiers are effective and powerful for synchronous BCI sys-

tems [19]. However, even though using the same mental task, classification algorithm, and

measuring equipment, the performance and comfort of BCI systems can change according to

the users’ characteristics (e.g., physical/cognitive disabilities, anthropometric traits) [176–179].

Also, due to users’ anthropometric traits being diverse (e.g., size and shape of users’ head), the

fitness of BCI systems can change according to users [180,181]. The type and design of elec-

trodes have significant influence on artifact signal [182]. In the case of ‘wet’ electrodes, the

quality of signal can change according to participants’ head shape and size, hair type and

length, and scalp properties [183]. Second, in BCI systems, it is needed to develop a new way

of interaction for enhancing perspicuity and compatibility of BCI systems. UI responds to

events triggered by users as they click the mouse and selecting the menu. Thus, it is an indis-

pensable part of HCI for the advantage of perspicuity and compatibility, in terms of ease of

operation. However, the way of interaction with BCI systems can be different from other con-

ventional interfaces. Since detecting diverse mental tasks in BCI systems for intuitive interac-

tion is difficult, it is limited to enhance ease-of-use in designing of BCI systems [177,184].

Especially, due to the purpose of BCI systems that aid disabled persons in controlling inter-

faces, the interaction between users and interfaces can be limited by users’ physical/cognitive

disabilities. Thus, diverse functions are difficult to be applied in BCI systems. If control meth-

ods of diverse functions are designed by the limited way of interaction without considering

perspicuity and compatibility, users will feel physical and mental fatigue quickly [176,177].

Finally, adaptability and scalability are scarce in BCI systems. BCI systems are difficult to be

utilized in the users’ daily life. The set-up of BCI systems in daily life has limitations such as

poor calibration due to environment, connection of sensors, and time consuming set-up of

hardware and software [179,185]. Also, because BCI systems need space organization, the

mobility of BCI systems is restricted [178,185]. Moreover, due to the lack of scalability of the

BCI systems, it is difficult to interact with other existing software and devices [176,177,179].

Essentially, hybrid BCI systems have similar design issues as BCI systems. However, some

issues can be more critical in hybrid BCI systems due to the complexity of hybrid BCI systems

(e.g., more sensors of hybrid BCI systems, more sensory functions of users). First, physical or
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cognitive discomfort can be witnessed more than in BCI systems. Since hybrid BCI systems

require more sensors to be attached, users can feel more physical discomfort. More gel for elec-

trode caps and increased set-up time can cause more unpleasant feelings and annoy users

[180,185]. Attaching more sensors can cause restricted users’ behavior and visual field. Atten-

tion allocation may be limited and managing distraction may increase [176]. Thus, users can

feel fatigue more quickly. Second, technology acceptance or generalization of hybrid BCI sys-

tems can be less than BCI systems. Due to more cognitive actions involved, learnability and

reliability of hybrid BCI systems can degenerate [186]. Also, due to hybrid BCI systems’ com-

plexity, caregivers, friends or relatives should know how to control such complex systems

without prior knowledge at the users’ home or bedside [177].

The solutions to the above issues can be related to usability evaluation for BCI and hybrid

BCI systems. Previous studies of BCI and hybrid BCI usability have primarily focused on cog-

nitive workload or performance (objective measures). Subjective measures can be helpful in

identifying design problems from the perspective of HCI. Specifically, considering the usability

measures in Fig 5, which are related to customization, compatibility, and scalability of BCI sys-

tems (e.g., predictability, adaptability, learnability, consistency, and familiarity), it is possible

to define the problem and find the cause to develop or improve the BCI systems. Considering

the proposed usability metrics in Fig 5, such as cognitive workload, learnability, adaptability,

reliability, and ease-of-use, can be helpful for improving the complexity of hybrid BCI systems.

Therefore, future research using those measures for usability evaluation is needed for solving

ergonomics/HCI design issues of BCI and hybrid BCI systems.

The inspection method has not been conducted sufficiently for BCI and hBCI usability.

Through utilizing the inspection method (e.g., heuristic evaluation, cognitive/pluralistic walk-

through, guideline checklist, etc.), it is possible to identify usability problems of the UI design

in a detailed manner. The inspection method specifically involves evaluators (end-users or UI

experts), and is conducted in context-of-use cases (typical user tasks), to provide feedback to

the developers on the extent to which the interface is likely to be compatible with the intended

users’ needs and preferences. Future research of usability evaluation for BCI and hybrid BCI

systems is needed in order to identify and solve the aforementioned usability problems.

Conclusions

We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies and

proposed a clear and systematic taxonomy of hybrid BCIs with multiple taxonomic criteria.

With this taxonomy, hybrid BCIs can be classified in terms of 1) the source of the signals, 2)

the characteristics of the signal, and 3) the characteristics of operation in each system. Thus,

BCI researchers, even those who new to the field, can easily understand the complex structure

of the hybrid system at a glance. Furthermore, this review outlined the advantages and disad-

vantages of each hybrid BCI system in regards to what should be considered according to sys-

tem environment, conditions, and target users.

The results in accordance with the proposed taxonomy show that many hybrid BCI studies

(58%) utilized EEG signals with multi-signatures in combinations such as 1) SSEP and ERP, 2)

SSEP and MI, and 3) ERP and MI. A quarter of the studies combined a brain signal with physi-

ological signals such as EOG (8%), EMG (4%), and ECG signal (3%) to take the advantages of

the higher signal-to-noise ratio of physiological signals in comparison to neurological signals,

while comparable studies added an external device, such as an eye tracking system (15%), a

joystick (3%), and a gyroscope (1%) to a BCI system for directional controls. In terms of the

characteristics of the signal, most of the studies used modulated brain signals via operant con-

ditioning with mental tasks, and stimulus evoked brain signals via selective attention were
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added to support or coincide with. For the stimulus modality, all of the reviewed studies

applied visual and/or operant conditioning except three studies [42,89,119]. The most widely

used brain signal signatures were visual-ERP, SSEVP, or MI. The proposed taxonomy also

clarified the current research limitations for future research directions. Most of the previous

studies did not evaluate the proposed hybrid BCI systems with real target users such as disable

patients. Instead, the systems were tested with healthy participants in all but six research stud-

ies [76,82,88,91,116,125]. Of the experiments that were conducted with disabled patients in the

hybrid BCI studies, all of those were case studies with small sample sizes.

The other issue found in this review was that current hybrid BCI research studies still highly

rely on either visual stimulation or external devices that might not be possible to apply to some

target user groups including severely disable patients. Also, we exhaustively reviewed recent

literature on usability of BCIs. To identify the key evaluation dimensions of usability, we

focused on task and measurement characteristics of BCI usability. We classified and summa-

rized BCI usability studies according to task characteristics (type and description of task) and

measurement characteristics (subjective and objective measures). Afterwards, we proposed

usability dimensions for BCI and hybrid BCI systems with recommendations for further

research.

We found that previous studies of BCI and hybrid BCI usability have primarily focused on

evaluating performance and cognitive workload of systems. From the results of classifications,

the three core-constructs for the measurement of usability appear to be: Satisfaction, effective-

ness, and efficiency. In satisfaction, all involved metrics are subjective measures. Those mea-

sures (e.g., ease-of-use, learnability, operability, helpfulness, etc.) are usually rated on a 5 or 7

point likert scale. All metrics in effectiveness are objective measures. The measures of effective-

ness are related to accuracy and completeness with which specified users achieved specified

goals in a particular environment. In efficiency, there are both of subjective and objective mea-

sures. Subjective measures in efficiency are related to users’ cognitive workload. NASA-TLX

has been widely used to evaluate users’ cognitive workload. Objective measures in efficiency

are related to time and speed. Those measures aim to evaluate the degree to which the system

is enabling the task to be performed in a quick, effective, and economical manner, or if it is

hindering performance. Utilizing those usability dimensions can help researchers and practi-

tioners understand BCI studies related to usability evaluation, and choose proper metrics for

usability evaluation of BCI and hybrid BCI systems.

Opportunities for further research were discussed in this study. Most of the previous studies

have focused on cognitive workload and performance of systems. Thus, studies focused on

subjective measures, especially with regards to the inspection method, could be conducted in

the future. Considering the proposed usability measures, it is possible to identify and solve

design issues of BCI and hybrid BCI systems. Specifically, to enhance customization, compati-

bility, and scalability of BCI systems, predictability, adaptability, learnability, consistency, and

familiarity should be selected for usability evaluation. Also, considering proposed usability

metrics such as cognitive workload, learnability, adaptability, reliability, and ease-of-use can

be helpful for improving the complexity of hybrid BCI systems. Therefore, suggestions for

future research directions in this study can be helpful in establishing research directions and

gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and

hybrid BCI systems.
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177. Kübler A, Holz E, Kaufmann T, Zickler C. A User Centred Approach for Bringing BCI Controlled Appli-

cations to End-Users. Brain-Computer Interface Syst—Recent Prog Futur Prospect. 2013; 1–20.

178. Botte-lecocq C, Vannobel J, Botte-lecocq C. Considering human factors in BCI experiments: a global

approach St ´ To cite this version: HAL Id: hal-01114440. 2015;

179. Barros R, Santos G, Ribeiro C, Torres R. A Usability Study of a Brain-Computer Interface Apparatus:

An Ergonomic Approach. Conf Des . . .. 2015;

180. Ekandem JI, Davis T a., Alvarez I, James MT, Gilbert JE. Evaluating the ergonomics of BCI devices

for research and experimentation. Ergonomics. 2012; 55: 592–598. https://doi.org/10.1080/00140139.

2012.662527 PMID: 22506831

181. Lacko D, Vleugels J, Fransen E, Huysmans T, De Bruyne G, Van Hulle MM, et al. Ergonomic design

of an EEG headset using 3D anthropometry. Appl Ergon. Elsevier Ltd; 2017; 58: 128–136. https://doi.

org/10.1016/j.apergo.2016.06.002 PMID: 27633205

182. Merletti R. The electrode—skin interface and optimal detection of bioelectric signals. Physiol Meas.

IOP Publishing; 2010; 31.

Hybrid BCI taxonomy and usabiity

PLOS ONE | https://doi.org/10.1371/journal.pone.0176674 April 28, 2017 34 / 35

https://doi.org/10.2147/CIA.S73955
http://www.ncbi.nlm.nih.gov/pubmed/25624754
https://doi.org/10.3758/BRM.41.1.113
http://www.ncbi.nlm.nih.gov/pubmed/19182130
http://www.ncbi.nlm.nih.gov/pubmed/800639
https://doi.org/10.1080/00140139.2012.661082
https://doi.org/10.1080/00140139.2012.661082
http://www.ncbi.nlm.nih.gov/pubmed/22455595
https://doi.org/10.1080/00140139.2012.662527
https://doi.org/10.1080/00140139.2012.662527
http://www.ncbi.nlm.nih.gov/pubmed/22506831
https://doi.org/10.1016/j.apergo.2016.06.002
https://doi.org/10.1016/j.apergo.2016.06.002
http://www.ncbi.nlm.nih.gov/pubmed/27633205
https://doi.org/10.1371/journal.pone.0176674


183. Liao L-D, Lin C-T, McDowell K, Wickenden AE, Gramann K, Jung T-P, et al. Biosensor technologies

for augmented brain—computer interfaces in the next decades. Proc IEEE. IEEE; 2012; 100: 1553–

1566.

184. Bos DPO, Gürkök H. User Experience Evaluation in BCI: Mind the Gap! Int J Bioelectromagn. 2011;

13: 48–49.
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