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A novel method of adverse event detection
can accurately identify venous
thromboembolisms (VTEs) from narrative
electronic health record data

Christian M Rochefort1,2,3, Aman D Verma2,3, Tewodros Eguale2,4, Todd C Lee5, David L Buckeridge2,3

ABSTRACT
....................................................................................................................................................

Background Venous thromboembolisms (VTEs), which include deep vein thrombosis (DVT) and pulmonary embolism
(PE), are associated with significant mortality, morbidity, and cost in hospitalized patients. To evaluate the success of
preventive measures, accurate and efficient methods for monitoring VTE rates are needed. Therefore, we sought to de-
termine the accuracy of statistical natural language processing (NLP) for identifying DVT and PE from electronic health
record data.
Methods We randomly sampled 2000 narrative radiology reports from patients with a suspected DVT/PE in Montreal
(Canada) between 2008 and 2012. We manually identified DVT/PE within each report, which served as our reference
standard. Using a bag-of-words approach, we trained 10 alternative support vector machine (SVM) models predicting
DVT, and 10 predicting PE. SVM training and testing was performed with nested 10-fold cross-validation, and the aver-
age accuracy of each model was measured and compared.
Results On manual review, 324 (16.2%) reports were DVT-positive and 154 (7.7%) were PE-positive. The best DVT
model achieved an average sensitivity of 0.80 (95% CI 0.76 to 0.85), specificity of 0.98 (98% CI 0.97 to 0.99), positive
predictive value (PPV) of 0.89 (95% CI 0.85 to 0.93), and an area under the curve (AUC) of 0.98 (95% CI 0.97 to 0.99).
The best PE model achieved sensitivity of 0.79 (95% CI 0.73 to 0.85), specificity of 0.99 (95% CI 0.98 to 0.99), PPV of
0.84 (95% CI 0.75 to 0.92), and AUC of 0.99 (95% CI 0.98 to 1.00).
Conclusions Statistical NLP can accurately identify VTE from narrative radiology reports.
....................................................................................................................................................

Key words: support vector machines, automated text classification, deep vein thrombosis, pulmonary embolism, acute
care hospital, natural language processing

INTRODUCTION
Venous thromboembolism (VTE), which includes deep vein
thrombosis (DVT) and pulmonary embolism (PE), is one of the
most common complications of hospitalization.1,2 In the ab-
sence of thromboprophylaxis, the incidence of VTE ranges from
10–40% in medical and general surgical populations, to as
high as 40–60% in patients who have undergone major ortho-
pedic surgical procedures.1 VTE is also a leading cause of mor-
tality and morbidity. The 30-day VTE case fatality rate in
hospitalized patients ranges from 5% to 15%.3 Moreover, it is
estimated that 15–50% of VTE patients will experience post-
thrombotic syndrome,4,5 and that 4–5% will develop chronic
thromboembolic pulmonary hypertension.6,7 VTE is the second
most common cause of excess length of hospital stay,8 and

each case of hospital-acquired VTE results in an incremental
inpatient cost of US $7000–$21 000.8,9 Given the significant
mortality, morbidity, and cost associated with VTE, its preven-
tion has been ranked as the most important of 79 strategies
aimed at improving patient safety in hospitals.10

Accordingly, regulatory agencies worldwide have launched
VTE prevention initiatives that aim to encourage hospitals to as-
sess VTE risk, and to institute appropriate thromboprophylaxis
in high-risk patients.11,12 An important requirement to evaluate
the success of these initiatives is access to accurate, timely,
and efficient methods for monitoring VTE rates. However, at
present, there are no such methods.13,14 Although manual
chart review is the reference standard in many adverse events
studies, it is a time-consuming, resource-intensive, and costly
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process.13–15 As a consequence, it is an impractical means for
routine VTE monitoring. While discharge diagnostic codes have
the advantage of being readily available, relatively inexpensive,
and easy to use,15,16 previous studies have found that they
generally have low to moderate sensitivity and positive predic-
tive value (PPV) for identifying VTEs.17,18 In addition, it can be
difficult to determine from discharge diagnostic codes whether
a VTE occurred before the patient was hospitalized or during
the actual hospitalization.19,20 With the increasing availability of
electronic health records (EHRs), a far richer source of clinical
information for identifying VTEs is becoming available.
Moreover, with the advent of automated methods for encoding
and classifying electronic narrative documents, such as natural
language processing (NLP), an exciting opportunity has
emerged to develop potentially more accurate, timely, and effi-
cient methods for monitoring VTE rates.

NLP refers to automated methods for converting free-text
data into computer-understandable format.21 NLP techniques
have been divided into two broad categories: symbolic and sta-
tistical. Symbolic (or grammatical) techniques use the charac-
teristics of the language (i.e., semantics, syntax, and the
relationships among sentences) to interpret a narrative docu-
ment to the extent necessary for encoding it into one of a set of
discrete categories.22 Only a few studies have used symbolic
NLP techniques to identify adverse events such as VTEs. While
the results of these studies are promising, symbolic NLP tech-
niques were found to have low to moderate sensitivity and PPV
for identifying DVT and PE.23–25 This could possibly be attrib-
uted to the characteristics of clinical narratives, which are often
ungrammatical, composed of short telegraphic phrases, and
replete with abbreviations, acronyms, and local dialectal short-
hand phrases.26,27

Alternatively, statistical NLP techniques use the frequency
distribution of words and phrases to automatically classify a
set of documents into one of a discrete set of predefined cate-
gories.28 Among the various statistical NLP techniques, support
vector machines (SVM), which is a type of supervised machine
learning, have been widely used in pattern recognition and
classification problems.29,30 SVM models have demonstrated
high performance in automatically classifying and detecting
diseases,31,32 and are one of the most effective models for au-
tomated text classification.33 To our knowledge, no prior study
has documented their accuracy in identifying VTEs from narra-
tive clinical documents. We thus sought to determine the accu-
racy of SVM models for identifying DVTs and PEs.

METHODS
Setting
The study was conducted at the McGill University Health Centre
(MUHC), a university health network located in the Canadian
province of Quebec. The MUHC is composed of five adult-care
hospitals and has more than 800 beds. It serves a population
of 1.7 million people (22% of the provincial population), with an
annual volume of approximately 865 000 ambulatory visits,
34 000 surgeries, and 38 000 hospitalizations. The research
ethics committee of the MUHC approved this study.

Data sources
Data for this study were extracted from three electronic data-
bases at the MUHC and were linked by unit, patient, and hospi-
tal admission date. The Discharge Abstract Database provided
patient age and sex, and dates of hospital admission and dis-
charge. The Admission, Discharge and Transfer Database was
used to identify the unit where the patient was located at the
time of the radiological examination. The Radiology Report
Database provided data on all radiological examinations that
were performed over the study period in patients suspected of
having a VTE, including dates when these examinations were
performed, a text description of the radiological findings, and
the radiologist’s interpretation. At the time of this study, no
other clinical narratives were available in an electronic format
at the MUHC.

Study design and data sample
To determine the accuracy of SVM models in identifying DVTs
and PEs, we conducted a validation study. First, we randomly
sampled 2000 narrative radiology reports among all radiologi-
cal examinations that were performed at the MUHC between
January 1, 2008 and December 31, 2012 for patients with a
suspected DVT or PE. Then, two sets of alternative SVM models
were trained and tested: one set predicting DVTs (including
DVTs of the lower and upper extremities) and one set predict-
ing PEs. To identify the best performing SVM model for predict-
ing DVT and PE, the accuracy of the models within each set
was compared. The decision to develop two sets of SVM mod-
els was based on the observation that several narrative reports
described the results of a radiological examination (e.g., pul-
monary embolus study with distal runoff) that was performed
in a patient suspected of having both conditions. While it is
possible to train a multi-class SVM model, most work on SVMs
and most standard evaluation techniques are designed for bi-
nary classification problems.34 As such, we opted for the two-
model approach.

SVM model development and validation
To develop and validate the two sets of SVM models, four suc-
cessive steps were followed: (a) reference standard develop-
ment, (b) text pre-processing and feature generation, (c)
feature selection, and (d) SVM training, testing, and validation.

Reference standard development
First, the 2000 radiology reports were manually coded by a
clinical expert (CMR) to identify cases of DVT and PE. During
the coding process, each report was assigned two codes: (a)
positive or negative for DVT of the lower or upper extremities,
and (b) positive or negative for PE.

Positive radiology reports for a DVT were those where a
thrombus was identified in the proximal deep veins of the lower
extremities (e.g., external iliac, common femoral, deep femoral,
or popliteal), in the deep distal veins of the lower extremities
(e.g., peroneal and posterior tibial), or in the deep veins of the
upper extremities (e.g., brachial, radial, ulnar, axillary, or sub-
clavian). Negative cases included those where no thrombus
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was identified or where a thrombus was identified in a superfi-
cial vein of the lower extremity (e.g., saphenous), in a superfi-
cial vein of the upper extremity (e.g., cephalic), or in a
perforating vein of the lower extremity but not extending into a
deep vein.17 Radiological examinations finding evidence of
chronic thrombosis were coded as negative.

Similarly, positive radiology reports for a PE included those
where a filling defect was identified in the central, segmental,
or subsegmental pulmonary arteries. Radiological reports de-
scribing evidence of chronic PE were coded as negative, as
were those finding no evidence of the disease. Lastly, a second
clinical expert (TE) blindly recoded a 20% random sample of
the radiology reports and inter-coder reliability was assessed
using the j statistic, yielding near perfect agreement (j¼ 98).

Text preprocessing and feature generation
In preparation for SVM training and validation, the unstructured
text data embedded in the narrative radiology reports were
transformed into a corpus, which is a database of text docu-
ments.35 Then, a series of transformations were applied to
each radiology report within the corpus, including: (a) conver-
sion of all words to lower case, and (b) the removal of punctua-
tion marks and superfluous white spaces.33 The transformed
corpus was converted into a document-by-term matrix (bag-of-
words),36 a structured format holding radiology report IDs as

rows, terms as columns, and term frequencies within a given
radiology report as matrix elements. The original bag-of-words
contained 7370 distinct features (i.e., words or unigrams). To
introduce some elements of contextual knowledge, and pre-
serve the local dependencies of each word, bigrams (which are
combinations of two consecutive words) were introduced into
the bag-of-words as additional features.37 This resulted in a to-
tal of 62 416 distinct features (i.e., unigrams and bigrams).
Text preprocessing was conducted in R with package tm.38

Lastly, because feature generation is a key determinant of
SVM model prediction performances,39 we experimented with
several potential enhancements to our proposed feature gener-
ation approach, including word stemming (i.e., reducing
inflected words to their root form) and using higher order
n-grams (e.g., trigrams). These potential enhancements were
evaluated as part of the SVM model training and validation.

Feature selection and SVM training and validation
To assess the accuracy of the SVM models for identifying DVT
and PE, we used a 10-fold cross-validation approach. To avoid
biasing the accuracy of the SVM models by using information
from the test sets, we first performed feature selection within
each set of k�1 training folds.34,40 We used the Pearson’s cor-
relation coefficient (q) to identify subsets of features signifi-
cantly associated with DVT and PE.39 Using a threshold value

Table 1: The top 30* most informative unigrams and bigrams for deep vein thrombosis and pulmonary
embolism identification according to the Pearson’s correlation statistic

Deep vein thrombosis Pulmonary embolism

Unigrams Bigrams Unigrams Bigrams

Vein Length of Filling Pulmonary artery

Thrombus The thrombus Segmental Filling defect

Occlusive Thrombosis involving Artery Lower lobe

Peroneal Popliteal vein Lobe Defect in

Length Over a Pulmonary Pulmonary emboli

Patent Non occlusive Defect A filling

Popliteal Posterior tibial Subsegmental There are

Over A length Strain With pulmonary

Femoral Is deep Emboli Upper lobe

Tibial Peroneal vein Chest Main pulmonary

Thrombosis The mid Lung Segmental branch

Veins Basilic vein Main Defects are

Involving Femoral vein Branches Segmental branches

Entire Entire length Basal Embolus in

Thrombosed Reminder of Small Multiple filling

*Features were ranked using their Pearson correlation coefficient (q) and the top 30 unigrams and bigrams were selected.
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of |q|�0.10, 118 unigrams and 218 bigrams were associated
with DVT, and 301 unigrams and 1242 bigrams were associ-
ated with PE. The top 30 most informative features (highest
values of q) are summarized in table 1. As can be seen from
table 1, most of these features are either related to: (a) a rele-
vant anatomical body part (e.g., vein, pulmonary artery, femoral
vein, or segmental branches (of the pulmonary arteries)), or (b)
pathological manifestations of DVT or PE (e.g., thrombus, em-
boli, or filling defect).

Then, using these subsets of features, a nested 10-fold
cross-validation was performed within each set of k�1 training
folds to identify the optimal value of: (a) the cost parameter C,
which controls the trade-off between false positives and false
negatives (used with all kernel functions), and (b) the c param-
eter, which controls the shape of the hyperplane (used with the
radial basis function (RBF) kernel only).34,41 The optimal value
of C and c (when applicable) were then automatically applied
to the relevant set of k�1 training folds, and a parametrically
optimized multivariate SVM model was trained using either a
linear or an RBF kernel.40 Lastly, this optimal SVM model was
tested on the remaining kth test fold. During SVM training and
validation, repeated radiology reports from the same patient
over any given hospitalization (if any) were not allowed to cross
the training and test sets to avoid inflating the performances of
the SVM models.

Within each test fold, we estimated the sensitivity, specific-
ity, PPV, negative predictive value (NPV), and the area (AUC)
under the receiver operating characteristic (ROC) curve. These
estimates were then averaged over the 10 folds, and their 95%
CIs estimated.42 For each test fold, an ROC curve was gener-
ated by using the classification probabilities produced by the
SVM models as the discrimination threshold.43 Vertical averag-
ing was used to generate the average ROC curve for each of
the two models.43 To account for the asymmetric class sizes
(i.e., fewer positive cases of DVT and PE), and to avoid biasing
the SVM predictions towards the majority class, each class
was weighted by the inverse proportion.34 Then, using this
general approach, 10 alternative models were trained and
tested. The first eight models were trained using the aforemen-
tioned selected subsets of features and were characterized by
their kernel function (linear vs RBF), gram type (unigrams only
vs unigram and bigrams), and the use or non-use of SVM pa-
rameter optimization (tuning vs no tuning). SVM models with
no tuning used the default values for the cost (C¼ 1) and
c (c¼ 1/number of features) parameters.34 Two additional
SVM models were trained and tested using all available fea-
tures: (a) all features, linear kernel, uni-bigrams, and tuned pa-
rameters, or (b) all features, RBF kernel, uni-bigrams, and
tuned parameters. To identify the best performing model, the
AUCs of these 10 SVM models were compared using the
Friedman test, and pairwise comparisons were performed us-
ing Tukey’s test with the Bonferroni adjustment for multiple
comparisons.34 To determine if potential enhancements to our
proposed feature generation approach (i.e., stemming and
higher order n-grams) influenced SVM prediction perfor-
mances, alternative SVM models were trained, tested, and

compared using the aforementioned procedures. SVM models
were implemented in R using package e1071.44

RESULTS
Overall, 1649 patients contributed 1751 hospitalizations from
which the 2000 randomly selected narrative radiology reports
were generated. A total of 1544 (88.2%) hospitalizations con-
tributed only one radiology report to the analyses, while 207
(11.8%) hospitalizations contributed between two and five radi-
ology reports (table 2). The other characteristics of these hospi-
talizations are summarized in table 2.

The typical radiology report had a median length of 110.5
words, ranging from 8 to 727 words. On manual review, 454
narrative radiology reports (22.7%) described a VTE. Of these,
324 reports (16.2%) described a DVT, including 216 DVTs of
the lower extremities and 108 DVTs of the upper extremities. In
addition, 154 reports (7.7%) described a PE. Notably, 24 re-
ports described 2 simultaneous events, the most prevalent
combination being a lower extremity DVT and a PE (n¼ 19).

The average sensitivity, specificity, PPV, and NPV of the
SVM models for identifying DVTs are shown in table 3. On aver-
age, the best performing model correctly identified 80% of the
radiology reports describing a true DVT (sensitivity: 0.80 (95%
CI 0.76 to 0.85)) and generated 11% of false positives (PPV:
0.89 (95% CI 0.85 to 0.93)). The average AUC of this model
was 0.98 (95% CI 0.97 to 0.99), and the associated average
ROC curve is presented in figure 1. These performances, which
are highlighted in boldface in table 3, were achieved on an
SVM model trained on the whole feature set using an RBF ker-
nel for which both the cost and c parameters were optimized.
The performance of this SVM model did not statistically differ
from that of similar SVM models trained using a linear kernel
function on either the whole feature set or a selected subset of
features (table 3). It was also not statistically significantly influ-
enced by feature selection (table 3). Nonetheless, it performed
statistically significantly better than any other alternative SVM
models (table 3).

Similarly, on average, the best SVM model predicting PE
correctly identified 79% of the true PEs (sensitivity: 0.79 (95%
CI 0.73 to 0.85)) and generated 16% of false positives (PPV:
0.84 (95% CI 0.75 to 0.92)) (table 4). This model had an AUC
of 0.99 (95% CI 0.98 to 1.00), and the associated average ROC
curve is shown in figure 2. These performances were achieved
on an SVM model trained on the whole feature set using an
RBF kernel for which both the cost and c parameters were op-
timized (table 4). The performance of this SVM model did not
significantly differ from that of similar SVM models trained us-
ing a linear kernel function on either the whole feature set or a
selected subset of features (table 4). This model was also
not statistically significantly influenced by feature selection
(table 4). Nonetheless, this model performed statistically signif-
icantly better than any other alternative SVM models (table 4).

As a final step, alternative SVM models predicting DVT and
PE were trained and tested using potential enhancements to
the proposed feature representation (i.e., word stemming and
including trigrams). However, none of these approaches were
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superior to using a bag-of-words representation enhanced with
bigram features. As such, they are not detailed any further.

DISCUSSION
In this study, we assessed the accuracy of a statistical NLP
technique, based on SVM models, for the purpose of identifying
VTEs from electronic narrative radiology reports. We found that
DVTs and PEs can be accurately identified from a bag-of-words
representation of narrative radiology reports that is augmented
with bigram features.

To our knowledge, there have been few studies using NLP
techniques for the purpose of identifying VTEs, and most relied
on symbolic NLP. For instance, Melton and Hripcsak23 as-
sessed whether symbolic NLP techniques could accurately
identify 45 adverse events, including DVTs, from narrative dis-
charge summaries. For DVTs, a PPV of 0.51 was observed. In
another study, Murff et al24 evaluated the accuracy of symbolic
NLP techniques for identifying several postoperative complica-
tions, including VTEs, from an integrated EHR at six Veterans
Health Administration (VHA) medical centers. The sensitivity of
the NLP system for identifying VTEs was 0.59 (95% CI 0.44 to
0.72) and the specificity was 0.91 (95% CI 0.90 to 0.92). In a
subsequent study based on a larger sample of VHA patients,
FitzHenry et al25 used symbolic NLP techniques to detect nine
post-operative complications, including DVT and PE. For DVT,
sensitivity was 0.56 (95% CI 0.45 to 0.67), specificity was
0.94 (95% CI 0.93 to 0.95), and PPV was 0.15 (95% CI 0.11

to 0.20). For PE, a sensitivity of 0.80 (95% CI 0.66 to 0.89), a
specificity of 0.97 (95% CI 0.96 to 0.98), and a PPV of 0.23
(95% CI 0.17 to 0.30) were observed. Overall, the results of
our study add to this emerging body of literature and provide
further evidence that automated methods based on NLP tech-
niques can successfully be applied to EHR data for the purpose
of identifying adverse events such as DVT and PE.

Interestingly, we were able to achieve relatively good pre-
diction performances for both DVTs and PEs using a bag-of-
words representation of the narrative radiology reports that
was augmented with bigram features. While these perfor-
mances compare to those noted in recent statistical text classi-
fication studies,45–48 some characteristics of the models
validated in this study should be emphasized. First, we found,
in contrast to Bejan et al,46 that feature selection did not signifi-
cantly increase the performances of the SVM models beyond
what can be achieved with bigrams and SVM parameter opti-
mization. This observation provides evidence than when com-
putational resources are limited, feature selection, as
performed in this study, may provide acceptable results.
Second, we observed, consistent with Hsu et al,49 that when
SVM parameters are optimized, both the linear and RBF kernel
achieve similar performances. Lastly, we observed that several
potential enhancements to the feature representation (e.g., us-
ing higher order n-grams) did not improve the SVM model pre-
dictive performances. Similar results were observed in a recent
study where SVM models were used to categorize EHR

Table 2: Characteristics of the 1751 hospitalizations which contributed the 2000 narrative radiology
reports

Hospitalization characteristics Statistics (n¼ 1751)

Demographic characteristics

Sex

Male, n (%) 892 (50.9)

Female, n (%) 859 (49.1)

Age, mean 6 SD 66.7 6 16.1

Nursing unit at the time of the examination

Internal medicine, n (%) 643 (36.7)

Surgery, n (%) 537 (30.7)

Intensive care unit, n (%) 332 (19.0)

Other (e.g., geriatrics, neurology, short stay), n (%) 239 (13.6)

Length of hospital stay (days), median (IQR) 15 (28)

Number of radiology reports contributed to the analyses

One radiology report, n (%) 1544 (88.2)

Two radiology reports, n (%) 173 (9.9)

Three to five radiology reports, n (%) 34 (1.9)
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progress notes pertaining to diabetes.48 It is possible that more
complex features, such as higher order n-grams, do not occur
in a high enough frequency to significantly improve the perfor-
mance of an SVM model. Moreover, it is possible that these al-
ternative features do not contain the information needed to
discriminate narrative reports from different classes. Recently,
Garla and Brandt50 used symbolic NLP techniques to encode
semantic relationships between concepts in the narrative re-
ports, and were able to improve the prediction performance of
a machine learning clinical text classifier pertaining to obesity.
Additional studies are needed to determine if this approach can
be successfully replicated in other clinical contexts, including
the identification of VTEs. Nonetheless, the combination of
symbolic and statistical NLP techniques represents an interest-
ing area of future research, and promises improved perfor-
mance in adverse event detection.

Automated methods based on statistical or symbolic NLP
techniques have a number of advantages over traditional ad-
verse event monitoring methods, such as manual chart review.
Because they are automated, they can rapidly scan large num-
bers of patient records and clinical data with minimal human
effort and cost, potentially allowing surveillance of an entire
healthcare organization’s population rather than just subsam-
ples. In addition to being scalable, another potential benefit of
automation is that human resources traditionally assigned to
manual adverse event monitoring could be more productively
reassigned to the development, implementation, and follow-up

of preventive interventions. Moreover, because NLP techniques
use electronic data that are available in near-real time, they of-
fer the potential for timely adverse event monitoring and for
prompt intervention. This represents an important advantage
over automated methods based on discharge diagnostic codes,
which are only available several months after discharge.

An important strength of this study is the approach used to
fit the SVM models. Indeed, feature selection performed on the
whole dataset would have created a positive bias in prediction
accuracy by indirectly using information from the test sets. To
guard against this, we performed feature selection within each
set of k�1 training folds, which ensured independence from
the test sets. Similarly, we performed a nested 10-fold cross-
validation within each set of k�1 training folds to identify the
optimal values for the SVM parameters (C and c). This ap-
proach penalized over-fit models during the parameter search
process, therefore increasing generalizability. Lastly, we re-
ported on the average accuracy estimates of the SVM models
over the 10 test folds. This reduced the influence that any bias
in the distribution of the data between the training and test
sets could have on the predictive performance of the SVM
models. It also provided more reliable insights on how the SVM
models would perform on an independent data set drawn from
the same population of radiology reports.

Another strength of this study was to train and validate the
SVM models on narrative radiology reports from a network of
five adult-care hospitals. Because these hospitals operate for
the most part independently, and have their dedicated pool of
radiologists, this provided us with a range of reporting prac-
tices and styles (as observed during the manual coding pro-
cess). Moreover, by randomly sampling radiology reports over
a 5-year period, we could also capture variations through time,
if any, in reporting practices by the radiologists. For these rea-
sons, we are confident that our SVM models are relatively ro-
bust to variations in reporting styles.

Despite these strengths, several limitations of this study
should be acknowledged. First, the SVM models were trained
and tested on a single source of data: electronic narrative radi-
ology reports. It is thus possible that their accuracy would have
been different if additional sources of clinical data had been in-
cluded in the models. However, at the time of this study, there
was no integrated EHR available at the MUHC, and discharge
summaries were still in paper format. As a consequence, no
other source of electronic clinical narratives was available to
us. While the adoption of integrated EHRs is improving, only a
small minority of institutions currently use them. As such, the
approach taken in this study probably represents what could
be realistically implemented in most hospitals across the USA
and Canada. Second, we have focused on a single condition—
VTEs. As such, we have not tested our proposed approach on
other types of adverse events. Nonetheless, we have provided
evidence that SVM models can accurately detect the two clini-
cal manifestations of VTE (i.e., DVTs and PEs) with similar pre-
diction performances. While we believe that the approach
taken in this study can be generalized to other types of adverse
events, this has yet to be demonstrated.

Figure 1: Average receiver operator characteristic
(ROC) curve associated with the deep vein thrombosis
(DVT) model. The average ROC curve for the DVT
model was estimated by vertically averaging the 10
ROC curves generated during 10-fold cross-validation.
The best performances were achieved using an SVM
model trained on the whole feature set using an RBF
kernel for which both the cost and c parameters were
optimized.
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CONCLUSION
We found that SVM models based on narrative radiology re-
ports can identify VTEs with high accuracy. The SVM models
developed and validated in this study have many potential ap-
plications. Accurate identification of VTEs could assist hospital
quality improvement staff monitor VTE rates, and evaluate the
effectiveness of preventive interventions. Future studies should
assess if the approach used in this study can be generalized to
the detection of other types of adverse events, and if the com-
bination of symbolic and statistical NLP techniques results in
higher prediction performances than either method used alone.
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