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Abstract

Background: Genome-wide association studies (GWAS) that link genotype to phenotype represent an effective
means to associate an individual genetic background with a disease or trait. However, single-omics data only
provide limited information on biological mechanisms, and it is necessary to improve the accuracy for predicting
the biological association between genotype and phenotype by integrating multi-omics data. Typically, gene
expression data are integrated to analyze the effect of single nucleotide polymorphisms (SNPs) on phenotype. Such
multi-omics data integration mainly follows two approaches: multi-staged analysis and meta-dimensional analysis,
which respectively ignore intra-omics and inter-omics associations. Moreover, both approaches require omics

data from a single sample set, and the large feature set of SNPs necessitates a large sample size for model
establishment, but it is difficult to obtain multi-omics data from a single, large sample set.

Results: To address this problem, we propose a method of genotype-phenotype association based on multi-omics
data from small samples. The workflow of this method includes clustering genes using a protein-protein interaction
network and gene expression data, screening gene clusters with group lasso, obtaining SNP clusters corresponding
to the selected gene clusters through expression quantitative trait locus data, integrating SNP clusters and
corresponding gene clusters and phenotypes into three-layer network blocks, analyzing and predicting based on

each block, and obtaining the final prediction by taking the average.

Conclusions: We compare this method to others using two datasets and find that our method shows better
results in both cases. Our method can effectively solve the prediction problem in multi-omics data of small sample,
and provide valuable resources for further studies on the fusion of more omics data.
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Background

An important goal of current genetics is to establish glo-
bal functional associations between genotype and pheno-
type, the so-called genotype-phenotype map [1]. The
study of genotype-phenotype association sheds new light
on the process of genetic variation [2]. Genome-wide as-
sociation studies (GWAS) that link genotype to pheno-
type represent an effective way to associate individual
genetic backgrounds with specific diseases or traits. The

* Correspondence: shang@nwpu.edu.cn

'School of Computer Science, Northwestern Polytechnical University, Xi'an
710072, People’s Republic of China

Full list of author information is available at the end of the article

K BMC

strategy is to locate all the differential sites in a genome
and correlate them to a phenotype. Over the past dec-
ade, many GWAS have been performed to identify gen-
etic variants associated with complex human diseases or
traits. These findings highlight novel associations be-
tween variants and traits, provide insight into racial vari-
ations in complex traits, and lead to multiple clinical
applications [3, 4]. However, most variants explain only
a small fraction of the causal genetic factors. According
to the principle of GWAS, although thousands of single
nucleotide polymorphisms (SNPs) for complex diseases
and traits have been identified, single-omics analysis can
only provide limited information on biological
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mechanisms, and the functions and mechanisms of SNP
loci remain largely unclear.

Due to limitations at the single-omics level, it is neces-
sary to integrate multi-omics data to more accurately
predict the biological associations between genotype and
phenotype [5]. Such data allow us to study interactions
across omics, and provide opportunities to further exam-
ine genotype-phenotype associations and uncover the
underlying mechanisms [6]. Gene expression data are
typically incorporated to analyze the impact of SNPs on
phenotype [7-9]. The two main approaches of multi-
omics data integration are multi-staged analysis and
meta-dimensional analysis [10, 11].

When using a multi-omics biological network to ex-
plore genotype-phenotype association, it is generally be-
lieved that the difference in phenotypic traits is primarily
attributable to the cumulative effect of omics. For ex-
ample, SNPs lead to changes in gene expression, which
in turn affect protein expression and ultimately cause
diseases [12]. Such layer-by-layer integration analysis is
usually called multi-staged analysis. The idea is to estab-
lish the association between two layers by linear regres-
sion, partial least squares (PLS) [13, 14], canonical
correlation analysis, and correlation coefficients, and to
predict diseases through the associations across layers.
Multi-staged analysis bridges the gap between genotype
and phenotype by gene expression traits. The most com-
monly used such approaches are three-layer methods
such as the network-driven association mapping (NETA
M) algorithm for regression models based on biological
networks [15], in which a three-level association network
is constructed, linear regression is used to establish the
association between SNPs and genes, and logistic regres-
sion is used to link genes with phenotypes (with values 0
or 1, representing the absence or presence, respectively,
of a disease). Disease prediction by analyzing the effect
of SNPs on gene expression is more accurate than direct
prediction by SNPs. This confirms that the three-layer
network is more likely to reflect real biological relation-
ships. Similar models include PrediXcan [16] and back-
ward three-way association mapping (BTAM) [17].
However, when a regression model is established on a
three-layer network, intra-omics correlations are not
considered, which results in low model accuracy.

Meta-dimensional analysis has the three approaches of
concatenation-based, transformation-based, and single-
omics model-based integration. In concatenation-based
integration, the features of omics data are integrated
through machine learning to form a more comprehen-
sive input matrix, through which a prediction model is
established [18]. In transformation-based integration,
multi-omics data are transformed to an intermediate
form, which is used for integration and development of
a predictive model [19]. In single-omics model-based
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integration, predictive models are established using indi-
vidual omics data, and their predictions are integrated to
produce the final output [20]. A common drawback of
meta-dimensional analysis is that the omics data have
identical weights, meaning that they are used to predict
phenotypes from different perspectives without examin-
ing their biological correlations. Although meta-
dimensional analysis can improve the accuracy of
phenotype prediction, the biological significance of
multi-omics data integration remains unclear.

Furthermore, genotype-phenotype association by
multi-omics requires omics data from a single sample
set, and because of the large feature set of SNPs, both
multi-omics analysis methods require larger sample sizes
for model construction. Acquisition of clinical data can
be hampered by patient privacy protection and specific
data requirements of various institutions. Therefore,
public clinical data do not meet the needs of multi-
omics data integration methods in terms of sample size
and number of omics. We propose a method of
genotype-phenotype association for multi-omics data
based on a small sample size and large feature set. This
method offers the following innovations. a) It solves the
problem of ineffective regression due to a large feature
set and small sample size in three-layer networks. b) It
considers intra-omics associations to improve prediction
accuracy. c) It analyzes the biological pathway associa-
tions across omics layers to clarify the biological signifi-
cance. d) It accounts for tissue specificity, because each
tissue of a multicellular organism has distinguishing
characteristics due to the tissue-specific expression of
genes that confer unique morphological structures and
physiological functions on various tissues [21, 22]. e) In
the study of the SNP-gene-phenotype pathway, our
method is the most time-saving over state-of-the-art
methods.

Results

Data sources and preprocessing

Two datasets derived from the Gene Expression Omni-
bus (GEO) database were used to verify the effectiveness
of our method [23]. GSE33356 represents the data of
lung adenocarcinoma [24]. Affymetrix SNP 6.0 and Affy-
metrix U133 Plus 2.0 microarrays were used to analyze
the specimens of lung tumors and normal tissues from
84 nonsmoking women with adenocarcinoma.
GSE114269 represents the data comparing medullary
breast carcinoma (MBC) with non-medullary basal-like
breast carcinoma (non-MBC BLC) among 48 patients
[25]. These two datasets were selected to show whether
our method can be useful in genotype and phenotype
classification in various cases of small sample sizes and
large feature sets.
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The PPI network data were derived from PICKLE
(Protein InteraCtion KnowLedgebasE) [26], which are
metadata that integrate human PPI from various open
sources through gene ontology information. The eQTL
data were obtained from GTEx Analysis V7 (dbGaP Ac-
cession phs000424.v7.p2) [27]. For accurate data predic-
tion, eQTL data were selected based on tissue specificity.
For example, lung eQTL data was selected for the first
dataset, and breast tissue eQTL data for the second.

The data were preprocessed for consistent nomencla-
ture of SNPs and genes in data of various types. Data
with more than 10% missing values were removed from
SNPs, data with less than 10% missing values were im-
puted with the most frequent value or the mean value,
and only SNP data with minor allele frequency (MAF)
greater than 0.1 were used.

Prediction analysis

There is currently no typical method of genotype—
phenotype association for data with a small sample size
and a large number of features. We compared the fol-
lowing methods to verify the feasibility of our approach.
In comparison experiments, the method developed in
this paper was named GSPLS (Group lasso and SPLS
model). The detailed implementation process of this
method can be viewed in the section “Methods” and the
Supplementary Information.

1) The method GGLM (Group lasso and Generalized
Linear Model) differs from GSPLS in that multiple re-
gression rather than SPLS is used to associate SNP layers
with gene layers, which allows us to verify the effect of
gene-gene association while considering intra-omics
association.

2) The method NETAM [15] involves multi-staged
analysis, in which gene clustering are absent. Each SNP
group was defined by the SNPs within the transcribed
region of a gene, and a large three-layer network is
established based on all the data and subjected to direct
multiple regression with lasso. This method does not
cluster SNPs and genes, and can be used to verify the ef-
fect of inter-omics association without gene associating
and clustering. NETAM consists of two parts: Sparse
Regression and Stability Selection. There are two user-
defined parameters T and 7, in this method (my,:
threshold for stability selection, T: total number of ran-
dom samples). These two parameters serve the Stability
Selection part. However, due to our small sample size,
Stability Selection cannot be carried out, so we test
NETAM without the benefits of stability selection, where
lasso and L1-regularized logistic regression are employed
with 5-fold cross-validation.

3) The method mixOmics [28] involves multi-omics
integration, in which SNP and gene data are used to in-
dependently establish prediction models, and predictions
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are integrated to generate the final output. This method
ignores SNP-gene association and allows us to verify the
effect of omitting inter-omics association, but it fails to
analyze the inter-omics pathway relationship.

Our method was compared to the above three ap-
proaches on GSE33356 and GSE114269 datasets. Be-
cause it was a dichotomous classification, receiver
operating characteristic curves were used for comparison
and explanation. Figure 1 shows the area under curve
for the four methods.

As shown in Fig. 1, our method achieved better results
on both datasets. The performance of GSPLS was signifi-
cantly improved over that of GGLM, indicating that intra-
omics associations should be considered in the analysis to
better fit real biological systems. Both GSPLS and GGLM
with gene network clustering showed superiority over
other methods, indicating that clustering and screening
gene data followed by taking the average are suitable for
processing data from small samples. The NETAM method
showed the worst performance, possibly because it is not
suitable for small samples, but it provides guidelines for
inter-omics pathway analysis. It has been documented that
when analyzing SNP-gene-phenotype associations, this al-
gorithm is suitable when the sample size reaches 500. In
the case of a small sample, it is ineffective in regression.
The result of mixOmics was similar to that of GGLM, es-
pecially on the second dataset. In our test, it sometimes
even outperformed GGLM, but this method ignores inter-
omics associations.

In this experiment, we found that the results of the
last three methods were unstable with small sample
sizes. Overall, GSPLS was superior to GGLM, mixOmics,
and NETAM with small sample sizes.

Through the selection of gene clustering and correspond-
ing SNP clusters, we not only grouped the sample features,
but also screened the grouped features through Group
Lasso, so that the feature quantity contained in each block
was sharply reduced, which not only reduced the sample
size required by our algorithm, but also reduced the com-
putation time. We tested the four methods GSPLS, GGLM,
NETAM and mixOmics on GSE33356 data with 10 re-
peated experiments respectively on a PC with Intel Core i7-
10510U processors, 16 Gb RAM, and NVIDIA GeForce
MX330 video card. The computation time of GSPLS was
66.213 + 3.905s, GGLM was 138.527 + 12.149s, NETAM
was 712.141 + 89.491 s and mixOmics was 47.065 + 4.135
s. Although the GSPLS time is longer than the mixOmics
time, the mixOmics cannot reflect the pathway correlation.
In the study of the SNP-gene-phenotype pathway, our
method is the most time-saving.

Sample sizes analysis
In the study of three-way association analysis among ge-
notypes, gene traits and phenotypes, large number of
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Fig. 1 ROC curves to compare the performance of GSPLS with association mapping methods such as GGLM, NETAM, and mixOmics. The left one
is the result of analysis on GSE33356, and the right one is the result of analysis on GSE114269. The legend of each figure contains the AUC value
of each method on the data. The AUC value of our method is the highest, indicating that our method is superior to other methods

samples are often needed. For example, NETAM [15]
showed significantly better performance (larger area
under the curve) for N>200, but GSPLS only needs
dozens of samples.

To validate the effect of sample size, we randomly se-
lect samples N =80, 60, 40, 30, 20, from the data set
GSE33356, and N=48,40,30,20, from the data set
GSE114269 (Because this data set contains only 48 sam-
ple sizes). The positive and negative sample sizes are

guaranteed to be equal during extraction. When sample
size is less than 20, Group Lasso could not achieve ef-
fective regression for these two data sets. Therefore, the
minimum sample size we choose is 20. In Fig. 2, we
show receiver operating characteristic (ROC) curves that
show true positive and false positive rates of the results
produced by GSPLS with different sample sizes. The re-
sults show that the general trend of AUC value de-
creases with the decrease of sample size. Although this
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Fig. 2 ROC curves to compare the performance of GSPLS with different sample sizes. The left one is the result of analysis on GSE33356, and the
right one is the result of analysis on GSE114269. The legend of each figure contains the sample sizes and the AUC value of each sample size on
the data. With the decrease of the sample size, the corresponding AUC value also showed a decreasing trend
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method is suitable for small sample data, unlike NETA
M, which requires a sample size of more than 200, it
also requires a sample size of more than 20.

Pathway analysis

We analyzed the generated pathways to further demon-
strate the effectiveness of our method. The weight of the
edge between each gene and relevant SNP in the cluster
was obtained by SPLS, and the weight of the edge con-
necting disease and the relevant gene was obtained by
group lasso. The two layers of weights were multiplied
to yield the weight value of a pathway (if no edge was
present, then the edge weight was set to zero), which we
name Pathway Score (PS) to reflect its importance.

Using GSE33356 as an example, we ranked the gener-
ated associations by PS, and aligned the top 50 pathways
with the lung cancer-associated SNPs and genes in the
PhenoScanner database [29], which contains 137
genotype-phenotype association datasets, as well as asso-
ciation catalogs such as NHGRI-EBI GWAS, NHLBI
GRASP, and dbGaP. Alignment against PhenoScanner
reflects the distribution of SNPs or genes in the path-
ways obtained by this method (Fig. 3).

As shown in Fig. 3 and Table 1, We found that the
percentage of SNPs or genes present in PhenoScanner
decreased as the total number of PS ranks increased,
mainly because when numerically solving pathway rela-
tionships, SNPs or genes with the same trend are ran-
domly interchanged during data sparsification. With the
decrease of PS, the total number of SNPs and genes with
the same trend increased, the possibility of interchanging
SNPs or genes matching with the database increased,
and thus the percentage of such SNPs or genes
decreased.

Discussion
We addressed genotype—phenotype association based on
multi-omics data for small samples. In the case of data
with numerous features, there are two commonly used
approaches: dimension reduction and feature selection.
However, the former may lead to the inability to analyze
features before dimension reduction. Therefore, sparsifi-
cation and existing associations were used to screen and
reduce the number of features. The greatest contribution
of this paper is the ability to group genes into clusters
according to their network characteristics while signifi-
cantly reducing the number of features in each cluster.
The clustering and effective screening of gene networks
drastically reduces the number of features of the three-
layer network, making it suitable for application to data
with small sample sizes.

Data is a key in multi-omics studies. However, the fol-
lowing two conditions generally occur to the multi-
omics data. One is that with the increase of the types of
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Fig. 3 Double ordinate statistical analysis for the generated
pathways. The abscissa represents the number of the pathways
ranked by PS. The vertical axis of the red line on the left represents
the proportion of SNPs or genes matched in the PhenoScanner
database, while the vertical axis of the blue line on the right
represents the number of SNPs or genes matched in the
PhenoScanner database. For example, SNPs or genes in 6 of the top
10 pathways were present in PhenoScanner, the proportion is 0.6

omics data, the multi-omics data is not easy to obtain
and the data sample size is not large. In this paper, such
problems can be solved in the case of small samples, the
advantage is that it can reflect the association relation-
ship of each omics, it makes the biological mechanism
clearer, but the accuracy is not high. The other is that
when the sample size is large, the number of omics types
is often small, such as GWAS data. Although GWAS
analysis has a certain accuracy, it is generally analyzed
by statistical methods without understanding the in-
ternal biological mechanism. How to achieve the analysis
effect of multi-omics data, when we use the data with
sufficient sample size and insufficient omics types. This
will be the direction of our next research.

Our method has obvious advantages, but the data rely
on the PPI network and eQTL association. Therefore,
only associations in an SNP/CNV-gene-phenotype
three-layer network can be processed, rather than any
three omics, such as SNP, methylation, and phenotype.

When clustering with SPICi, although we can select
the ranges of the three clustering hyperparameters ac-
cording to certain criteria, unknown factors still
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Table 1 PS values of the top 20 pathways

SNP Gene PS Presence in PhenoScanner
1 rs12419692  BAGS 0.0971  Yes
2 151794429 F2 0.0887  Yes
3 rs7615840  THBD 0.0854  No
4 rs363082 THBD 0.0810 No
5 rs4150581 BAGS 0.0784  Yes
6 rs7615840 PROS1 00747 Yes
7 15751141 XRCC6 00574 Yes
8 rs5751141 ZHX1 00544  No
9 rs5758464 HGFAC 0.0500  Yes
10 151794429 SLC30A2 0.049% No
11 1510503418  WWC1 0.0485  Yes
12 154346818 METTL27 0.0389 No
13 1512467784  ERBB4 00332 VYes
14 rs11250130  MTMR6 00329  VYes
15 152470615 HIF3A 0.0303 No
16 14824079 HNRNPDL ~ 0.0298  No
17 rs6502780 PSMES8 0.0253  Yes
18 rs4346818 NCAPH2 0.0247 No
19 rs738202 VEGFD 00245 No
20 rs1331057 FGG 0.0237 No

influence the selection of range limits, and this method
is highly sensitive to the choice of hyperparameters. We
also attempted to replace SPICi clustering with fuzzy
clustering, which showed results similar to sampling
multiple gene clusters with replacement and was ex-
pected to achieve better clustering. However, fuzzy clus-
tering requires specification of parameters, including
cluster number. Inappropriate initial parameters may
affect clustering accuracy, and the real-time performance
of the algorithm can be compromised by a large sample
dataset and feature set. These problems must be ad-
dressed in future studies.

Conclusion

In summary, in this study we used SPICi and Group
Lasso methods to perform gene cluster and screen, ob-
tained the SNP corresponding to gene in each cluster
through eQTL data, established the association relation-
ship between SNP and gene by SPLS, and formed block
together with phenotype. Finally, these blocks are inte-
grated by taking the average. Compare with state-of-the-
art methods, our method achieved better results on
GSE33356 and GSE114269 datasets, and it consumes the
least time. To validate the effect of sample size, we ran-
domly select samples from these two datasets, we found
that our method was effective for the sample size greater
than 20. And we ranked the generated associations by
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PS, SNPs or genes in 6 of the top 10 pathways were
present in PhenoScanner, as were those in 10 of the top
20 pathways. Collectively, our method can effectively
solve the prediction problem in multi-omics data of
small sample, and provide valuable resources for further
studies on the fusion of more omics data.

Methods
Algorithms
Multi-staged analysis ignores intra-omics correlations
and requires a large sample size, whereas meta-
dimensional analysis ignores inter-omics associations.
To address this issue, we propose an approach to
genotype-phenotype association for small samples based
on multi-omics data. The model is illustrated in Fig. 4.
Diseases are not caused by the effects of one or more
genes [30-32], but by gene interactions. A protein—pro-
tein interaction (PPI) network can reflect gene—gene as-
sociations, but this network is unweighted. Gene
expression data can be used to calculate the Pearson
correlation coefficient between genes, which serves as
the weight of an edge, and this can be combined with a
PPI network to produce a weighted gene network.
Closely related genes are more likely to interact and im-
pact on a phenotype, so we performed speed and per-
formance in clustering (SPICi) on a gene association
network to obtain multiple gene clusters (see section
“Clustering method selection and hyperparameter set-
ting”) [33]. Due to the large number of genes, and thus
the many obtained gene clusters, group lasso regression
can be performed on gene clusters and phenotypes.
Gene clusters with nonzero coefficients are most likely
to have impacts on a disease, and this regression serves
the purpose of gene cluster screening. SNP clusters cor-
responding to the selected gene clusters can be identified
by expression quantitative trait loci (eQTL) that control
the expression level of quantitative trait genes. It is im-
portant to note that the same SNP may occur in mul-
tiple SNP clusters. In this way, correlated SNP clusters,
gene clusters, and phenotypes are combined in a three-
layer network, which is called a block. The SNP and
gene layers can be linked by sparse partial least squares
(SPLS) [14], and gene layers and phenotypes by logistic
regression. The prediction and analysis of blocks are
based on three-layer associations (see section “Three-
layer network construction”). The predictions of blocks
are integrated by taking the average. The flowchart is
shown in Fig. 5. Additional details are provided in the
Supplementary Information.

Clustering method selection and hyperparameter setting

Clustering algorithms play an important role in the ana-
lysis of biological networks and can reveal their func-
tional modules. Most clustering algorithms perform well
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of rapid dimensionality reduction

Fig. 4 Model of genotype-phenotype association based on data integration algorithm. Red oval represent gene cluster, and blue oval represent
SNP cluster. Gene association network is clustered to generate gene clusters. SNP clusters corresponding to the selected gene clusters can be
identified by eQTL data. Each gene cluster, correlated SNP cluster, and phenotype are combined in a three-layer network, achieving the purpose

SNPs

genes

phenotypes
— intra-omics associations

inter-omics associations

on biological networks of moderate size, but they be-
come impractical on larger networks due to low speed
or high network complexity. According to the analysis of
Jiang et al. for each clustering methods including Mar-
kov cluster (MCL) [34], molecular complex detection
(MCODE) [35], Cfinder [36], the memory-constrained
unweighted pair group method using arithmetic averages
(MCUPGMA) [37], and dense module enumeration
(DME) [38], SPICi [33] was selected to cluster the gener-
ated gene network. SPICi uses a heuristic approach to

greedily build clusters, which is orders of magnitude fas-
ter, and was the only method to successfully cluster all
test networks in a short period of time [33]. Its three
hyperparameters are minimum cluster size, minimum
support threshold, and minimum cluster density, which
jointly affect the number of clusters and the number of
elements in each cluster. To facilitate subsequent ana-
lyses, the final numbers of clusters and elements should
fall in appropriate ranges. If there are too many elements
in a cluster, during group lasso calculation the goal-

SNP cluster 1 SNP cluster 2 [ e SNP cluster n
§ eQrl eQTL § eQrl
Gene expression i i ;
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ene-ibene t— Gene cluster 1 i Gene cluster 2 i ces ! Gene cluster n T
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PPI B . T o I """"""""" T
phenotype + phenotype L et phenotype

Fig. 5 Flowchart of genotype-phenotype association based on data integration algorithm. The steps of this method in this figure can be

take the average of all the results

described as follows: 1) PPI network and gene expression data are used to generate a weighted undirected gene association network, which is
clustered by SPICi to generate gene clusters; 2) Gene clusters are screened by group lasso; 3) SNP clusters corresponding to the selected gene
clusters are obtained from eQTL data; 4) SNP clusters, correlated gene clusters, and phenotype are combined in a three-layer network block,
which is used for prediction and analysis through three-layer associations; 5) Results from various blocks are integrated by taking the average to
produce the final output
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Table 2 The hyperparametric settings on the two data sets
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minimum cluster density

minimum support threshold minimum cluster size

GSE33356 0.1
GSE114269 0.2

04 5
05 5

oriented error caused by a given penalty parameter is
greater for a group with more elements. If there are too
few elements in a cluster, the effect of gene association
on disease cannot be effectively analyzed. Generally,
gene data were clustered into 100-200 clusters, and each
cluster containing between 5 and 100 genes. We further
analyzed the settings of the three hyperparameters as
they have different characteristics.

The minimum cluster size is used to determine the in-
clusion/exclusion of a cluster by comparing the number
of genes involved in it. If the number of elements in a
cluster is greater than the minimum cluster size, then
the cluster is included. If the minimum cluster size is
too small, then it fails to capture the associations be-
tween genes, and the opposite may result in the inappro-
priate deletion of clusters. According to tests on
different datasets, the minimum cluster size was set to
the interval of [13, 14].

In an undirected graph G = (V, E), for any vertex u and
connecting vertex set Sc V, support is defined as

support(u,S) = ZvesW”v"’

i.e., the sum of weights of all edges connected to ver-
tex u, where w, , is the weight of any edge (u,v) € E. If
the support of a vertex is less than the minimum support
threshold, then the vertex is discarded. The weight of an
edge is represented by the Pearson correlation coeffi-
cient of two vertex vectors; a coefficient can be positive
or negative, and coefficients can cancel each other dur-
ing the calculation of support. Therefore, the absolute
value of the Pearson correlation coefficient was used, so
w, <€ (0,1]. Generally, the absolute value of Pearson
correlation coefficient is less than 0.2, which indicates
very weak correlation or no linear correlation, so we
only take the edges whose absolute value of Pearson cor-
relation coefficient is greater than 0.2 to form the gene-
gene network. If a vertex is only linked to a gene with
weak association, then additional noise may be intro-
duced, so it is required that if a vertex is only linked to
genes with weak association, then two or more such
edges should be present, so the lower limit of the mini-
mum support threshold was set to 0.4. In tests with vari-
ous datasets, when the minimum support threshold
value was greater than 0.7, the total number of genes be-

came insufficient to reflect the impact of gene
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genes

@ phenotypes
— intra-omics associations
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Fig. 6 Model of genotype-phenotype association based on biological network. The left one is the schematic diagram without considering the
intra-omics associations, and the right one is the schematic diagram used in our method. It contains both intra-omics associations and inter-
omics associations, which can better reflect the biological reality. Without considering the intra-omics associations, the model cannot truly reflect
the biological reality, and without considering the inter-omics associations, it cannot well reflect the whole biological system
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association on disease. Therefore, the minimum support
threshold was set to the interval of [0.4, 0.7].

Cluster density is defined as the sum of edge weights
divided by the total number of possible edges, and it is
used to reflect the density of subgraphs. It is calculated
as

. ZuyESW%V
density(S) R

As shown in the formula, too small a density increases
the number of elements in each cluster and decreases
the total number of clusters. When the density of a clus-
ter is less than the minimum cluster density, SPICi clus-
ters it into two or more clusters. Therefore, the
minimum cluster density directly affects the total num-
ber of clusters and has the greatest impact on clustering
among the three hyperparameters. Based on comparative
experiments, the minimum cluster density was set to
[0.1, 0.6], and the parameter was tested in increments of
0.1 during the experiment. Through testing, we deter-
mined the hyperparametric settings of the two data sets
in our paper, as shown in Table 2.

Three-layer network construction

Gene clusters closely related to a disease can be selected
by group lasso [39, 40]. The causal link from these gene
clusters to a disease is established by related differential
sites in the genome. The corresponding SNP clusters
can be obtained by eQTL data. Each SNP cluster as well
as the correlated gene cluster and phenotype can be
combined in a three-layer network block. After dividing
into blocks, the number of SNPs and gene features in
the three-layer structure decreases drastically, as does
the sample size required for effective regression, which
facilitates regression of numerous features with small
sample size. When analyzing the three-layer structure of
each block, although interlayer regression alone can pre-
dict some pathway relationships, it does not consider
intra-omics associations, and it deviates from biological
reality. However, to only consider intra-omics associa-
tions and ignore inter-omics pathway correlations fails
to reflect the whole biological system and represents
only the local situation (Fig. 6). Therefore, when we look
at the associations between SNPs and genes, the associa-
tions of individual elements between layers (left part of
Fig. 6) were expanded to intra- and inter-layer associa-
tions (right part of Fig. 6). That is, the many-to-one as-
sociations ~ were  broadened to  many-to-many
associations. Accordingly, the solution was altered from
multiple regression to SPLS, which incorporates a pen-
alty function in PLS [14]. The principle of PLS is as fol-
lows. With g dependent variables {yi,...,y;} and p
independent variables {x;,...,x,} [41], the statistical
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relationships between dependent and independent vari-
ables can be studied by observing # sample points, which
constitute the data matrices X(n x p) and Y(#n x q) of in-
dependent and dependent variables, respectively. PLS re-
gression extracts principal components ¢ and u; from X
and Y, respectively. For regression analysis, ¢; and u;
should carry as much information as possible of the data
they represent. After extraction of the first set of princi-
pal components ¢; and u;, PLS performs regression of X
on t; as well as Y on u;. If the regression equations are
sufficiently accurate, then the algorithm is terminated.
Otherwise, a second round of component extraction is
performed using the residual information after removing
the variance of X and Y explained by #; and u;, respect-
ively. This process is repeated until satisfactory accuracy
is achieved. SPLS combines the advantages of principal
component analysis, canonical correlation, and linear re-
gression, and effectively solves the problems of ineffect-
ive regression and multicollinearity among features due
to fewer samples than features. In order to assess the
impact and usefulness of the single steps, GSE33356 is
used as an example data to analyze the intermediate re-
sults of each step in the Supplementary Information.
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