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In ARDS, mechanical ventilation represents the
milestone treatment to restore adequate gas exchange
but may itself aggravate lung damage by ventilator-
induced lung injury because incorrect ventilator settings
are applied. Established strategies to prevent ventilator-
induced lung injury include limiting tidal volume,
plateau and driving pressure, and the extensive use of
prone position, which are all interventions capable of
improving survival.1 Differently, the role of positive end-
expiratory pressure (PEEP) is debated: although the use
of low PEEP (5 to 8 cm H2O) in mild-to-moderate cases
(PaO2/FIO2, > 200 mm Hg) seems wise, there is no
conclusive evidence to support the setting of higher
vs lower PEEP in patients with moderate-to-severe
disease (PaO2/FIO2, # 200 mm Hg).

Five different randomized studies that compared higher
vs lower PEEP, with high PEEP set according to
respiratory system mechanics,2 to oxygenation
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impairment,3,4 to maximize respiratory system
compliance,5 or to achieve different degrees of positive
end-expiratory transpulmonary pressure6 failed to detect
a significant clinical benefit.

Physiologically, PEEP always generates some sort of
hyperinflation in the aerated compartment (ie, the baby
lung), although it may reduce risk of ventilator-induced
lung injury solely when significant alveolar recruitment
occurs because of reopening of collapsed tissue, finally
increasing the size of the aerated lung available for tidal
ventilation. Indeed, the potential for lung recruitment as
response to PEEP has wide interindividual variability.7

Mechanistically, in early moderate-to-severe ARDS,
PEEP setting should aim to a balance between its
capability to recruit new alveoli and the unavoidable
overinflation produced in already open tissue.8,9 High
PEEP is beneficial only in patients who have greater
potential for lung recruitment, in whom PEEP increases
the size of the aerated lung available for tidal ventilation,
yielding reduced dynamic strain (ratio of tidal volume to
functional residual capacity10). Conversely, in patients
who are not or are poorly recruitable, PEEP only
enhances lung injury by increasing static stress and
strain in the baby lung.

Patients with COVID-19-induced acute respiratory
failure are treated with relatively high PEEP (14 cm H2O
on average),11 which may depend on the positive
oxygenation response to PEEP that commonly is
observed in these patients, which may happen to be a
falsely reassuring clinical finding, however.12,13

Improved oxygenation does not necessarily imply
alveolar recruitment and less injurious ventilation but
may reflect a PEEP-induced reduction in cardiac output
and a change in the distribution of alveolar perfusion
and/or hypoxic vasoconstriction. On the other hand,
PEEP-induced significant recruitment may be
accompanied by worsen or unchanged oxygenation
when intracardiac shunt is increased in the presence of
patent foramen ovale.14–17

The effect of PEEP in patients with COVD-19 ARDS and
whether the extent of recruitability is similar to or different
from ARDS of other causes remain debated topics.12,18–20

In this issue of CHEST, Protti et al21 reported a nicely
performed physiologic study to assess the potential for
lung recruitment and its relationship with PEEP-induced
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changes in respiratory mechanics in 40 patients with
moderate-to-severe ARDS caused by COVID-19 soon
after intubation. The study was performed rigorously, and
the data were analyzed thoroughly. Potential for lung
recruitment was assessed by CT scan. Similar to ARDS of
other causes, results showed great heterogeneity in
potential for lung recruitment, fostering the idea that
PEEP should be individualized based on the individual
response also in patients with COVID-19. A second
relevant finding was that changes in respiratory
mechanics (compliance and driving pressure) that are
induced by PEEP do not yield any information about the
potential for lung recruitment andmaymislead clinicians;
importantly, maximization of compliance (and reduction
of driving pressure) is a popular PEEP-setting strategy.5

In the study, presence of significant recruitment was not
accompanied systematically by increases in compliance,
which is consistent with what previously has been
reported both in COVID-19 and in ARDS of other
causes12,13 and may be explained by baby lung
hyperinflation and the possible occurrence of tidal
recruitment at low PEEP. Compliance and driving
pressure are global measures and do not account for the
regional behavior of lung tissue.22 Tidal recruitment is the
cyclic opening and closing of alveolar units during tidal
ventilation; tidal recruitment makes static respiratory
system compliance very high at low PEEP, which explains
the reason that increases in PEEPmay generate worsening
compliance also in case of significant recruitment.

The authors demonstrated that potential for lung
recruitment cannot be predicted by PEEP-induced
changes in PaCO2.

21 With constant minute ventilation,
changes in PaCO2 reflect dead space modifications. With
alveolar recruitment, the overdistension by tidal-volume
should be mitigated, and this should yield reduction in
ventilation-perfusion mismatch with facilitated CO2

clearence.23,24 Differently, in case of poorly recruitable
lungs, alveolar dead space may increase because of
compression of pulmonary vessels,25 and airway dead
space augments because of gas compression in the
respiratory circuit and airways; these mechanisms
should hamper CO2 clearance.

26 However, CO2

dynamics are complex and affected strongly by the
hemodynamic equilibrium and the amount of CO2

production, possibly obscuring any PEEP-induced direct
effect that is guided by these mechanisms.

We think the authors should be commended for their
nicely performed study in such a complex clinical
scenario; these results have important clinical
implications.21
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First, the interindividual heterogeneity in the potential
for lung recruitment warrants the development of
strategies for individualizing PEEP setting at the
bedside.27 CT scan is the most accurate tool for
evaluating recruitment but requires expertise, fundings,
time, and transport of the patient outside the ICU,
which may not be available for all patients, especially in
the context of a pandemic. Novel approaches that are
based on electrical impedance tomography or simplified
maneuvers on the ventilator to estimate the extent of
recruitment at the bedside have been proposed with
promising results, warranting further investigations to
determine whether PEEP-settings strategies based on
these monitoring tools may improve clinical outcome
significantly.13,28,29

Second, commonly applied parameters deemed reliable
to assess the effect of PEEP, such as oxygenation, PaCO2,
respiratory system compliance, and driving pressure,
often mislead clinicians. They do not reflect (solely) the
occurrence of alveolar recruitment and suffer from the
interference of several complex and interdependent
physiologic mechanisms whose effects cannot be
discriminated with conventional bedside monitoring
tools.

Studies such as the one performed by Protti et al21

represent a further step ahead in the understanding of
the complex physiology that rules the interaction
between the individual patient and ventilator. These
results represent a further call for the identification of
strategies to individualize PEEP settings also in ARDS
caused by COVID-19.
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