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Abstract: Nasopharyngeal carcinoma (NPC) is an epithelial tumor with high prevalence in southern
China and Southeast Asia. NPC is well associated with the Epstein-Barr virus (EBV) latent membrane
protein 1 (LMP1) 30 bp deletion by having its vital role in increased tumorigenicity and decreased
immune recognition of EBV-related tumors. This study developed an InnoPrimers-duplex qPCR
for detection of NPC blood circulating LMP1 30 bp deletion genetic biomarker for early diagnosis
and treatment response prediction of NPC patients. The analytical and diagnostic evaluation and
treatment response prediction were conducted using NPC patients’ whole blood (WB) and tissue
samples and non-NPC cancer patients and healthy individuals’ WB samples. The assay was able
to detect as low as 20 ag DNA per reaction (equivalent to 173 copies) with high specificity against
broad reference microorganisms and archive NPC biopsy tissue and FNA samples. The diagnostic
sensitivity and specificity were 83.3% and 100%, respectively. The 30 bp deletion genetic biomarker
was found to be a good prognostic biomarker associated with overall clinical outcome of NPC WHO
type III patients. This sensitive and specific assay can help clinicians in early diagnosis and treatment
response prediction of NPC patients, which will enhance treatment outcome and lead to better
life-saving.

Keywords: Epstein-Barr virus; latent membrane protein 1; 30 bp deletion NPC genetic biomarker;
real-time PCR; nasopharyngeal carcinoma

1. Introduction

Nasopharyngeal carcinoma (NPC) is a non-lymphomatous squamous cell carcinoma
that develops in the epithelial cells layer that line the surface of the nasopharynx [1,2]. NPC
is a distinct form of head and neck cancer in terms of its etiology, clinical presentation,
pathology, geographical and racial distribution and response to treatment [2,3]. Globally,
NPC is an uncommon malignancy with an occurrence rate of usually <1 per 100,000 person-
years, but it was reported with high incidence rate in certain regions such as southern China
(e.g., Cantonese), Southeast Asia (e.g., Sarawak Bidayuh), North Africa and the Arctic
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(e.g., Inuit, Alaska native). Approximately 71% of new NPC cases are registered in East
and Southeast Asia, and 29% are diagnosed in South and Central Asia and North and East
Africa [4]. There are three major etiological factors for NPC, including genetic susceptibility,
environmental and dietary factors and Epstein–Barr virus (EBV) infection [5–7]. The strong
association between NPC and EBV infection was reported in non-keratinizing carcinoma
(NKC), which is divided into non-keratinizing differentiated carcinoma (NKDC) (type II)
and non-keratinizing undifferentiated carcinoma (NKUC) (type III) [8,9].

The presence of a broad spectrum of clinical symptoms is often confusing in early
stages until patients have advanced stages, so early diagnosis of NPC is crucial in treatment
effectiveness and prognosis of NPC patients [2,10]. Clinically, at an early stage, NPC is
asymptomatic or has non-specific symptoms; more than 80% of NPC patients are first
diagnosed at a late stage (III or IV), frequently with metastasis of the cervical lymph node,
leading to decreased survival [11,12]. However, the patient history, physical examination
and imaging (CT and MRI) are critical in establishing the correct diagnosis; taking biopsy
samples using nasoendoscopy is considered the gold standard, definitive and confirmatory
approach for NPC diagnosis and prognosis [13–15]. Moreover, additional diagnostic tests
such as diagnostic imaging assessment and serology test are needed in establishing the
correct diagnosis [10].

A wide range of assays was utilized in the diagnosis of EBV. In the last 20 years,
several serological tests have been used as a screening tool for NPC [16,17]. The available
serological assays were reported with low sensitivity and specificity rates in detecting EBV
DNA and in diagnosing NPC patients, especially at early stages; hence, the development
of more sensitive and specific assay for early diagnosis of NPC patients was required [18].
In addition, other diagnostic tools to detect EBV-associated NPC such as and molecular
sequencing detection, immunohistochemistry and immunohistology methods been used,
but these assays are invasive and require at least 2 weeks to obtain the result [16,17]. Al-
though various methods have been advocated in assisting the diagnosis of EBV-associated
NPC, unfortunately, the sensitivity and specificity of these tests are known to be insuffi-
cient [16,17]. In contrast, serum or plasma level of EBV viral load was reported to be helpful
in monitoring of treatment effectiveness and predicts recurrence, prognosis and diagnosis
of NPC patients [19–22]. Currently in the clinical evaluation of EBV-associated tumor, the
molecular determination of EBV DNA, RNA and EBV viral load is widely used [23,24].

Various studies detected the presences of EBV viral load in NPC patients by targeting
different EBV latent genes such as LMP2, EBNA1 and Bam HI-W region of the EBV genome.
However, The Bam HI-W region was reported as an excellent target for highly sensitive PCR
because it was found in multiple copies (7–11 copies per genome) [25,26], the variability in
Bam H1-W copy numbers may add an imprecision in EBV quantification, and it may cause
inaccurate viral load detection [25]. Other literatures reported that EBNA1 is the only latent
protein expressed in all EBV-associated carcinomas [27–29]. However, EBNA1 does not
have a significant role in the transformation of vitro B cells and the pathogenesis of NPC as
reported by other studies [30,31]. In contrast, LMP1 is considered the primary oncogene of
EBV that responsible for the malignant phenotype in NPC, and the expression of LMP1
was reported to be higher than LMP2 in NPC. LMP1 played an important role in treatment
resistance, decreased survival and promote metastasis [32]. In addition, the LMP1 30 bp
deletion was reported to increase the tumorigenesis and decrease the immune recognition
of EBV-associated disease [33–35]. Due to urgent need for specific and sensitive tumor
markers for the early diagnosis and treatment response prediction of NPC, this study has a
particular interest in developing a qPCR assay for early diagnosis and treatment response
prediction of NPC patients based on detection of LMP1 30 bp deletion genetic biomarker.

The latent membrane protein 1 (LMP1) is one of the most important EBV latent
proteins because it has been shown to induce phenotypic changes in both epithelial cells
and B cells [36,37] and was reported to have an important role in NPC pathogenesis [38,39].
The significance of LMP1 in NPC tumorigenesis in vivo is confirmed by the observation
that LMP1 was expressed in 78% of NPC samples [36,40]. The region of LMP1 thought to
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be essential for oncogenesis is C-terminus, a hot spot region for mutations such as 30 bp
deletion that was reported as the most predominant deletion in C-terminus and was first
observed in NPC patients from southern China [36,41].

The 30 bp deletion has been examined, and it has been shown that 30 bp deletion
results in enhanced oncogenic behavior of infected cells and results in more aggressive EBV-
associated tumor phenotypes [35,42]. An association between LMP1 30 bp deletion and the
development of NPC was only observed in an Asian population, whereas no association in
Europe and North Africa was observed [35,43,44]. The LMP1 30 bp deletion appears to
be more predominant in NPC patients than in healthy individuals and in NPC-endemic
regions rather than non-endemic regions [35,44]. The detection of this mutation will help
in earlier diagnosis of NPC, particularly in early stages and suspected cases with higher
sensitivity and specificity comparing with available molecular assays. In addition, this
developed assay will help the clinicians in treatment response prediction, understand the
extent of treatment effectiveness, and follow-up monitoring of NPC patients.

To the best of our knowledge, all available molecular assays to detect 30 bp deletion
genetic biomarker were done using conventional PCR method, which are laborious, time-
consuming and less sensitive method. Several advantages of qPCR over conventional
PCR are well known, such as that it enables quantification, lower detection limit, higher
reliability of assay and higher sensitivity and specificity [45,46]. Therefore, the aim of this
study is to develop an analytic and diagnostic validated InnoPrimers-duplex real-time
PCR (qPCR) for early detection of NPC blood circulating LMP1 30 bp deletion genetic
biomarker with integration of amplification control for early detection of NPC and also for
treatment response prediction of NPC patients.

2. Materials and Methods
2.1. Archive NPC Biopsy Tissue and FNA Samples

A total of 25 extracted genomic DNA from NPC patients were used for reference
sequencing data and specificity analysis of the developed InnoPrimers-duplex qPCR. These
samples were provided by the Department of Medical Microbiology and Parasitology,
School of Medical Sciences, Universiti Sains Malaysia, Malaysia. The NPC archive biopsy
tissue samples were nominated as AB samples in this study.

2.2. Reference Microorganisms’ Genomic DNA

A total of 48 bacterial, fungal and virus genomic DNA from both clinical isolates and
ATCC (American Type Culture Collection) strains were used for specificity analysis. The
reference microorganisms’ genomic DNA samples were obtained from Molecular Research
Laboratory, Department of Medical Microbiology and Parasitology, School of Medical
Sciences, Universiti Sains Malaysia, Malaysia. A 20 ng/µL of genomic DNA from each
reference sample was used in this study unless specified otherwise.

2.3. Study Subjects

This current study involved 34 NPC patients who were enrolled in Hospital USM
between October 2017 and July 2020, which included 6 suspected and newly diagnosed
patients and 28 previously diagnosed NPC patients. The controls included 39 healthy
individuals and 36 non-NPC cancer patients. All NPC suspected cases were confirmed
by histopathological examination (HPE). The WHO NPC classification was used to deter-
mine the tumor pathological types [47]. The disease was restaged in accordance with the
American Joint Committee of Cancer (AJCC) TNM staging method, seventh edition [48].

2.4. Whole Blood and Tissue Samples

A total of 109 EDTA (Ethylenediamine tetraacetic acid) whole blood (WB) samples
from NPC cases (n = 34), non-NPC cancer patients (n = 36), healthy individuals (n = 39)
and seven NPC tissue samples cases were included in this study. The NPC biopsy tissue
samples from NPC cases were nominated as NB samples in this study.
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2.5. Extraction of Genomic DNA

DNA from patients and healthy individuals’ WB and NB samples were extracted using
the NucleoSpin® Blood and NucleoSpin® Tissue (MACHEREY-NAGEL GmbH & Co. KG,
Germany, Germany) DNA extraction kit. The DNA extraction procedure was performed
according to the manufacturer’s instruction with minor modifications to increase its yield
by eluting the DNA in 50 µL pre-warmed TE buffer. Prior to the final centrifugation at
11,000× g for 1 min; the column was incubated at room temperature for 1 min. Total DNA
was quantified using the Eppendorf BioPhotometer (Eppendorf Scientific, Inc., New York,
NY, USA) and stored at −20 ◦C until use.

2.6. Design of PCR Primers and TaqMan Probe

The primers and probe of 30 bp deletion NPC genetic biomarker were designed using
the IDT DNA PrimerQuest® webtool (https://sg.idtdna.com/Primerquest/Home/Index;
accessed on 12 June 2021) based on the nucleotide sequence of B95.8 prototype EBV
genome (GenBank accessions no.: V01555.2, from 169,474 bp to 168,163 bp), which was
retrieved from the National Center for Biotechnology Information (NCBI) database, and the
sequencing results of 25 NPC AB and FNA samples to design the oligonucleotide sequences.

The sequencing results were aligned with the B95.8 prototype EBV genome (reference
sequence) to identify the selected 30 bp deletion region, as shown in Figure 1. In this
study, the reverse primer to detect 30 bp deletion NPC genetic biomarker was assigned as
gap-filling mutant primer due to its location before and after 30 bp deletion location, as
shown in Figure 2. The sequences of primers and probes used are listed in Table 1.
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Table 1. List of primers, multi-points degenerative blocker and probes used in this study.

Target Gene Sequences (5′→3′ End) Source

LMP1 30 bp deletion

Forward primer GTCATAGTAGCTTAGCTGAAC This study

Gap-filling primer
(reverse primer) ACGGTGGCGGCGGTG This study

Multi-points
degenerative blocker

(reverse sequence)
CGGCMRTGGCGGCGVTR-PO4 * This study

Reverse probe
FAM-

ATCCACACCTTCCTACGCTGCTTTTGG-
BHQ_1

This study

IAC

Forward primer AAGGAGTTCTTCGGCACCA [49]

Reverse primer GGCGCTTGTGGGTCAAC [49]

Forward probe
Cy5.5-

TTCCTGCTATTCTCATTCGCATCCATGT-
IBRQ

[49]

* Oligonucleotide label M refers to A or C base, R refers to A or G base and V refers to A or C or G base.

2.7. Design of Non-Extendable Blocking Oligonucleotide

The non-extendable blocking oligonucleotide was designed based on standardized de-
sign rules by Morlan et al. with slight modifications [50]. In this study, the non-extendable
blocking oligonucleotide was assigned as a multi-points degenerative blocker because it
is a combination between blocking oligonucleotides and several degenerative bases. A
multi-points degenerative blocker was designed to complement the wild-type sequence.
Besides that, the addition of 3′ ends phosphorylated group aimed to inhibit 3′ exonucleases
activity and prevent the extension of wild-type templates DNA polymerase, indirectly
enhancing the PCR amplification of the mutant template. Four degenerative bases at 3′ end
and in the middle of the blocker sequence were used to cover all possible combinations of
WT nucleotide sequences.

The multi-points degenerative blocker was also designed to have a melting tempera-
ture higher than the qPCR cycling annealing temperature. The concentration of multi-points
degenerative blocker was greater than the concentration of gap-filling mutant primer. The
location of multi-points degenerative blocker was shown in Figure 2. The sequence of
multi-points degenerative blocker used is listed in Table 1.

2.8. Designing of Synthetic DNA

The synthetic double-strand DNA (dsDNA) or called gBLOCKs® Gene Fragments
for both LMP1 MT (mutant type, have 30 bp deletion; named gBLOCK MT) and LMP1
WT (wild-type, have 30 bp sequence region; named gBLOCK WT) were used as a positive
control for both MT and WT variants, respectively. The design of the gBLOCKs was based
on B95.8 prototype EBV genome (GenBank accessions no.: V01555.2, from 169,474 bp to
168,163 bp) and sequencing results of retrospective NPC AB and FNA samples.

The synthetic dsDNA for Internal Application Control (IAC) oligonucleotides was
designed by a previous study based on the fusion of 83–110 bp region of Entamoeba
histolytica HLY5mcl gene (Accessions no. Z29969.1) and Mycobacterium tuberculosis rpoB
gene (Accessions no. NC_000962.3:759807-763325) [49]. The IAC was incorporated to rule
out the false negative result.

2.9. Optimization of qPCR Master Mix

Optimization of InnoPrimers-duplex qPCR assay was conducted by testing the dif-
ferent concentration of target’s probe (100–400 nM), primers (100–500 nM), MT gBLOCK
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(20 pg–2 fg per reaction), WT gBLOCK (200 fg–20 ag per reaction) and IAC synthetic DNA
(20 fg–20 ag per reaction). Moreover, the ratios of gap-filling mutant primer:multi-points
degenerative blocker ranging from 1:4 to 1:120 were tested in the optimization process of
this developed assay. The optimal concentrations of synthetic DNA and oligonucleotides
were used in this developed qPCR assay.

2.10. Optimization of Thermal Cycling Condition

The PCR reactions was conducted according to Luminaris Probe qPCR master mix
(standard annealing temperature is 60 ◦C) with slight modification on annealing tempera-
ture (different temperatures were tested ranged from 55 ◦C to 61 ◦C). The optimal annealing
temperature were used in this developed qPCR assay.

2.11. Analytical Sensitivity Analysis

The analytical sensitivity was conducted using a 10-fold serial of MT gBLOCK DNA
templates (synthetic DNA) in the range of 1 ng/µL to 1 atto/µL as a template, as shown in
Table 2. InnoPrimers-duplex qPCR was performed in triplicates, using 2 µL of each dilution.
The limit of detection (LOD) was determined as the lowest amount of MT gBLOCK DNA
that could be detected by at least one of the triplicates. The number of DNA copies was
calculated based on an online tool developed by Andrew Staroscik from the URI Genomics
and Sequencing Centre (available at http://cels.uri.edu/gsc/cndna.html; accessed on 25
June 2021). The formula is as follows:

DNA copies number = ((DNA concentration (ng) × 6.022 × 1023))/((DNA template length (bp) × 1 × 109 (ng/g) × 650(g/mole of bp)). (1)

Table 2. Mean threshold value (Cq), coefficient of variation (CV) and standard deviation (SD) for duplex
developed InnoPrimers-duplex qPCR to determine the LOD of 30 bp deletion NPC genetic biomarker.

Concentration Copies
Number

Copies/mL Number of
Replicates

Number of
Positive

Developed
InnoPrimers-Duplex qPCR

Mean Cq SD CV%

2 ng 17,300,000,000 865 × 109 3 1 2.73 4.73 173.21

200 pg 1,730,000,000 865 × 108 3 3 11.02 0.37 3.31

20 pg 173,000,000 865 × 107 3 3 14.01 0.61 4.37

2 pg 17,300,000 865 × 106 3 3 18.11 0.25 1.36

200 fg 1,730,000 865 × 105 3 3 20.21 2.30 11.40

20 fg 173,000 865 × 104 3 3 24.11 0.97 4.03

2 fg 17,300 865 × 103 3 3 28.86 0.41 1.46

200 ag 1730 865 × 102 3 3 31.39 1.21 3.85

20 ag 173 8650 3 3 33.6 0.12 0.34

2 ag 17.3 865 3 1 39.36 1.11 2.81

200 zg 1.73 86.5 3 0 - - -

2.12. Analytical Specificity Analysis

The analytical specificity was conducted using 2 µL DNA from 21 fungal strains, 17 bacte-
rial strains, 5 CMV (viral load ranged between 702 IU/mL (intermediate) and 45,474 IU/mL
(high)) and 5 HPV (concentrations range 46 ng/µL–10 pg/µL), which were used as a template.
Details of the reference microorganisms’ genomic DNA are listed in Table 3. In addition, 12 of
AB and FNA samples from NPC patients were used to evaluate the analytical specificity of the
InnoPrimers-duplex qPCR as listed in Table 4.

http://cels.uri.edu/gsc/cndna.html
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Table 3. List of reference microorganisms’ genomic DNA used in this developed assay.

Microorganism (n = 48) Source Origin No. Tested

Result of LMP1 30 bp
Deletion NPC Genetic

Biomarker by the
InnoPrimers-Duplex

qPCR Assay

Aspergillus flavus Clinical isolate HUSM 1 Negative
Aspergillus fumigatus Clinical isolate HUSM 1 Negative
Aspergillus nidulans Clinical isolate HUSM 1 Negative

Aspergillus niger Clinical isolate HUSM 1 Negative
Aspergillus terreus Clinical isolate HUSM 1 Negative
Bacillus subtilits Clinical isolate HUSM 1 Negative
Candidaalbican Clinical isolate HUSM 1 Negative
Candida famata Clinical isolate HUSM 1 Negative

Candida glabrata Clinical isolate HUSM 1 Negative
Candidakrusei Clinical isolate HUSM 1 Negative

Candida lusitaniae Clinical isolate HUSM 1 Negative
Candida parapsilosis Clinical isolate HUSM 1 Negative

Candida rugosa Clinical isolate HUSM 1 Negative
Candida tropicalis Clinical isolate HUSM 1 Negative
Cladosporium spp. Clinical isolate HUSM 1 Negative

Corynebacterium diphtheria Clinical isolate HUSM 1 Negative
Cryptococcus neoformans Clinical isolate HUSM 1 Negative
Cytomegalovirus (CMV) Clinical isolate HUSM 5 Negative

Enterobacter cloacae Clinical isolate HUSM 1 Negative
Enterobacter sp. Clinical isolate HUSM 1 Negative
Escherichia coli ATCC (25922) HUSM 1 Negative

Fusarium oxysporum Clinical isolate HUSM 1 Negative
Fusarium proliferatum Clinical isolate HUSM 1 Negative
Haemophilus influenza ATCC (49247) HUSM 1 Negative

Human papillomavirus (HPV) Clinical isolate HUSM 5 Negative
Klebsiella pneumoniae Clinical isolate HUSM 1 Negative

Klebsiella oxytoca Clinical isolate HUSM 1 Negative
Neisseria meningitides ATCC (13090) HUSM 1 Negative
Penicillium marneffei Clinical isolate HUSM 1 Negative

Pseudomonas aeruginosa ATCC (27853) HUSM 1 Negative
Rhizopus spp. Clinical isolate HUSM 1 Negative

Scedosporium aurantiacum Clinical isolate HUSM 1 Negative
Staphylococcus aureus ATCC (25923) HUSM 1 Negative

Staphylococcus epidermidis ATCC (12228) HUSM 1 Negative
Stenotrophomonas maltophilia Clinical isolate HUSM 1 Negative

Streptococcus Group A Clinical isolate HUSM 1 Negative
Streptococcus mitis Clinical isolate HUSM 1 Negative

Streptococcus pneumonia Clinical isolate HUSM 1 Negative
Trichophyton rubrum Clinical isolate HUSM 1 Negative
Trichosporon asahii Clinical isolate HUSM 1 Negative

Table 4. The analytical specificity of the InnoPrimers-duplex qPCR assay among AB and FNA
samples from NPC patients.

Name of Sample Source Origin Sequencing
Results

Conventional
PCR Results

Result of LMP1
30 bp Deletion NPC

Genetic Biomarker in
Developed Assay

AB 1 NPC HUSM WT Heterogenous
type Negative

AB 9 NPC HUSM MT MT Positive

AB 10 NPC HUSM MT MT Positive

AB 12 NPC HUSM MT MT Positive

AB 14 NPC HUSM MT MT Positive

AB 16 NPC HUSM MT MT Positive

AB 17 NPC HUSM MT MT Positive

FNA 1 NPC HUSM WT WT Negative

FNA 3 NPC HUSM WT Heterogenous
type Negative

FNA 4 NPC HUSM WT WT Negative

FNA 6 NPC HUSM MT MT Positive

FNA 7 NPC HUSM MT MT Positive
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2.13. Diagnostic Evaluation

The diagnostic evaluation was done based on the detection of 30 bp deletion NPC
genetic biomarker in WB samples of newly diagnosed and suspected NPC cases (n = 6), non-
NPC cancer patients (n = 36) and healthy individuals (n = 39). The diagnostic performance
of the InnoPrimers-duplex qPCR assay was evaluated based on clinician diagnosis. In ad-
dition, the conventional PCR method was used in this study for diagnostic evaluation [36].
The diagnostic evaluation of the developed InnoPrimers-duplex qPCR assay included
diagnostic specificity, diagnostic sensitivity, negative predictive value (NPV) and positive
predictive value (PPV). The following formulas were used for diagnostic evaluation:

Diagnostic sensitivity = true positive/(true positive + false negative) (2)

Diagnostic specificity = true negative/(true negative + false positive) (3)

PPV = true positive/(true positive + false positive) (4)

NPV = true negative/(true negative + false negative) (5)

2.14. Treatment Response Prediction of NPC Patients

The NPC patients who were diagnosed with advance stages had received concurrent
chemoradiation therapy (CCRT), and patients with early stages had received radiotherapy
alone, as reported by other literatures [51,52]. In this study, the treatment response predic-
tion of this assay was investigated using WB samples from 34 NPC patients. The clinician
treatment response prediction was based on the patient-related factors, TNM classifica-
tion, histological type, staging, follow-up imaging results (MRI, CT and PET/CT scan),
treatment-related factors and clinical examination of the patients. In addition, RECIST
guideline was used in clinician treatment response prediction, which is a commonly used
guideline in various regularity authorities for the assessment of tumor outcome [53,54].
The pathological biopsy was performed for the suspected recurrent NPC patients to verify
the progression of the locoregional or distant metastasis. Based on RECIST criteria, NPC
patients were classified as complete response (CR), partial response (PR) and progressive
disease (PD)/recurrence [53,54]. The evaluation of 30 bp deletion genetic biomarker as a
predictor for treatment response was done by comparing treatment response prediction of
the 30 bp deletion genetic biomarker with clinician treatment response prediction.

2.15. Data Analysis and Interpretation of Results

The preliminary specificity of the primers and probes was assessed using the Primer-
BLAST webtool (http://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 12 July 2021). The
mean Cq and standard deviation were calculated from each of the Cq values obtained in
the replicates. Baseline was set at 25 RFU and was adjusted and analyzed using the CFX
Manager™ Software. PCR amplification efficiency, E, was calculated using this formula:

E = 10−1/slope − 1 (6)

The data analyzed using SPSS (statistical package of social science) version 24.0.
Person Chi-square (χ2) and Fisher exact tests were used to analyze the association between
30 bp deletion genetic biomarker and clinical outcomes (treatment response prediction).
p-values less than 0.05 were considered to indicate a significant association.

3. Results
3.1. NPC Patients’ Characteristics

The majority of NPC patients were Malay, followed by Chinese race (88.2% and 11.9%,
respectively). Most of the NPC patients were diagnosed with WHO type III (n = 19, 55.9%),
followed by WHO type II (n = 12, 35.3%), WHO type I (n = 2, 5.9%) and papillary variant
(n = 1, 2.9%). The locally advanced NPC stages were found in the vast majority of NPC
patients (stage IV and stage III), where 55.9% (n = 19) of NPC patients had stage IV and

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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41.2% (n = 14) had stage III. However, one patient reported as stage II (n = 1). All NPC
patients received CCRT, except three patients (suspected cases) who were not receiving
any treatment at time of sample collection. The suspected NPC patients were confirmed
to have NPC disease by HPE and regular diagnostic procedures such as a serological test,
imagining techniques, full blood count and biochemistry profile.

3.2. Design and Evaluation of Primers, Non-Extendable Blocking Oligonucleotide and Probes

A set of primers and a probe were successfully designed based on the nucleotide
sequence of B95.8 prototype EBV genome (GenBank accessions no.: V01555.2) and the
sequencing results of 25 NPC AB and FNA samples, as shown in Figures 1 and 2. The
preliminary functionality of the designed primer and probe was investigated using the
MT gBLOCK and WT gBLOCK, which were used as PCR positive control for LMP1 MT
and LMP1 WT templates, respectively, and AB and FNA samples from NPC patients
by InnoPrimers-duplex qPCR platform to detect 30 bp deletion NPC genetic biomarker.
Preliminary functionality of the InnoPrimers-duplex qPCR for detecting of 30 bp deletion
NPC genetic biomarker is shown in Figure 3.
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tions: AB, archive biopsy sample; FNA, fine needle aspiration.

3.3. Optimization of qPCR Parameters

The optimal concentration of target’s probe, primers, MT gBLOCK, WT gBLOCK and
IAC synthetic DNA, 400 nM, 500 nM, 20 fg, 20 fg and 60 ag, respectively, were selected
in this study. The annealing temperature of 60 ◦C was chosen as an optimal temperature;
this temperature is recommended by Luminaris Probe qPCR Master Mix protocol. A ratio
of 40:1 was selected as an optimal ratio of multi-points degenerative blocker:gap-filling
mutant primer in this developed assay.

3.4. The InnoPrimers-Duplex qPCR Parameters and Thermal Cycling Condition

The PCR reaction contained 1 × Luminaris Probe qPCR Master Mixes (Thermo Scien-
tific, Waltham, MA, USA), 500 nM of target’s forward primer, 500 nM gap-filling mutant
primer, 20 µM of multi-points degenerative blocker, 400 nM target’s probe, 7 µL DNA
template and PCR grade water, adjusted to a total volume of 20 µL. To exclude the effect of
the inhibitor, IAC was used in this study, where 300 nM of IAC’s forward primer, 300 nM of
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IAC’s reverse primer and 200 nM IA’s probe were incorporated in the same PCR reaction.
Sequences of oligonucleotides used are listed in Table 1. The reaction was subjected to
UDG pre-treatment at 50 ◦C for 2 min; an initial denaturation step at 95 ◦C for 10 min; 40
cycles of 95 ◦C for 15 s and 60 ◦C for 30 s.

Baseline threshold for the post-amplification analysis was set at 25 for both IAC and 30
bp deletion NPC genetic biomarker. Positivity was determined at any quantification cycle,
Cq value < 37 (for IAC), <37 (for 30 bp deletion NPC genetic biomarker in WB samples)
and <27 (for 30 bp deletion NPC genetic biomarker in NB samples). All the assays were
carried out in three replicates, unless specified otherwise, using CFX 96 Touch™ Real-Time
PCR Detection System.

3.5. Analytical Sensitivity and Specificity of the Developed InnoPrimers-Duplex qPCR Assay

The analytical evaluation showed a linear relationship, with a regression coefficient
(r2) value of 0.9966 (Figure 4). The InnoPrimers-duplex qPCR was able to amplify 20 ag
DNA per reaction, which was 173 copies/reaction, equivalent to 8650 copies/mL, in all
replicates (Table 2). At 2 ag per reaction (equivalent to ~17.3 copies/reaction), one of the
replicates was found to be positive (Table 2). The PCR efficiency of the InnoPrimers-duplex
qPCR was 100% for 30 bp deletion NPC genetic biomarker in this study, which represented
a twofold increase in the amplicon’s level after each cycle, and this efficiency value was
within the acceptable range, as the acceptable range of efficiency is 90–120% [55,56].

The assay amplified the 30 bp deletion NPC genetic biomarker in all MT variant FNA
and AB samples from NPC patients, and this developed assay was able to differentiate
between WT variant from MT variant among NPC AB and FNA samples, as shown in
Figure 5. No undesired amplification was observed in the qPCR reactions with other
reference microorganisms’ genomic DNA (all samples had Cq ≥ 37), as listed in Table 3.
The conventional PCR, sequencing and InnoPrimer-duplex qPCR results of 30 bp deletion
NPC genetic biomarker among AB and FNA samples were found to be comparable, where
all MT variants had Cq < 27, while WT and heterogeneous variants had Cq ≥ 27, as shown
in Figure 5 and Table 4. In heterogeneous samples, if the presence of the MT variant is
more predominant over the WT type variant in the same samples, then the Cq values will
be lower than 27, which is also depends on the clinical situation of the NPC patient.

The number of amplification cycles necessary for the target gene to surpass a threshold
level is represented by real-time RT-PCR cycle threshold (Cq) values. The Cq values are,
therefore, inversely related to viral load and can provide an indirect approach of quantifying
viral RNA copy number in the sample [57].
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3.6. Diagnostic Sensitivity and Specificity of the Developed InnoPrimers-Duplex qPCR Assay

The diagnostic evaluation of this developed qPCR assay was done using six NPC
(newly diagnosed and suspected cases) patients, non-NPC cancer patients and healthy
individuals. The diagnostic sensitivity and specificity of this assay were 83.3% and 100%,
respectively. High PPV and NPV were observed with 100% and 98.7%, respectively.

3.7. Detection of 30 bp Deletion NPC Genetic Biomarker in Healthy, Non-NPC Cancer and
NPC Samples

The presence of LMP1 30 pb deletion was investigated in all patients’ and healthy indi-
viduals’ blood and NB samples by a conventional PCR method as a standard method [36].
The conventional PCR result and the InnoPrimers-duplex qPCR results was compatible
among NPC samples, where all WB samples with WT variant (n = 13/13) had Cq ≥ 37,
and WB sample with MT variant (n = 1/1) had Cq < 37. In addition, all tissue samples with
WT variant (n = 2/2) had Cq ≥ 27, and tissue samples with MT variant (n = 2/2) had Cq <
27. In contrast, heterogeneous samples had different Cq values depending on the spectrum
and varying proportions of these two variants in the NPC WB and NB samples. Among
NPC WB samples with heterogenous variant, 50% (n = 10/20) of samples had Cq ≥ 37, and
50% (n = 10/20) of samples had Cq < 37. Among NB samples with heterogenous variant,
67% (n = 2/3) of samples had Cq ≥ 27, and 33% (n = 1/3) of samples had Cq < 27.

On the other hand, all non-NPC cancer WB samples (n = 36) and healthy WB samples
(n = 0/39) were not detected with 30 bp deletion NPC genetic biomarker (Cq ≥ 37), while
IAC was amplified in all the tested clinical samples.

3.8. Treatment Response Prediction of the Developed InnoPrimers-Duplex qPCR

Different cut-off Cq values were set for 30 bp deletion genetic biomarker to predict
the NPC patients’ treatment response in both WB and tissue samples. Among NPC WB
samples, Cq ≥ 37 indicated CR, Cq value ranging from 36.99 to 32.00 indicated PR and
Cq ≤ 31.99 indicated PD/recurrence. The evaluation of 30 bp deletion genetic biomarker
detection as a predictor for treatment response is shown in Table 5.
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Table 5. The treatment response prediction of the InnoPrimers-duplex qPCR result of 30 bp deletion
genetic biomarker against clinician treatment response prediction.

Clinician Treatment Response Prediction

Treatment
response

prediction
based on the
InnoPrimers-

duplex
qPCR result

CR PR PD/Recurrence * Total

CR (Cq ≥
37) 15 5 a 3 b 23

PR (Cq:
36.99–32.00) 3 c 5 0 8

PD/recurrence
(Cq ≤ 31.99) 1 d 0 2 3

Total 19 10 5 34
Footnote: CR, the complete response was defined as disappearance of all target lesions (short axis of target or non-
targeted neck pathological lymph nodes <10 mm); PR, partial response defined as a reduction of the longest diameter
of target lesions by at least 30% (using the baseline sum of longest diameter as a reference); PD, progressive disease was
defined as increasing the sum of target lesions’ longest diameter by at least 20% (using the smallest sum of the longest
diameter since treatment began as a reference; also, one or more new lesions have emerged). * Some authors included
both recurrent and progressive diseases in their description of recurrent NPC, but progressive diseases have a better
result than the recurrent disease. Recurrent NPC includes local, regional or distant metastasis. a Among five patients
who were detected with Cq ≥ 37 and had PR based on clinician treatment response prediction, two patients were
diagnosed as WHO type II NPC, and one patient was diagnosed as WHO type I NPC. b Among three patients who
were detected with Cq≥ 37 and had PD/recurrence based on clinician treatment response prediction, two patients were
diagnosed as WHO type II NPC. c Among three patients who were detected with Cq within an interval of 36.99–32.00
and had CR based on clinician treatment response prediction, two patients were diagnosed as WHO type II NPC. d

One patient was detected with Cq ≤ 31.99 and had CR based on clinician treatment response prediction; this patient
was diagnosed as WHO type II NPC.

Based on treatment response prediction of clinician and 30 bp deletion genetic biomarker,
the majority of NPC patients showed CR (n = 15/34), while five patients showed PR and
two patients showed PD/recurrence. Among 19 patients who were diagnosed as WHO
type III, 12 patients had CR. However, among 12 patients were diagnosed as WHO type
II, 5 patients had CR and among 2 patients were diagnosed as WHO type I, 1 patient had
CR. These results indicated that the WHO type III had a better prognosis and response to
treatment compared with WHO type II and type I. The 30 bp deletion genetic biomarker
was found to be a good prognostic biomarker associated with overall clinical outcome of
NPC WHO type III patients more than WHO type II and I (Table 5).

A significant association between clinician treatment response prediction and Cq
values of 30 bp deletion genetic biomarker (p = 0.033) was detected (Table 6). More than
half of NPC patients who showed a response to treatment (including 44.2% who had CR
and 14.7% who had PR) had Cq values of more than 37. Therefore, a 30 bp deletion genetic
biomarker was shown as a good prognostic biomarker or predictor for treatment response
and for NPC patients’ overall clinical outcome.

Table 6. Association between categorical Cq values of 30 bp deletion genetic biomarker and clinician
treatment response prediction in NPC WB samples (n = 34).

NPC WB Sample

Categorical Cq of 30 bp Deletion Genetic
Biomarker in WB Samples, n (%) p-Value #

≥37 36.99–32.00 ≤31.99
0.033 *Clinician

treatment
response

prediction

CR
PR

Recurrence/PD

15 (44.2)
5 (14.7)
3 (8.8)

3 (8.8)
5 (14.7)

0 (0)

1 (2.9)
0 (0)

2 (5.9)

# Fisher’s Exact Test was applied, * significant p-value < 0.05.
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4. Discussion

In this study, most NPC patients were Malay (88.2%), as reported by other studies
performed in Malaysia and Singapore [58,59]. NKC constituted about 91.2% (55.9% WHO
type III and 35.3% WHO type II), and 5.9% of NPC patients had squamous cell carcinoma
(SCC) (WHO type I) in this study, which was comparable to the previous studies, where
they reported higher occurrence rates of NKUC followed by NKDC and lower rates of
SCC [58,60–62]. One patient was diagnosed as papillary variant, nasopharyngeal adeno-
carcinomas (NACs), which is a rare tumor accounting for less than 0.5% of nasopharyngeal
malignancies and can occur in up to 10% of NPC cases in the endemic areas [63,64]. The
vast majority of NPC patients in this study had locally advanced NPC (stage IV and stage
III). Approximately half of the patients had stage IV, and 41.2% had stage III. These findings
were quietly comparable with other Malaysia studies [58,60,62,65].

The early diagnosis of NPC is critical and essential in the refined treatment and
improved prognosis of NPC patients [10,13]. Due to the narrow spectrum and non-specific
early symptoms during the early stages of NPC, the clinicians and the patients can easily
miss them [2,10]. Despite recent progress in diagnostic techniques (such as serology,
imaging and fiberoptic nasopharyngoscopy), only around 10% of all new NPC cases can be
detected in the early stages) [10].

Finding of biomarkers for early detection, prediction of metastasis and recurrence
and NPC therapeutic monitoring is of great importance to guide NPC treatment and
improve patient prognosis [66]. LMP1 is called an oncogene “all-in-one” was designed
during viral evolution because LMP1 functions as a classic oncogene and is necessary
for immortalization and the transformation of B cells and has the ability to encourage
proliferation and to antagonize apoptosis and senescence [37,67,68]. A previous researches
reported a significant correlation between the LMP1 expression and treatment response
where LMP1 encouraged metastasis and decreased the survival [32,69]. Moreover, there
was a significant difference in 24-month survival between LMP1 (+) NPCs relative to LMP1
(−) NPCs [32]. The LMP1 was reported to play a crucial role in the outcome of treatment,
which is also consistent with the hypothesis that stated that LMP1 is an anti-apoptotic
factor that affects tumor resistance to anti-tumor drugs [69–72].

It has been shown that 30 bp deletion is a prominent polymorphism in LMP1 that
results in a progression from non-oncogenic to oncogenic and in more aggressive EBV-
associated tumor phenotypes [73,74]. In addition, recent studies have shown that some
of the LMP1 gene sequence variations, such as 30 bp deletion, are linked to increased tu-
morigenicity and decreased immune recognition [39,40]. Several studies have investigated
the occurrence of EBV LMP1 30 bp deletion in different types of EBV-associated cancers
using sequencing and conventional PCR methods, mainly in invasive biopsy samples and
plasma samples [35,43,44,75]. A simple, time-saving, less invasive, cost-effective, efficient,
early diagnostic and prognostic method is required in the clinical setting. To the best
of our knowledge, no qPCR assay is available to detect EBV’s LMP1 30 bp deletion in
WB and NB samples from EBV-associated NPC patients. Therefore, this study aimed to
develop a Taqman probe-based qPCR to detect the 30 bp deletion genetic biomarker for
early diagnosis and treatment response prediction of NPC patients.

This study aimed to develop a prototype innovative qPCR assay based on utilizing
the unique features and innovative combination of the “gap-filling mutant primer” with
“multi-points degenerative blocker” technology to detect EBV LMP1 30 bp deletion (genetic
biomarker) from a less invasive WB sample and from NB sample from NPC patients.
The purpose of using the multi-points degenerative blocker in this study was to reduce
wild-type templates amplification to undetectable levels, even when the presence of WT
templates exceeds the presence of the MT template by a 1000-fold [52,76,77]. In addition,
our purpose was to increase the specificity, sensitivity and selectivity of the InnoPrimers-
duplex qPCR assay.

In terms of analytical sensitivity, this developed qPCR assay was capable of detecting
the 30 bp deletion NPC genetic biomarkers as low as 173 copies/reaction; taking into ac-
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count this study’s nucleic acid extraction and PCR set-up, 173 copies/reaction is equivalent
to 8650 copies/mL. To the best of our knowledge, there is no available qPCR study to detect
the presence of 30 bp deletion NPC genetic biomarkers and to determine the LOD of 30 bp
deletion NPC genetic biomarkers, particularly in WB samples from NPC patients. Hence,
to the best of our knowledge, this assay is the first semi-quantitative qPCR assay to detect
LMP1 30 bp deletion in WB and NB samples from NPC patients. A previous study reported
the LOD of LMP1 as 50 copies/PCR reaction [78] and LOD of LMP genes as 200 copies/mL
(EBV Real-TM Quant kit) [26]. The viral load of 5000 copies/mL of plasma EBV DNA was
reported as the median amount for early stage NPC patients [79]. Meanwhile, the median
plasma EBV DNA concentrations were found to be eightfold higher in advanced stage
NPC patients relative to early stage NPC patients [80]. Among all anatomical NPC stages,
the median concentration of EBV DNA ranged between 9 and 82,500 copies/mL [81]. The
InnoPrimers-duplex qPCR assay is expected to be able to detect 30 bp deletion NPC genetic
biomarker within this range.

The assays linearity was reported based on r2 values (near to 1). In this developed assay,
r2 values were 0.9966, which was close to 1. The PCR efficiency of the InnoPrimers-duplex
qPCR was 100% for detection of 30 bp detection NPC genetic biomarker, which represented a
twofold increase in the amplicon’s level after each cycle, and this efficiency value was within
the acceptable range, as the acceptable range of efficiency is 90–120% [55,56,82]. This developed
assay is very specific for NPC disease with 100% of specificity, where the 30 bp deletion NPC
genetic biomarker was not detected among all non-NPC patients and healthy individuals. In this
study, the sensitivity of detecting 30 bp deletion NPC genetic biomarker among suspected and
newly diagnosed NPC patients was 83.3% across all anatomical stages, which was comparable
with a previous study in China [83]. Review studies reported sensitivities ranged from 27%
to 96%, and specificities ranged from 38% to 100% of detection of EBV DNA (other than 30
bp deletion NPC genetic biomarker) in plasma and serum of NPC [20,22,84]. However, the
proportion of NPC patients with elevated blood or plasma levels of EBV DNA varies between
studies, and procedures are not well standardized [85].

In this study, among NPC patients with heterogenous variant, half of WB samples
had Cq < 37, and 33% of tissue samples had Cq < 27. In heterogeneous NPC WB and NB
samples, if the presence of the MT variant is more predominant over the WT type variant
in the same samples, then the Cq values will be lower than 37 (WB sample) and lower
than 27 (NB sample), which also depends on the clinical situation of the NPC patient. It
was speculated that both variants are derived from the single EBV strain during clonal
proliferation of EBV-infected cells over a period of time or could be resulted from several
EBV infections by more than one strain [86,87]. Heterogeneous-type cases with high Cq of
30 bp deletion NPC genetic biomarker could be related to the aggregation of LMP1 30 bp
deletion after repeated cycles of clonal proliferation over a long period, where MT variants
are exceeding WT variants owing to selection pressure. This hypothesis may explain the
spectrum and varying proportion of these two variants; hence, different Cq values occurred
in different samples. Moreover, the presence of 30 bp deletion NPC genetic biomarker in
WB samples was more likely derived from the tissue by comparing the paired samples
(WB and tissue) from the same patient, as reported in a previous study by Chan et al.,
2003 [88]. In this study, the WB sampling procedure is considered a less invasive, easy, only
producing slight discomfort, well-tolerated method and was useful in early NPC diagnosis,
treatment response monitoring and evaluation of NPC progression, thereby minimizing
the need for invasive biopsies.

This study finding showed that this developed assay was able to predict treatment
response for WHO type III NPC patients more than type WHO II and type I NPC patients.
The possible reason for that is the strong association between WHO type III NPC patients
and EBV compared with the other two types [89]. Moreover, a previous study reported
significantly higher EBV DNA contents in WHO type III NPCs and lower EBV DNA
contents in WHO type I and WHO type II NPCs. These data suggested that EBV DNA
replication was favorable in undifferentiated epithelial cells [90]. This relationship with
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EBV is essential not only for epidemiological reasons or diagnosis but also for patient
monitoring, prognosis and therapeutic strategies [91]. Although WHO type III NPC is
highly invasive and metastatic type [92], WHO type III was found to be responsive to
chemotherapy and radiotherapy where a better prognosis was found in patients with WHO
type III than with WHO type I or II [89,93]. On the other hand, differentiated NPC that is
not associated with EBV infection exhibits comparable characteristics to the head and neck
cancers. Compared with EBV-associated NPC, EBV-non-associated NPC possesses fewer
chemo-radiosensitive properties and is locoregionally aggressive and highly metastatic [92].
These findings justify this study finding, where 58.9% of NPC patients showed response to
treatment (including 44.2% that had CR and 14.7% that had PR).

In this study, three NPC patients were detected with Cq values ≥37, but based on
the clinician treatment response prediction, all three patients had PD/recurrence status.
There are several possible reasons for this discordant prediction. First, it may be that using
a relatively small WB sample volume (200 µL) in the DNA extraction method may affect
this genetic biomarker’s detection rate, related to using a small amount of extracted EBV
DNA in qPCR assay [22]. The second reason is the instability of circulating EBV DNA
that had been detected previously in several studies that resulted in low sensitivity in
EBV-positive cases and highlighted the restrictive parameters of conservation of specimens
that create practical and logistic challenges [94,95]. The third potential explanation is that
the concentration of EBV DNA after treatment will decrease with a mean half-life of 6.3
days (ranging from 1 to >200 days) [96] or 3.8 days (interquartile range, 2.4–4.4 days) [97].
The fourth possible reason is that fluorodeoxyglucose–positron emission tomography
(FDG–PET)/computed tomography (CT) scan can lead to a false-positive result because of
increased FDG absorption and can quickly confuse an inflammatory reaction. Moreover,
the CT and MRI specificity in the diagnosis of recurrent nasopharyngeal disease was low,
with 59% and 76%, respectively [93,98].

On the other hand, one patient had detected with Cq value of 28.96, but based on
clinician treatment response prediction, this patient had CR. The possible reason for this
discordant prediction was the insufficiency of current clinical information and the imaging
results (lost to follow-up). The second reason was that the patient was asymptomatic
in the last clinical follow-up and had a T2 stage (minimal tumor volume) that may not
be detected during physical examination and nasopharyngoscopy. The third possible
reason is that the CT and magnetic resonance imaging (MRI) sensitivity in the diagnosis
of the residual or recurrent nasopharyngeal disease is limited, as reported previously,
with 76% and 78%, respectively [93,98]. The fourth possible reason is if this patient had a
recurrence or metastasis to the mediastinal lymph nodes or had benign lesions, such as
cystic hepatic lesions. These clinical situations are associated with a prolonged duration
of elevated EBV DNA level, but no apparent recurrence has been established [12,99–101].
This patient requires long-term follow-up, and these findings should be considered during
the follow-up of NPC patients with extended elevation of EBV DNA.

A significant association between clinician treatment response prediction and categori-
cal Cq values of 30 bp deletion was reported in the current study, where 87% (20/23) of the
patients who were detected with Cq≥ 37 (n = 23) showed CR and PR after CCRT, 65.2% and
21.8%, respectively, and among three patients who had Cq ≤ 31.99, two (66.7%) patients
showed PD/recurrence. These findings were comparable with other studies [102–109].
They reported that the patients with NPC that remained in remission following radiother-
apy had regularly undetectable or extremely low plasma EBV DNA levels. In contrast,
patients with developed recurrence had dramatically increased plasma EBV DNA levels;
hence, EBV DNA load plays an important role in diagnosing and monitoring recurrence in
NPC [102–109]. These findings indicate that the 30 bp deletion genetic biomarker analysis
may be beneficial to classify patients to more likely benefit from more intensive therapy
and to save other patients from unnecessary treatments and excessive economic strain.

The prognostic significance of pre-treatment and post-treatment plasma EBV DNA
levels has been validated in different studies [110–114]. The timing of sample collection
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is not consistently specified in many published studies. Some evaluate EBV DNA before
treatment initiation [111] or during therapy [115], and others, directly after completion of
treatment [19,113,116]. This lack of standardization in the specimen’s collection timing can
contribute to inconsistency in the reported post-treatment EBV DNA levels, although some
patients with consistently undetectable plasma EBV DNA still develop tumor recurrence
during post-treatment follow-up. In contrast, some patients with elevated EBV DNA
levels stay disease-free, even after long-term follow-up [99]. Thus, the recurrence rates
for patients with undetectable or detectable plasma EBV DNA during the post-treatment
follow-up phase remain unknown [117]. In addition, it was also known that not all NPC
patients were detected with EBV DNA. The reported sensitivities ranged between 53%
and 96%, according to analysis of 15 studies involved the quantitation of EBV DNA [22].
Until now, the best specimens for measuring viral loads and the threshold value for the
medical intervention and the measurement units are also still questionable and not stan-
dardized [118]. Consequently, the recommendations for the diagnosis of EBV-associated
diseases or initiation of treatment are unclear.

Overall, the development of this qPCR assay can successfully detect the 30 bp deletion
NPC genetic biomarker and differentiate between WT and MT variants among NPC
patients and is also able to distinguish NPC from among both non-NPC cancer and healthy
individuals. In addition, this developed qPCR assay may help the clinician in early
diagnosis, determining the intervention appropriateness, treatment response prediction,
extent of treatment effectiveness, post-treatment follow-up monitoring and prognosis
of NPC. Further clinical evaluation should be carried out on a larger cohort using this
developed molecular assay. Prior to clinical evaluation, further analytical validation, such
as intra- and inter-assay variation, higher number of replicates and optimization of assays
are necessary. Although our study tested a limited number of samples, the high sensitivity
and specificity of the InnoPrimers-duplex qPCR is favorable for a future study with a larger
number of clinical specimens.

5. Conclusions

This developed InnoPrimers-duplex qPCR assay is a sensitive, specific, time-saving
(results ready within 2 h) and simple method that utilized less invasive and minimally
traumatizing WB sampling methods, which will be the best alternative to an invasive
biopsy sampling method in the future. This developed qPCR assay shows high specificity
in detection of the LMP1 30 bp deletion genetic biomarker among NPC patients, where
this assay is capable of differentiating between MT and WT variants in NPC samples and
is able to distinguish NPC from among both non-NPC cancer and healthy individuals. The
30 bp deletion genetic biomarker was found to be a good prognostic biomarker associated
with overall clinical outcome of NPC WHO type III patients. Even though the number
of tested clinical samples is limited, it provides crucial preliminary data for a subsequent
larger scale study in Malaysia.
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