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The p63 gene product regulates epithelial morphogenesis and
female germline integrity. In this study, we show that cyclin-
dependent kinase 5 and Abl enzyme substrate 1 (Cables1)
interacts with the trans-activating (TA) p63a isoform to protect
it from proteasomal degradation. Using the female germline of
Cables1-null mice as an in vivo model, we demonstrate further
that oocytes lacking Cables1 exhibit lower basal levels of TAp63a
and reduced accumulation of phosphorylated TAp63a in response
to genotoxic stress. This in turn enhances the survival of these
cells after ionizing radiation exposure. Thus, Cables1 modulates
p63 protein stability and function during genotoxic stress.
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INTRODUCTION
Members of the p53 family mediate genotoxic stress responses in
cells (Vogelstein et al, 2000; Yang & McKeon, 2000; Moll & Slade,
2004; Westfall & Pietenpol, 2004). The identification of p63
and p73 greatly expanded the appreciation of the importance
of p53 family members, not just for genome surveillance but also
for coordinating normal development (Yang & McKeon, 2000;
Moll & Slade, 2004; Westfall & Pietenpol, 2004). The p63
protein shares several conserved regions found in all p53 family
members, including a trans-activating (TA) domain, a DNA-
binding domain (DBD) and an oligomerization domain (Yang
et al, 1998). The p63 gene is transcribed from two alternative
transcription start sites that yield TA domain-containing isoforms
and DN isoforms, the latter of which lack the TA domain and

might act as dominant negatives of TAp63 isoforms (Yang et al,
1998; Petitjean et al, 2008).

Recent evidence indicates that regulation of protein stability is
probably the principal mechanism by which the actions of p63
are controlled. For example, genotoxic stress-induced phosphory-
lation of p63 prevents its ubiquitination and degradation by the
proteasome (Rossi et al, 2006; Li et al, 2008; MacPartlin et al,
2008). However, molecular modulators underlying these events
remain poorly described. In addition, genetic models demonstrating
the functional importance of p63 stability in vivo are lacking.
In this study, we show that cyclin-dependent kinase (Cdk) 5 and
Abl enzyme substrate 1 (Cables1), a Cdk-interacting protein
(Zukerberg et al, 2000; Wu et al, 2001), protects p63 from
ubiquitin-mediated proteasomal degradation through direct
physical interaction. Using female germ cells lacking Cables1 as
an in vivo model, we show that radiation-induced oocyte loss is
partly rescued through reduced accumulation of phosphorylated
TAp63a. These results identify a new regulatory step modulating
p63 function in vivo and provide further insights into mechanisms
that govern female germline integrity.

RESULTS AND DISCUSSION
Cables1 interacts with both p53 and p73 (Tsuji et al, 2002) and
modulates the activity of female germline stem cells and oocyte
quality (Lee et al, 2007). We therefore felt it was reasonable to
consider that p63, which is expressed predominantly in female
germ cells, is regulated by direct interaction with Cables1. To test
this, we first co-expressed TAp63a and FLAG-tagged Cables1 in
COS7 cells, and lysates were immunoprecipitated. Cables1 was
detected in immunocomplexes containing TAp63a, indicative of
an interaction between the two proteins (Fig 1A). To determine
whether endogenous TAp63a normally interacts with endogenous
Cables1, we analysed lysates of neonatal (postnatal day 10; P10)
mouse ovaries, which contain a large number of meiotically
arrested oocytes that express both proteins (Fig 1B; Suh et al,
2006; Lee et al, 2007). The co-immunoprecipitation analysis
revealed that Cables1 was present in the TAp63a immunocomplex
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and, reciprocally, TAp63a was present in the Cables1
immunocomplex (Fig 1C,D).

We next mapped the domain(s) of TAp63a that interact with
Cables1 by constructing TAp63a deletions that removed various
regions, including the TA domain, DBD and carboxyl terminus
(Yang et al, 1998). We observed that Cables1 was lost in the
immunocomplex only after both the TA domain and C terminus
of TAp63a were deleted (Fig 2A,B). This result was confirmed
by immunoprecipitation using a FLAG-specific antibody to
detect FLAG-tagged Cables1, followed by immunoblotting with
a haemagglutinin (HA)-specific antibody to detect HA-tagged
TAp63a. The DBD of TAp63a alone did not interact with Cables1
(Fig 2C). The C terminus of TAp63a contains an oligomerization
domain, a sterile alpha motif (SAM) and a TA-inhibitory domain
(Yang et al, 1998). After constructing additional deletion mutants,
we observed that interaction between TAp63a and Cables1 was
lost when the SAM was removed (Fig 2E,F). Conversely, through
expression of wild-type Cables1 and a Cables1 mutant lacking the
cyclin-interaction domain (DCID), we observed that TAp63a
immunoprecipitated with both wild-type and DCID Cables1
(Fig 2G–I). Together, these results indicate that the amino terminus
of Cables1 interacts with the TA domain and SAM of TAp63a to
promote physical association of the two proteins.

One consequence of Cables1–TAp63a interaction was the
maintenance of TAp63a protein levels (Fig 3A,B). This interaction
is required to stabilize TAp63a, as Cables1 has no effect on levels
of the DBD of TAp63a (Fig 3C), which does not interact with
Cables1 (Fig 2D–F). To better understand the mechanism under-
lying p63 stabilization by Cables1, we used Hep3B cells based on
earlier studies that initially characterized p63 isoform stability in
this cell type (Petitjean et al, 2008). The treatment of Hep3B cells
with the protein synthesis inhibitor cycloheximide for up to 8 h
decreased transfected TAp63a levels; this was not observed in the

presence of Cables1 (Fig 3D), indicating that Cables1 stabilizes
TAp63a protein. As Cables1 also interacts with the DNp63a
isoform (Fig 2B,C), we also evaluated its protein stability. In
accordance with previous observations (Petitjean et al, 2008),
transfected DNp63a was less stable than TAp63a and showed
degradation within 6 h after cycloheximide treatment. However,
co-expression of Cables1 increased the half-life of DNp63a
(supplementary Fig S1 online).

As p63 can be degraded by the proteasome (Rossi et al, 2006;
Li et al, 2008; MacPartlin et al, 2008), we tested whether
stabilization of TAp63a by Cables1 resulted from reduced
ubiquitination and proteasomal degradation. The treatment of
COS7 cells with the proteasome inhibitor MG132 resulted in a
near-doubling of TAp63a levels (Fig 3E), consistent with p63 being
turned over rapidly in cells under non-stress conditions. The
accumulation of TAp63a was even greater in the presence of
Cables1, and addition of MG132 to Cables1-expressing cells did
not markedly alter the extent of TAp63a accumulation compared
with that resulting from the presence of Cables1 alone (Fig 3E).
In the absence of Cables1, both TAp63a and DNp63a were
polyubiquitinated (Fig 3F). However, when Cables1 was ex-
pressed together with TAp63a or DNp63a, ubiquitination of both
proteins was attenuated greatly (Fig 3F). These findings indicate
that Cables1 stabilizes p63a by blocking ubiquitin-mediated
proteasomal degradation of the protein.

Genotoxic stress induces phosphorylation of TAp63 (Suh et al,
2006; MacPartlin et al, 2008), and a tight dose–response
relationship exists between these events and cell death (Suh
et al, 2006). We therefore tested whether radiation-induced DNA
damage affects Cables1–TAp63 interaction by using H1299 cells
so that our outcomes could be compared with those of earlier
studies of TAp63g phosphorylation in this cell type (MacPartlin
et al, 2008). To aid in the detection of TAp63 phosphorylation,
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cells were treated with the serine and threonine phosphatase
inhibitor okadaic acid (OA) for 4 h before collection (MacPartlin
et al, 2008). Similar to the response reported for TAp63g
phosphorylation by IkB kinase-b (MacPartlin et al, 2008), OA
caused a dose-dependent shift in TAp63a mobility (Fig 4A).
Furthermore, the interaction of Cables1 with TAp63a was
enhanced markedly by OA (Fig 4B), and the increased interaction
between endogenous Cables1 and TAp63a in ovarian lysates,
triggered by ionizing radiation exposure, was reduced signifi-
cantly by pretreatment with l-phosphatase (Fig 4C). Although

more detailed information is needed to determine the significance
of these findings, it seems that phosphorylation of TAp63a after
a genotoxic insult might facilitate its interaction with Cables1.
To test further whether DNA damage enhances this interaction,
we used fluorescence resonance energy transfer (FRET) to visualize
directly the interaction between Cables1 and TAp63 (Fig 4D–F).
The exposure of H1299 cells to ionizing radiation increased
FRET efficiency between Cables1–cyan fluorescent protein (CFP)
and TAp63a–yellow fluorescent protein (YFP; Fig 4F). Thus,
genotoxic stress-induced phosphorylation of TAp63a induces its
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interaction with Cables1, which in turn protects p63 protein from
ubiquitination and proteasomal degradation.

In a final set of experiments, we used Cables1-null mice to
evaluate the consequences of an absence of Cables1 on TAp63a
levels and function in vivo. The female germline of these mice was
selected for analysis because: (i) TAp63a is expressed at high
levels in female germ cells during meiotic arrest (Suh et al, 2006);

(ii) Cables1 and its components are expressed in female germ cells
and regulate their function (Fig 1B; Iwaoki et al, 1993; Lee et al,
2004, 2007; Park et al, 2004); (iii) endogenous Cables1 interacts
with endogenous p63 in germ cells of mouse ovaries (Fig 1C); and
(iv) TAp63a has an indispensable role in mediating DNA damage-
induced oocyte loss (Suh et al, 2006; Livera et al, 2008). Under
physiological conditions, TAp63 levels in oocytes were lower in
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ovaries of Cables1-null mice compared with wild-type females
(Fig 5A–D). Phosphorylated TAp63a did not accumulate in
oocytes of Cables1-null ovaries after exposure to ionizing
radiation, in contrast to the pronounced accumulation of
phosphorylated TAp63a observed in oocytes of irradiated wild-
type ovaries (Fig 5D; supplementary Fig S2 online). The levels of
TAp63 mRNA showed no significant differences in wild-type and
Cables1-null ovaries, confirming that changes in TAp63 levels
were due to changes in protein stability rather than transcriptional
regulation of the p63 gene. To assess the consequence of this
partial loss of p63 stability in Cables1-null mice, female mice
were irradiated at P5 and ovaries were collected 5 days later

(P10). Non-irradiated wild-type and Cables1-null mice had a
comparable number of oocytes at P10 (data not shown; Lee et al,
2007). However, the near-complete depletion of oocytes from
wild-type ovaries after exposure to ionizing radiation was
attenuated significantly in ovaries of Cables1-null mice (Fig 5E–H).

In summary, physical association of Cables1 with p63 inhibits
its ubiquitination and degradation through the proteasome. This
process is required for maximal stabilization of TAp63 in female
germ cells, and the subsequent death of these cells, after exposure
to a genotoxic stress in vivo. However, Cables1-null oocytes retain
approximately 50% of the TAp63a protein content observed in
wild-type oocytes, and the radioprotection conveyed in oocytes
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by Cables1 deficiency is less than that observed in p63-null mice
(Suh et al, 2006). Thus, although the loss of Cables1 reduces
TAp63a levels through increased degradation, TAp63a that
remains is sufficient in some, but not all, Cables1-null oocytes
for triggering apoptosis after exposure to ionizing radiation.
Similar to other reports (Suh et al, 2006; MacPartlin et al, 2008),
our findings also indicate that TAp63 is phosphorylated rapidly in
response to genotoxic stress, and this might facilitate its interaction
with Cables1. Previous studies with doxorubicin have reported
that this phosphorylation event involves serine residues on TAp63,
which then stabilizes the protein (Petitjean et al, 2008). However,
cisplatin triggers the phosphorylation of TAp63 on tyrosine
residues through induction of the c-Abl kinase, which also results
in the stabilization of p63 (Gonfloni et al, 2009). It was further
reported that inhibition of the tyrosine kinase activity of c-Abl
by imatinib partly prevents cisplatin-induced oocyte loss in
mice through destabilization of TAp63a (Gonfloni et al, 2009).
Interestingly, Cables1 promotes tyrosine phosphorylation of

c-Abl substrates (Zukerberg et al, 2000). Although the mechanisms
responsible for differential phosphorylation of p63 by various
genotoxic stresses remain to be elucidated, Cables1 might
participate as a common upstream integrator of these events.

METHODS
Methods are described in more detail in the supplementary
information online.
Animals. Mice harbouring a targeted inactivation of the Cables1
gene have been described earlier by our laboratories (Zukerberg
et al, 2004). All animal protocols were approved by the Institutional
Animal Care and Use Committee of Massachusetts General Hospital.
Plasmids. Full-length human Cables1 complementary DNA has
been reported previously (Sakamoto et al, 2008), whereas TAp63a
complementary DNA was provided by G. Wu (Wayne State
University). The HA- and FLAG-tagged constructs, and all deletion
mutants, were generated by PCR. Identity of all plasmids was
confirmed by sequence analysis.
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Antibodies, immunoblotting and immunoprecipitation. See the
supplementary information online.
Oocyte counts. Non-atretic oocyte-containing primordial and total
immature (primordial, primary and preantral) follicle numbers were
determined by histomorphometric procedures detailed previously
(Jones & Krohn, 1961; Skaznik-Wikiel et al, 2007).
FRET analysis. Photobleaching-based FRET analysis was con-
ducted essentially as described previously (Wan et al, 2008). The
fusion of CFP or YFP to Cables1 or TAp63a, respectively, does not
alter protein function (supplementary Fig S3 online).
Immunofluorescence. Immunofluorescence was performed, as
described previously (Matikainen et al, 2001; Suh et al, 2006), using
TAp63 antibody provided by F. McKeon (Harvard Medical School).
Sections from ovarian tissues of wild-type and Cables1-null mice
were always mounted adjacent to each other on same slide to ensure
identical exposure to all treatments and sample processing.
Ubiquitination assay. Ubiquitination analysis was conducted as
described previously (Ohta & Xiong, 2001) with minor modifications.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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