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Simple Summary: Pancreatic adenocarcinoma is predicted to be the 2nd cause of death by cancer in
Western Countries in 2023. Most patients are diagnosed at an advanced stage for which chemotherapy
is the main treatment. In this study we developed through an innovative approach, a simple nine
genes blood RNA-based signature that predicts sensitivity to gemcitabine, one of the main regimens
in combination with nab-paclitaxel or alone in less fit patients.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second cause of cancer
death by 2022. For nearly 80% of patients, diagnosis occurs at an advanced, nonsurgical stage,
making such patients incurable. Gemcitabine is still an important component in PDAC treatment
and is most often used as a backbone to test new targeted therapies and there is, to date, no routine
biomarker to predict its efficacy. Samples from a phase III randomized trial were used to develop
through a large approach based on blood-based liquid biopsy, transcriptome profiling, and machine
learning, a nine gene predictive signature for gemcitabine sensitivity. Patients with a positive
test (41.6%) had a significantly longer progression free survival (PFS) (3.8 months vs. 1.9 months
p = 0.03) and a longer overall survival (OS) (14.5 months vs. 5.1, p < 0.0001). In multivariate
analyses, this signature was independently associated with PFS (HR = 0.5 (0.28–0.9) p = 0.025) and
OS (HR = 0.39 (0.21–0.7) p = 0.002).
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth leading cause of cancer death
in Western Countries and if no action is taken, it will rise to be second in 2022. Despite recent
advances in chemotherapy regimens, the survival rates of PDAC remain very low, around 7% at
5 years, while survival now reaches 87% for breast cancer [1,2]. This is mainly due to a late diagnosis,
mostly at the metastatic stage, and the important chemoresistance of the tumor. While the therapeutic
options have slightly broadened, there is no efficient predictive biomarker to stratify patients [3].
PDAC treatment is based on few regimens of chemotherapies: Folfirinox (median OS = 11.1 months [4])
and gemcitabine/nab-paclitaxel (median OS = 8.5 months [5]) or, for unfit patients, a single drug
regimen with gemcitabine or 5-fluorouracil (5-FU) (median overall survival; OS = 6.8 months [4]).
Gemcitabine is, therefore, still an important component in PDAC treatment and is most often used as a
backbone to test new targeted therapies. There is, to date, no routine biomarker to predict gemcitabine
efficacy. Human equilibrative nucleoside transporter 1 (hENT1), encoded by the SLC29A1 gene,
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the transmembrane gemcitabine transporter, appeared to be the most promising predictive biomarker
for gemcitabine sensitivity, but the only immunohistochemistry antibody with predictive properties
is not commercially available [6,7]. Other genes involved in the gemcitabine metabolism have also
been proposed such as dCK, RRM1/2, and CDA but these studies did not result in routine diagnostic
tests [8]. Furthermore, the microenvironment plays a major role in drug resistance. For gemcitabine for
instance, it was shown in a mouse model that tumor associated fibroblasts can uptake and metabolize a
significant part of the gemcitabine [8]. Similarly, it was recently shown that mast cells caused resistance
to gemcitabine/nabpaclitaxel by reducing apoptosis following activation of the TGF-β signaling [9].
While these biological features of the tumor are critical to drug sensitivity/resistance, their assessment
by tissue-based tests (i) requires biopsies or surgical specimens and (ii) ignores spatial/temporal
tumor heterogeneity, as multiple sampling is classically not performed. The failure of the CO-101
biomarker-based clinical trial to meet its endpoint because of ineffective stratification demonstrates the
importance of these two issues [10].

To date, blood-based liquid biopsy has not become part of the routine workup in PDAC,
but its potential applications are rapidly growing. RNA- or DNA-based liquid biopsy is less
invasive and could turn conventional research into therapeutically actionable molecular alterations.
In addition, it was shown to have a prognostic value and allowed the early prediction of relapse [11].
However, today, circulating tumor DNA (ctDNA) can only be detected in half of patients, mostly because
the sensitivity of the technique is still too low. In contrast, whole blood RNA-based signatures that
capture tumor-induced changes in the circulating transcriptome may prove useful, especially in tumor
types with a low level of ctDNA [12].

The goal of this study was to develop a blood RNA-based signature to predict gemcitabine
sensitivity in advanced PDAC. Blood samples collected during a prospective multicenter randomized
double-blind placebo-controlled phase III study that evaluated the efficacy and safety of
Masitinib in combination with gemcitabine in patients with advanced/metastatic PDAC were used
(ClinicalTrials.gov Identifier: NCT00789633) [13]. A summary of the clinical and biological data is
presented in Tables 1 and 2.

Table 1. Multiple regression analysis of overall survival factors by multivariable analysis.

Analyze Univariate Multivariate

Result HR (95% CI for HR) p-Value HR (95% CI for HR) p-Value

GE score OS + prediction 0.31 (0.17–0.56) 0.000095 0.39 (0.21–0.7) 0.002
CA 19–9 (U/mL) 1 (1–1) 0.28
Albumin (g/L) 0.97 (0.94–1) 0.16

QLQ-C30 1 (1–1) 0.0027 1.02 (1.0–1.04) 0.015
Body mass index 0.98 (0.92–1) 0.5

ECOG PS 1.8 (0.96–3.2) 0.067
Monocyte count (per µL) 2 (0.9–4.6) 0.09

Tumor localization
Head 0.86 (0.51–1.5) 0.59
Body 1.1 (0.62–1.9) 0.81
Tail 1.5 (0.85–2.7) 0.16

Clinical stage 0.34 (0.17–0.68) 0.0024 0.41 (0.2–0.83) 0.014

Abbreviations: QLQ-C30; European Organization for Research and Treatment of Cancer (EORTC) Quality of Life
Questionnaire Core 30 item global health status. GE; gene expression. CA19–9; carbohydrate antigen 19–9. ECOG PS;
Eastern Cooperative Oncology Group Performance Status.
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Table 2. Multiple regression analysis of progression free survival factors by multivariable analysis.

Analyze Univariate Multivariate

Result HR (95% CI for HR) p-Value HR (95% CI for HR) p-Value

GE score PFS + prediction 0.55 (0.32–0.95) 0.032 0.5 (0.28–0.9) 0.025
CA 19–9 (U/mL) 1 (1–1) 0.47
Albumin (g/L) 1 (0.96–1) 0.81

QLQ-C30 1 (1–1) 0.038 1.02 (1.0–1.04) 0.026
Body mass index 0.99 (0.93–1.1) 0.76

ECOG PS 2 (1–3.8) 0.045 1.6 (0.8–3.1) 0.17
Monocyte count (per µL) 0.73 (0.29–1.8) 0.49

Tumor localization
head 1.2 (0.69–2.1) 0.52
body 1.1 (0.64–1.9) 0.7
tail 1.5 (0.84–2.8) 0.16

Clinical classification 0.7 (0.35–1.4) 0.32

Abbreviations: QLQ-C30; European Organization for Research and Treatment of Cancer (EORTC) Quality of Life
Questionnaire Core 30 item global health status. GE; gene expression. CA19–9; carbohydrate antigen 19–9. ECOG PS;
Eastern Cooperative Oncology Group Performance Status.

2. Results

Gene expression analyses were established on peripheral blood cell samples collected before the
start of therapy (naive patients). Using a next-generation sequencing-based transcriptomic analysis,
we selected 62 differentially expressed genes. It is worth noting that genes described to participate
in gemcitabine metabolism in tumors such as SCL29A1 (Solute Carrier Family 29 Member 1-hent1),
CDA (Cytidine Deaminase), or dCK (Deoxycytidine kinase) were expressed but not differentially in this
comparative study. Then, the validation of these putative biomarkers was transferred to a standard
and affordable quantitative real-time PCR workflow; finally, an RNA signature was established.

Quantitative real-time PCR analyses were performed on 62 genes of interest and two housekeeping
genes. Statistical modelling was done on the Delta.Cp (DCp) values according to the method
described by Livak and Schmittgen [14]. The cox model-based selection provided two separate
RNA-blood signature based on nine distinct genes found to be significantly associated with
prognosis and they presented interesting molecular features. In these two signatures (OS and
PFS), six genes are associated with the OS: ABCC1 (ATP Binding Cassette Subfamily C Member 1),
ARL4C (ADP Ribosylation Factor Like GTPase 4C), LYN (LYN Proto-Oncogene, Src Family Tyrosine
Kinase), NME4 (NME/NM23 Nucleoside Diphosphate Kinase 4), PPIB (Peptidylprolyl Isomerase B),
UBE2H (Ubiquitin Conjugating Enzyme E2 H). On the other hand, five genes are associated with
the PFS: ARL4C, NME4, ALDOA (Aldolase, Fructose-Bisphosphate A), GAB3 (GRB2 Associated Binding
Protein 3), and transporters like SLC35E2B (Solute Carrier Family 35 Member E2B). This gene set composed
of nine unique genes was used to build two GE Scores: one for OS prediction and one for PFS prediction.

The predictive value of the two blood-based RNA signatures allowed patient stratification in two
groups whose characteristics at baseline were fairly comparable between those with a positive test (GE+)
and those with a negative test (GE-) except for a higher proportion of patients with a performance status
at 1 and slightly more advanced tumors in the GE-OS group (Tables S2 and S3). Patients with a positive
PFS test (GE + PFS) (41.6%) had a significantly longer progression free survival ((3.8 months (95%
CI = 3.5–7.9 months) vs. 1.9 months (95% CI = 1.8–3.8 months), HR = 1.8 (95% CI = 1–3.1), p = 0.03)).
Patients with a positive OS test (GE + OS) had a significant longer overall survival (14.5 months
(95% CI = 10.6–19.6 months; 1-year survival rate = 65%) vs. 5.1 months (95% CI = 4–7.4 months;
1-year survival rate = 12%), HR = 3.2 (95% CI = 1.8–5.7), p < 0.0001) (Figure 1). The specificity
and the sensibility of the model were 74% and 81%, respectively, to predict overall survival under
gemcitabine treatment.
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Figure 1. Kaplan–Meier plots for both progression free survival (PFS) (left side) and overall survival
(OS) (right side). The black curve identifies the patient whose blood-based transcriptomic profile is
favorable to gemcitabine treatment as a 1st line therapy. The red curve identifies the patient whose
blood-based transcriptomic profile is unfavorable (a low response and risk of potential toxicities)
to gemcitabine treatment as a 1st line therapy.

At last, contingency testing of GE score with clinical and tumor characteristics (Tables 1 and 2)
did not reveal any statistically significant associations. In multivariate analyses, the GE + OS and the
GE + PFS were independently associated with a prolonged OS and PFS, respectively, in a statistically
significant manner.

3. Discussion

While this study is exploratory with a reduced number of patients, it used clinical data and
samples from a large multicenter registered trial to ensure good quality, homogeneity, and minimal
bias. As this study included only advanced patients naive of treatment, the classical pathological
variables that have a very strong impact such as tumor differentiation, the N stage, the R0 status were
not available and therefore not included. Yet, the most important clinical variables for advanced
patients (metastatic status, performance status, albumin level, etc.) were included in the multivariate
analyses to ensure that the value of the GE score was independent of them. This study paves the way
for the use of blood-based RNA signatures that currently remain uncommon in PDAC. Sakai et al.
reported a diagnostic test with a similar approach, but this is the first report of a blood-based predictive
signature [15]. It will require to be validated on an external cohort and on patients that did not receive
gemcitabine to assess whether the GE score only has a predictive value or also carry a prognostic value,
potentially broadening its use to select patients fit for surgery for instance. The whole process has
been transferred toward a standard and affordable quantitative real-time PCR workflow that could
be easily integrated in daily practice as it only requires a 2.5 mL blood sample, that can be part of a
standard medical consultation. A tool that selects gemcitabine sensitive PDAC will be important in
clinical practice as it was demonstrated that gemcitabine was as efficient as 5-FU in combination with
nab-paclitaxel in advanced lesions. Similarly, in unfit patients for FOLFIRINOX, gemcitabine and 5-FU
are two valid options. Selecting good responders to gemcitabine could improve patient care and this
study demonstrate the feasibility of RNA-based blood test. Adapting this approach to other therapy
could lead to an integrated test to make personalized medicine a reality in PDAC.

Interestingly, the biomarkers expressed in the whole blood seem to mirror some of the known
metabolic pathways in solid tumors, strengthening our belief in their use as liquid biopsy biomarkers.
Gemcitabine is a pro-drug that requires cellular uptake and serial phosphorylation to become
pharmacologically active. One mechanism responsible for gemcitabine resistance is dysregulation of the
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proteins participating in gemcitabine metabolism pathways, including deficiency of the hENTs/Solute
Carrier Family, downregulation of the rate-limiting enzyme dCK, and upregulation of RRM1/RRM2 or
CDA [16,17]. While these classical “tumor cells” markers of gemcitabine sensitivity were not part of
the GE signature, one of the genes ABCB1, an efflux pump of the (ABC) transporter family proteins
was demonstrated to be involved in gemcitabine resistance [18]. In addition, blood mRNA that were
selected in this signature may or may not be directly derived from the tumor and there is no way in this
setting on human samples to assess their origin. They may very well also be the “blood transcriptomic”
consequence of a particular combination of tumor and stromal cells that are sensitive or resistant to
gemcitabine. Finally, there may be an important bias in the tumor mRNA that are released in the blood
based on their size, their stability, but also the associated protein, leading to discrepancies between the
tumor and the blood level.

4. Materials and Methods

4.1. Patients and Sample Collection

Blood samples were collected in PAXgene Blood RNA tube (PreAnalytiX, Hombrechtikon,
Switzerland) from a prospective, multicenter, randomized, double-blind, two-parallel group,
placebo-controlled phase III trial evaluating the safety and efficacy of masitinib plus gemcitabine
against placebo plus gemcitabine in chemotherapy-naive PDAC patients (ClinicalTrials.gov Identifier:
NCT00789633). Gemcitabine (1000 mg/m2) was administered according to standard clinical practice.
Treatments were administered until progression, intolerance, or patient withdrawal, with disease
progression assessed via CT scan according to the RECIST criteria every 8 weeks. In the event of a
treatment-related grade 3 or 4 adverse event (AE), treatment interruption or blinded dose reduction was
permitted according to the predefined criteria. The investigation was carried out in accordance with
the Declaration of Helsinki. The 60 patients, all from the gemcitabine arm (Clinical Trial NCT00789633)
were included for this study. A summary of clinical and biological data is presented in Tables S2 and S3.
Blood samples were collected prior to the initiation of gemcitabine treatment.

4.2. Gene Expression Analysis via qPCR

The total RNA from blood samples was extracted using a PAXgene Blood RNA Kit V2
(QIAGEN, Hilden, Germany) on an automated QIAcube according to the manufacturer’s protocols.
The RNA purity and quantity were controlled using a NanoDrop ND-1000 spectrophotometer, and the
RNA integrity was controlled with an Agilent 2200 TapeStation. The following quality requirements
were applied: RNA concentration >30 ng/µL, RNA absorbance (260/280 nm) > 1.8, and RINe > 6.5.
The gene expression analyses were performed using a LightCycler® 480 SYBR Green I Master in a 10 µL
final reaction volume according to the manufacturer’s protocol using a LightCycler® 480 System II
Instrument (Roche Diagnostics, Meylan, France). PCR Primers and assay were validated with the
procedure described in Table S1 and Section 4.

4.3. Statistical Analysis: Selection of Candidate Genes

Based on the DCp values, candidate genes were selected to test their significance using the
R software (R.3.1.2 64 bits), Bioconductor package v2.14, glmnet package v1.9-8, and maxstat
package v0.7-22. We performed a Cox-net regression using the glmnet package for gene selections.
Our methodology is based on the Elastic-Net method, first introduced by Zou and Hastie [19]. It is an
extension of the penalized methods of Lasso [20] and Ridge regression [21].

4.4. Statistical Analysis: Gene Expression-Based (GE) Score

Our data set was randomized with a training set made from 3/4 of the randomized data sets, and
1/4 left for the testing set. First, we selected iteratively a combination of genes (one signature) between
5 and 15 items. For each gene, a β coefficient was computed from fitting the Cox-net regression.
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The products of the β coefficient and the DCp values for each patient and for each gene selected in the
signature were summed to obtain a single value labelled as the index score. A mobile cut off around
the median value of the index score was calculated in order to maximize the p-value for a Log rank test
between the divided training set. Then the index score was calculated on the testing set and the p-value
from a Log rank test was stored. These steps were repeated 60,000 times. Then, the better model was
selected based on two criteria: firstly, based on the lowest p-value achievable by the log rank test on
the testing set; secondly, to prevent the selection of a model that would represent random variation
and yield the best fit we developed a ranking system. In this ranking system each gene was ranked by
calculating a score based on the frequency of appearance of each gene across the 60,000 signatures
computed. Using this score each signature is weighted by the sum of all its genes score generating a
signature ranking. This ranking had to be in the top 0.01% of all the computed signature to be vetted
by the algorithm.

4.5. Statistical Analysis: Univariate and Multivariate Analysis

Prediction from the GE score OS and the GE score PFS were added to the clinical covariates
from the Tables 1 and 2 and performed both univariate and multivariate analysis tested using Cox
proportional hazards. The p-value results are in Tables 1 and 2 and Tables S2 and S3 for univariates
analyses and multivariate analyses.

5. Conclusions

In this retrospective study we demonstrated on a prospectively collected biological collection the
validity of a rapid, cost-efficient, blood RNA-based test to predict gemcitabine sensitivity in advanced
PDAC patients. Today, nearly 80% of cancer patients do not have genetic profiling available at the
initial oncology consultation [22], and virtually none if we consider gene expression information.
Combining this test with germline testing for alterations in the homologous recombination genes could
represent the first step of precision medicine in PDAC care.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3204/s1.
Table S1: Supplementary Materials and Methods: Real-time PCR assay development, Table S2 Overall Survival
clinical and biological data, Table S3: Progression free survival clinical and biological data.
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