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A novel radical reaction of monometallofullerene Y@C2v(9)-C82 with N-arylbezamidine (1)

is successfully conducted through catalysis with silver carbonate. The high-performance

liquid chromatographic and mass spectrum results demonstrate that the reaction is

highly regioselective to afford only one monoadduct (2) with an imidazoline group added

on C82 cage, and computations through density functional theory reveal the addition

group is attached to a specific [5, 6]-bond (C20-C76) near the Y atom. Furthermore,

the analysis of prymidalization angle of the carbon atoms demonstrates the geometry of

carbon cage is in favor of the regioselective formation of isomer (20, 76).

Keywords: metallofullerene, radical reaction, silver carbonate, functionalization, imidazoline

INTRODUCTION

Exohedral chemical functionalization of fullerenes has a great significance toward their potential
applications in photovoltaic and biomedical fields. To date, a large number of reactions, including
but not limit to Bingle–Hirsch reactions, Prato reactions, Diels–Alder reactions, and radical
reactions, have been successfully performed to modulate their chemical and physical properties
(Hirsch and Brettreich, 2005). Among them, of particular interest are the radical reactions
of fullerenes mediated by transition-metal salts (Tzirakis and Orfanopoulos, 2013), and many
catalyzers, such as Mn(OAc)3, Fe(ClO4)3 (Zhang et al., 2003; Wang et al., 2004; Li et al., 2010a,b,
2012; Liu et al., 2011), Pb(OAc)4 (Chai and Lautens, 2009), Cu(OAc)2 (Wang and Li, 2005), CoCl2
(Lu S. et al., 2011), NiCl2 (Constable et al., 2012), CuCl2 (Yang et al., 2013; Sharma et al., 2018),
and FeCl3 (Hashiguchi et al., 2013, 2014), have been utilized to produce radicals of fullerenes
to promote the radical reactions taking advantage of their excellent catalytic activities. Because
of the high efficiency in constructing multiple new chemical bonds, thus leading to derivatives
with various structures in one step, this class of reactions becomes more and more important in
functionalization of fullerenes.

On the other hand, endohedral metal doping of the fullerene cages can generate a novel class of
hybrid molecules named endohedral metallofullerenes (EMFs) (Lu et al., 2012; Popov et al., 2013;
Yang et al., 2017; Bao et al., 2018). The interaction between the internal metallic unit and fullerene
carbon cages renders the chemistry of EMFsmore complicated but also intriguing compared to that
of empty fullerenes (Lu X. et al., 2011;Maeda et al., 2016). As a result, the amount ofmetal-mediated
reactions of EMFs lags far behind those of fullerenes and the regioselectivity is just satisfactory
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FIGURE 1 | (A) Scheme of the reaction o of Y@C2v(9)-C82 with 1 and (B)

analytical HPLC profiles of the reaction mixture of Y@C2v(9)-C82 and 1 probed

at different time. HPLC condition: Buckyprep column (84.6mm × 250mm);

20 µL injection volume; 1.0 mL/min toluene flow; room temperature; 330 nm

detecting wavelength.

FIGURE 2 | MALDI-TOF mass spectrum of product 2.

with the generation of two or more isomers. Typically, Gu et al.
synthesize a series of water-soluble multiadducts of Tb@C82

with Cu(MeCN)4PF6 as a catalyst in 2002 (Feng et al., 2002),
and subsequently Dorn et al. utilized manganese(III) acetate
to trigger the radical reaction of Sc3N@C80 and obtained two
isomers methano monoadducts in 2007 (Feng et al., 2002; Shu
et al., 2007). The rare reports about this kind of reactions can

be understood by considering the direct reaction of EMFs with
metallic salts such as CuCl2, NiCl2, and FeCl3, which forms solid
precipitate instead of target reactants (Stevenson et al., 2009,
2014; Stevenson and Rottinger, 2013; Wang et al., 2017), and
thus it is still of high interest and challenge to seek for the
catalyst with appropriate activity and the regioselectivity for the
metal-mediated reactions of EMFs.

In this work, we found that silver carbonate is an
efficient catalyst to promote the reaction of Y@C2v(9)-C82 with
N-arylbenzamidine. Remarkably, the reaction regioselectively
affords only one derivative as revealed by high-performance
liquid chromatography (HPLC) and mass spectrometry (MS),
and the density functional theory calculations predict the
addition is preferentially occurred on a specific [5, 6]-bond with
large prymidalization angle near the Y atom.

MATERIALS AND METHODS

The solvent toluene was freshly distilled with sodium prior to
usage. The reagent Ag2CO3 was obtained commercially, and
N-arylbenzamidine was synthesized according to a previous
report, and the structure was determined through 1H NMR
(Supplementary Figure 5) (Koutentis and Mirallai, 2010).
Y@C2v(9)-C82 was produced with arc-discharge method
and isolated with HPLC. Analytical and preparative HPLC
measurements were conducted on LC SPD-16 and LC 908
machines (Japan Analytical Industry Co., Ltd.), respectively.
Matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) MS was measured on a MICROFLEX
spectrometer (Bruker Daltonics Inc., Germany), using
1,1,4,4-tetraphenyl-1,3-butadiene as matrix in a positive
ion linear mode.

Y@C2v(9)-C82 and all possible isomers formed by the addition
of 1 on non-equivalent C-C bonds, were constructed and
optimized at HF level of theory with 3-21G for C, H, and N atoms
and LANL2DZ for Y. Among them, low-lying isomers were
chosen out and reoptimized using B3LYP (Lee et al., 1988; Becke,
1993) functional with 6-31G(d) for non-metals and SDD for Y.
All computations were performed with Gaussian 09 Program
(Frisch et al., 2013), and numbering of carbons in C2v(9)-C82 cage
was given in Supplementary Figure 1 according to CAGE code
(Brinkmann et al., 2010).

RESULTS AND DISCUSSION

In a typical reaction, 5.0mg (4.7 µmol) of Y@C2v(9)-C82 and
18.4mg (20 eq) of N-arylbenzamidine (1) were dissolved in
25mL of anhydrous toluene, and 13.0mg (10 eq) of Ag2CO3

was added into the solution, and then the mixture was heated
at reflux under argon (Figure 1A). The reaction process was
monitored through analytical HPLC, and the profiles are shown
in Figure 1B. At the beginning of the reaction, two peaks
corresponding to the solvent and pristine metallofullerene
were detected at 3.6 and 35.4min, respectively. A new peak
at 12.9min increased along with the decreasing amount of
metallofullerene, and the reaction was terminated because the
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FIGURE 3 | Possible mechanism of the reaction between Y@C2v(9)-C82 and 1.

FIGURE 4 | (A–C) Structures and relative energies (R.E., in kcal/mol) of isomers (20, 76), (63, 77) and (56, 41) predicated by B3LYP method. Isomers are labeled by a

pair of numbers to indicate which carbons are attached by 1.

peak almost keeps constant after 12 h. The above HPLC results
demonstrate that the reaction possesses moderate reactivity and
high selectivity. Besides, some silver salts such as silver nitrate,
silver acetate, and silver trifluoroacetate, were applied to replace
the catalyst silver carbonate; however, the results monitored by
HPLC show no product was detected, but decreasing amount
of the pristine metallofullerene, which is probably because
Y@C2v(9)-C82 directly reacts and forms precipitates with these
salts, impeding their mediated reaction between metallofullerene
and 1.

The reaction mixture was then concentrated and subjected
to further HPLC separations (Supplementary Figure 1), and
3.4mg of pure compound 2 as black solids was obtained, and
2mg of Y@C2v(9)-C82 was recollected. A large portion (up to

95%) of consumed EMF was converted to 2, even much excess
amounts of 1 were added, indicating the high regioselectivity of
this catalytic reaction. The purified 2 is characterized through
the MALDI-TOF MS, and the result shows only one peak
at m/z 1267 was detected (Figure 2). It demonstrates that a
group with 194 of molecular weight was added on the carbon
cage, which is similar to the results of the reaction of C60

with 1 affording an imidazoline monoadduct (He et al., 2013).
Consequently, it is speculated that 2 should be an imidazoline
monoadduct too.

Based on the above experimental results and previous
reports about metal-mediated fullerene reactions (He et al.,
2013; Aghabali et al., 2016; Chao et al., 2016), a plausible
reaction mechanism for this silver carbonate-catalyzed reaction
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FIGURE 5 | The POAV values of the carbon atoms on the C2v(9)-C82 cage.

is proposed in Figure 3. At first, N-arylbenzimidamide 1

directly reacts with Ag+, which generates 3, and then a
radical species 4 is obtained through homolytic cleavage of
the nitrogen silver bond. Second, the radical addition of
Y@C2v(9)-C82 will produce intermediate fullerenyl radical 5,
which may also be formed by the homolytic addition of 3 to
metalofullerene, and then the intramolecular cyclization of 5

produces radical species 6. Finally, the intermediate 6 is oxidated
by Ag+ and loses the extra H+, affording the imidazoline
derivative 2.

Theoretical calculations were conducted to further
determine the accurate structure and addition site of 2.
There are in total 35 non-equivalent bonds in the cage when
C2v symmetry was taken into consideration, and all the
corresponding isomers of 2 named according to the addition
bonds were optimized, and the relative energies are given
in Supplementary Table 1. Three low-lying isomers were
reoptimized using B3LYP functional with SDD basis for Y
and 6-31G(d) for non-metal atoms; more accurate relative
energies are obtained and given in Figure 4. The results show
the energy of isomer (20, 76) is far lower than those of other
isomers (63, 77) and (56, 41) with 5.9 and 7.6 kcal/mol,
respectively, indicating the reaction should prefer to occur
at the [5, 6]-bond near the internal metal atom. Besides
relative energies, stability of isomer (20, 76) can also be
disclosed by inspection on its spin density and singly occupied
molecular orbital (SOMO), which show the spin density and
SOMO of isomer (20, 76) are not concentrated on some

specific carbons but evenly distributed over the whole cage
(Supplementary Figure 3).

Furthermore, the kinetic stability of isomer (20, 76) can
also be rationalized from the pyramidalization angles of carbon
atoms on the C2v(9)-C82 cage, which are strongly dependent
on the cage geometry. In general, the addition reactions of
fullerenes preferentially occur at the carbon atoms with relative
high spin population and/or large POAV [the p-orbital axis
vector (θ1π−90◦)] values. The B3LYP predicated spin density of
Y@C2v(9)-C82 and spin population condensed on each carbon
atom are given in Supplementary Figure 4. The spin density
distributed over the cage quite evenly and spin population of
carbon atoms are also relatively small (ranges from −0.027 to
0.082), which is in agreement with the previous report (Bao
et al., 2016). As a consequence, there are no carbon atoms
of Y@C2v(9)-C82 possessing the distinct advantage of radical
to regioselectively react with 1. In contrast, as can be seen in
Figure 5, the carbon atoms located near the Y atom possess
evidently higher POAV values than others. In fact, the carbon
atom C76 has largest POAV value up to 11.6◦, and thus, C76
is certainly more reactive than other cage carbons to release
its steric strain. After linking with C76, the adjacent carbon
atom C20 has higher POAV value (9.7) than the other two
adjacent carbon atoms C75 (5.3) and C77 (5.3), and thus, the
addition group makes a second bond with C20 to form a [5, 6]
monoadduct. Accordingly, the above results reveal the geometry
of the carbon cage plays a role on the regioselective formation of
the isomer (20, 76).

Frontiers in Chemistry | www.frontiersin.org 4 October 2020 | Volume 8 | Article 593602

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Li et al. Silver Carbonate-Mediated Reaction of Metallofullerene

CONCLUSION

In summary, a novel derivative 2 of monometallofullerene
was synthesized via a highly regioselective reaction of 1

catalyzed by silver carbonate. Studies of MS and theoretical
calculations disclose that an imidazoline group is attached
to [5, 6]-bond near the metal atom forming a monoadduct.
Additionally, the analysis of POAV values on carbon cages
demonstrates that the geometry of carbon cage is conductive
to regioselectively afford the isomer (20, 76). We believe
the successful functionalization of metallofullerene mediated
by transition metal will broaden the approach to chemistry
of EMFs, which may find applications in photovoltaic and
biomedical fields.
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