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Farnesoid X receptor (FXR) is a bile acid activated nuclear receptor (BAR) and is mainly expressed in the
liver and intestine. Upon ligand binding, FXR regulates key genes involved in the metabolic process of bile
acid synthesis, transport and reabsorption and is also involved in the metabolism of carbohydrates and
lipids. Because of its important functions, FXR is considered as a promising drug target for the therapy
of bile acid-related liver diseases. With the approval of obeticholic acid (OCA) as the first small molecule
to target FXR, many other small molecules are being evaluated in clinical trials. This review summarizes
the structures of FXR, especially its ligand binding domain, and the development of small molecules (in-
cluding agonists and antagonists) targeting FXR.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Farnesoid X receptor (FXR) is a bile acid activated receptor
(BAR) with two members in mammals: FXRa and FXRb [1]. FXRb
is a pseudogene in humans and primates, but encodes a functional
receptor in other species [2]. FXRa gene encodes four isoforms:
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Fig. 1. The importance of FXR in the enterohepatic circulation of bile acids. FXR represses the transcriptional activity of hepatic Cyp7a1 and Cyp8b1 by upregulating the
expression of SHP. FXR stimulates the synthesis of the FGF-15/19-FGFR4 pathways to inhibit CYP7A1 and CYP8B1 expression. FXR regulates key genes involved in BA
transport, reabsorption, conjugation and detoxification, such as NTCP, BSEP, MDR3 and OSTa/b.
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FXRa1-a4 [3,4]. These four isoforms are expressed in a tissue-
dependent manner: FXRa1 and FXRa2 are expressed moderately
in the ileum and adrenal glands, FXRa3 and FXRa4 are abundantly
expressed in the ileum and moderately expressed in the kidney [4].
FXR regulates the metabolism of bile acids, carbohydrates and
lipids [5,6].

Upon activation, FXR binds heterodimerically to with retinoid X
receptor (RXR), and induces the expression of small heterodimer
partner (SHP) gene, leading to transcriptional repression of the
rate-limiting enzymes cholesterol 7a-monooxygenase (CYP7A1)
and liver receptor homolog 1 (LRH-1) [7,8]. FXR also stimulates
the synthesis of fibroblast growth factor-19 (FGF-19) to inhibit
CYP7A1 and sterol 12a-hydroxylase (CYP8B1) expression through
the fibroblast growth factor receptor 4 (FGFR4) pathway in the
hepatocytes [9–11]. The FXR/SHP and FXR/FGF19/FGFR4 pathways
constitute the major negative regulators of bile acid synthesis. FXR
inhibits sodium taurocholate cotransporting polypeptide (NTCP)
through an SHP-dependent mechanism, thereby repressing the
uptake of bile acids by the liver [12]. FXR upregulates the gene
expression of bile salt export pump (BSEP) and multidrug resis-
tance protein-3 (MDR3) and increases BA efflux from the liver to
the canalicular lumen [13,14]. FXR also increases the expression
of organic solute transporter alpha/beta (OSTa/b) expression
which enhances BA efflux from the liver to the portal vein [15].
In addition, FXR regulates key enzymes involved in BA conjugation
and detoxification [13]. In a summary, FXR is intimately involved
in the entire metabolic process of bile acid synthesis, transport
and reabsorption (Fig. 1) [16,17]. Homozygous loss of FXR function
due to NR1H4 mutations (p.R176*, Tyr139_Asn140insLys) causes
severe progressive familial intrahepatic cholestasis (PFIC) with a
low gamma-glutamyl transferase (GGT) form [18]. In both extra-
and intrahepatic models of cholestasis, FXR activation leads to
the amelioration of cholestasis to protect the liver from the high
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cytotoxicity of bile acids [19]. FXR induces the synthesis of
FGF15/19 and up-regulates the FGF15/19-FGFR4 signaling, which
may promote the risk of HCC [20], while FXR activation has been
reported to display potential anti-tumor activity in colorectal can-
cer [21], HCC [22] and cholangiocarcinoma [23].

Since the approval of obeticholic acid (OCA) by the U.S. FDA in
2016 as a second-line treatment for primary biliary cholangitis
(PBC), more and more small molecules targeting FXR have been
developed and entered into clinical trials [24]. The complex struc-
tures of FXR with some ligands have been determined and yield
extensive insights into the understanding of activation or repres-
sion of FXR, which has important implications for the treatment
of related diseases.
2. Organization of FXR

FXR shares a classic nuclear receptor (NR) organization
(Fig. 2A): a ligand-independent transcriptional activation domain
(AF1), a core DNA-binding domain (DBD), a hinge region, a C-
terminal ligand-binding domain (LBD) and a ligand-dependent
activation function domain (AF2) [25].

The AF1 domain is a highly disordered domain that can interact
with coregulator proteins. Alternative splicing has given rise to
multiple AF1 domain isoforms. FXRa3 and FXRa4 possess an
extended N-terminus compared with that of FXRa1 and FXRa2
(Fig. 2B) [1,26]. The FXR-DBD establishes base-specific interactions
with DNA, which enables the recognition of specific DNA
sequences. The DBD region is highly conserved and contains two
a helices (H1 and H2) and two four-cysteine/zinc nucleated mod-
ules (Fig. 2C) [27]. The hinge domain is a short, flexible linker with
little sequence or size conservation. FXRa1 and FXRa3 each have
an insert of four amino acids (MYTG) in this region (Fig. 2B) [4].



Fig. 2. Schematic diagram and structure of FXR. (A) Organization of FXR. (B) Schematic diagram of four FXRa protein isoforms. (C) Model structure of FXR-DBD. The EcR-DBD
structure (PDB ID: 1R0O) is used to represent the FXR-DBD. (D) Crystal structure of the FXR-LBD/OCA complex (PDB ID 1OSV). The FXR-LBD is shown in greencyan, OCA is in
orange and the NcoA peptide is colored magenta. (E) The typical IR1 element. The IR1 sequence is found in the footprintDB database. The IR1 schematic diagram is generated
by WebLogo. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The FXR-LBD binds to its ligands and interacts with coregulator
proteins. This domain consists of 12 a-helices that fold into three
parallel layers to form an alpha helical sandwich and contains a
hydrophobic ligand-binding pocket (LBP) at the base of the recep-
tor to accommodate its ligands [28] (Fig. 2D). AF2 is in the LBD and
includes H12. Similar to other nuclear receptors, H12 of FXR has
been shown to undergo dynamic conformation changes upon bind-
ing of different ligands, and changes in AF2 orientation facilitate
interactions with different regulatory proteins [29]. This mecha-
nism will be discussed further.
2150
3. FXR DNA binding properties

FXR can regulate gene expression by binding DNA as a mono-
mer or as a heterodimer with RXR [30,31]. The DNA motifs specif-
ically recognized by the FXR-DBD are named FXR response
elements (FXREs). According to genome-wide ChIP-seq studies,
diverse FXREs architectures have been found [31]. Classical FXREs
contain two monomeric sites of the consensus half-site 50-
AGGTCA-30 in palindromes or direct repeats with various numbers
of nucleotides in the spacer. The most well-known and highest



Fig. 3. Overall structures of FXR in different states. (A) The apo-FXR structure (PDB ID 5Q0K). (B) FXR/CDCA (4QE6). (C) FXR/OCA (1OSV). (D) FXR/Tropifexor (7D42). (E) FXR/
Ivermectin (4WVD) (F) FXR/DM175 (4QE8). FXR is colored gray. The regions discussed are colored as follows: H4 (yellow), H11 (olive), H30 (violet), H12 (lightblue), NcoA
(lightpink), NcoR (palecyan). The LBP pocket volumes of FXR are calculated using POCASA. (G) Superposition of different ligand binding patterns. Key protein regions affected
by ligand binding are highlighted. The critical polar residues and main hydrophobic residues in the pocket are labeled. The ligands are shown in different colors: CDCA
(green), OCA (orange), 7D42 (blue), ivermectin (cyan), DM175 (skyblue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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affinity FXRE motif is an inverted repeat of two AGGTCA consensus
sequence separated by one nucleotide (IR1) (Fig. 2E) [29]. The FXR/
RXR heterodimer also binds to FXREs, such as IR0, or everted
repeats with two or eight nucleotide spacers (ER2 or ER8) and
2151
direct repeats separated by one nucleotide (DR1) [31–33]. The
coactivator-binding site (H10/11) of FXR undergoes allosteric con-
formational changes induced by the dimerization with RXR, and
these changes may enhance the transcriptional activity of FXR to



Fig. 4. Chemical structure of FXR agonists.
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bind the FXREs [28,34]. The dimerization mechanism between
FXR-DBD and RXR-DBD is still unclear. Negative FXREs have also
been found in a few FXR target genes, such as ApoA1, to which
FXR binds as a monomer or homodimer and represses ApoA1
expression [30]. Diverse FXREs are localized in promoter, inter-
genic and intron regions of many genes. FXR binds to the FXREs
to exert its various biological functions such as metabolism, trans-
port, kinase signaling and glycolysis.
2152
4. Ligand-binding properties of FXR

4.1. Analysis of FXR-LBD structures

The FXR-LBD domain contains the classic NR LBP for ligands
binding (Fig. 3). The LBP pocket volume tends to be adjusted by
the bound ligand [35]. The chemical structures of the typical FXR
ligands are shown in Figs. 4 and 5. The LBP calculated using



Fig. 5. Chemical structure of FXR antagonists.
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POCASA are usually about 300–400 Å3 in some FXR/ligand struc-
tures, while it is about 1081 Å3 in the FXR/Ivermectin structure
[36] (Fig. 3A-F). The critical polar residues (Arg331, His447 and
so on) in the pocket establish hydrogen bond interactions with
the ligands to position the ligands in the correct orientation, and
2153
hydrophobic residues (Ile335, Phe329, Phe461 and so on) establish
hydrophobic interactions with ligands to stabilize the whole struc-
ture [35,37,38] (Fig. 3G).

Previous studies revealed that the positions of H12 of NRs were
different in liganded and unliganded (apo) states. H12 was thought
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to be positioned away from the core LBD in apo-state (inactive
state), while H12 altered its position to be bound to the core LBD
when bound with agonists (active state), which is the model of a
classic mouse-trap mechanism for NRs activation [39]. Later stud-
ies [40,41] suggested that the terminal LBD region is dynamic in
apo-state and that H12 is only formed upon agonist binding.

Merk et al [38] have recently reported the mechanism for FXR
activation that also explains partial agonism by crystallization
and NMR experiments. The unliganded FXR-LBD recruit corepres-
sor (e.g., NcoR) in solution. Agonistic ligands disrupt the interaction
between FXR-LBD and corepressor, leading to partial dissociation
of the corepressor from FXR. Agonistic ligands promote the stabi-
lization of H12 and binding to the core LBD. Then coactivator
(e.g., NcoA) is recruited to FXR-LBD. In contrast, antagonists stabi-
lize the interaction of FXR-LBD and corepressor in an inactive state
with the unordered AF-2 binding to corepressor. Partial agonists
weaken the interaction between FXR-LBD and corepressor, induce
conformational changes in FXR-LBD that is capable of recruiting
both corepressors and coactivators.

The FXR-LBD/ligand complex structures deposited in the PDB
database were mainly divided into three categories: apo-FXR-
LBD, agonist-FXR-LBD and antagonist-FXR-LBD. The overall struc-
ture of apo-FXR-LBD (5Q0K [42] and 6HL0 [38]) contains 12 a-
helices and an unordered state of the H11 and L: H3-H4 (loop-
linked helix H3 and H4) regions (Fig. 3A). An NcoA peptide is
shown in the apo-FXR-LBD structure, which indicates that the
FXR-LBD without a ligand is able to recruit coregulators.

In the agonistic-FXR-LBD structure (4QE6 (Fig. 3B), 1OSV
(Fig. 3C) [35] and 7D42 (Fig. 3D) [37]), the overall structure of
FXR-LBD is similar to that of apo-FXR-LBD, in which the coactivator
(NcoA) binds to AF-2 with two conserved ionic interactions. Minor
conformational changes are found. H11 is ordered and a 310 helix
in the loop region between H3 and H4 (L: H3-H4) is formed
(Fig. 3D). H4 is located close to the core of the LBP, leading to a
tight LBP bound with nonsteroidal ligands. These conformational
changes may stabilize the overall structure of FXR-LBD and pro-
mote its affinity for coactivator binding. In addition, a second bind-
ing induced, hydrophobic pocket was reported in the crystal
structures of FXR-terpenoid (PDB 5IAW and 5ICK) [43]. The first
ligand occupies the binding site with similar other ligands [43].
H6 is shifted outward and H2 is also distorted to induce a second
pocket to accommodate the extra terpenoid ligand perpendicular
to the first one, resulting in the substantial expansion of the pocket
size [43].

In the antagonist-FXR structure (4WVD (Fig. 3E) [44] and 4OIV
[45]), carboxy terminal AF2 helix (H12 and L: H11-H12) is invisible
or changing to a b strand, which suggests that AF2 is a highly flex-
ible and dynamic helix induced by antagonist binding. Ivermectin
is a drug approved for use against a variety of nematode and
arthropod parasites, and is also a highly selective FXR antagonist
[44]. The structure of ivermectin is much larger than other ligands.
Therefore, H2 and H6 in the LBP are shifted outward and distorted
in the FXR-LBD/ivermectin structure to make extra space to
accommodate ivermectin [44]. Besides that, H11 is disorder and
a NcoR peptide is observed in the structure (Fig. 3E) [44]. In the
FXR/NBD structure, H11 changes to a b-strand and forms a dimer-
ization interface with the b-strand in another FXR molecule [45].

Compared to the three states previously described, the partial
agonistic conformation of FXR-LBD has both agonistic and antago-
nistic conformation characteristics [38]. DM175 promotes H11 for-
mation as FXR agonists but to a lesser extent and does not stabilize
the L: H3-H4 in a helical state (Fig. 3F) [38]. Besides, DM175
induces outward movement of W454 in the LBP and causes a
shifted position of H12 [38]. Thus, the partial agonistic conforma-
tion of FXR-LBD could recruit both corepressors and coactivators.
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In summary, the FXR-LBD conformation is affected by the char-
acteristics of ligands and coregulator peptides. Different FXR
ligands occupy close to different regions and bind different resi-
dues of the FXR LBP, leading to minor conformational changes in
the FXR LBP (Fig. 3G). However, the mechanism by which FXR
ligands enter and exit the LBPs remains unclear. When bound to
different ligands, FXR recruits different coregulator proteins to
activate or repress the transcription of target genes.

4.2. Endogenous FXR ligands

FXR is a nuclear receptor for bile acids which are a family of
atypical steroids generated in the liver. Two main families of bile
acids can be identified in humans. The primary bile acids, cholic
acid (CA) and chenodeoxycholic acid (CDCA), are generated from
cholesterol. The secondary bile acids lithocholic acid (LCA) and
deoxycholic acid (DCA) are generated from CA and CDCA, respec-
tively [46]. The potency of bile acids in activating FXR is ranked
as: CDCA > DCA > LCA > CA [47]. Bile acids may function as signal-
ing molecules to regulate their own synthesis and affect diverse
biological and pathophysiological processes, such as liver regener-
ation, proapoptotic and proinflammatory actions [48,49].

4.3. Synthetic FXR agonists

Given the potential of FXR ligands to be an effective approach to
treat bile acid-related liver disorders, many more synthetic FXR
agonists are currently being developed for liver diseases such as
nonalcoholic steatohepatitis (NASH) and PBC [50]. Synthetic FXR
agonists include steroidal and nonsteroidal ligands. The FXR
ligands in clinical trials or approved by the FDA are summarized
in Table 1.

4.3.1. Steroidal FXR agonists
OCA, a semisynthetic derivative of CDCA, is also known as 6-

ethyl-CDCA and INT-747 [35]. This drug was developed for the
treatment of various liver diseases, including biliary atresia, PBC,
NASH and primary sclerosing cholangitis (PSC). The 18-month
interim analysis of a phase 3 trial for its use in the treatment of
NASH and fibrosis patients showed that 25 mg of OCA significantly
attenuated fibrosis and NASH disease activity in participants [51].
OCA might be the first drug approved to treat NASH and fibrosis
patients. However, the risk of some side effects, such as pruritus,
gallstones and acute cholecystitis, was increased in patients trea-
ted with OCA compared with patients who received a placebo
[51,52]. The phase 3 trial is still ongoing with patients expected
to have a follow-up time of at least 4 years to evaluate the long-
term clinical benefits of OCA treatment.

EDP-305 is a steroidal FXR agonist that is developed for the
treatment of NASH and PBC [65]. EDP-305 is currently being eval-
uated in a phase 2b randomized, double-blind, placebo-controlled,
multicenter study to evaluate its safety and efficacy in NASH
patients (NCT04378010). In the subjects across all studies exposed
to EDP-305, the majority of treatment related adverse events are
mild to moderate [66]. EDP-305 treatment reduces C4 and high
GGT levels and increases FGF-19 and ALP levels in Enanta Pharma-
ceuticals, Inc homopage.

4.3.2. Nonsteroidal FXR agonists
Most steroidal FXR agonists exhibit poor aqueous solubility and

bioavailability. The steroid nucleus and side chain structure endow
them with partial GPBAR1 agonistic properties [67,68]. This prop-
erty can increase the therapeutic potential of steroidal FXR ago-
nists, but also can induce some side effects which might be
induced by GPBAR1 [24,69]. To reduce side effects and improve



Table 1
FXR ligands.

Agonists: EC50/IC50 (nM) PDB ID Clinical Trial Phase NCT identifiers Indication Reference

Obeticholic acid 99 1OSV FDA approved
phase 2
phase 3

NCT02308111 NCT01585025NCT02548351 PBC
PSC, BADNASH

[35,51,52]

EDP-305 n/a n/a Phase 2 NCT03394924, NCT04378010 PBC, NASH [53]
GW4064 65 3DCT n/a n/a n/a [54]
MET409 16 n/a Phase 2 NCT04702490 NASH, T2DM Metacrine
TERN-101 n/a n/a Phase 2 NCT04328077 NASH Terns [55]
EDP-297 n/a n/a Phase 1 NCT04559126 n/a Enanta
XL335 4 3FLI Phase 1 NCT00499629 n/a [56]
Cilofexor 43 n/a Phase 3

Phase 2
NCT03890120
NCT02781584

PBC, PSC, NASH [57,58]

Tropifexor 0.2 7D42 Phase 2 NCT02516605
NCT04065841

PBC, BAD, NASH [37,59,60]

Antagonists EC50/IC50 (nM) PDB ID Clinical Trial Phase NCT Number Indication Reference

Nidufexor 7 n/a Phase 2 NCT03804879 Diabetic Nephropathy [61]
MCA 40,000 n/a n/a n/a n/a [62]
Guggulsterone 17,000 n/a n/a NCT01492998 (terminated) HCV [63,64]
Ivermectin 200 1OSH n/a n/a n/a [44]
NDB 3400 4OIV n/a n/a n/a [45]
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therapeutic effects, the pharmaceutical industry and academic
institutes have been exploring the synthesis of nonsteroidal FXR
agonists. Compared to steroidal agonists, nonsteroidal agonists
can theoretically preserve the full therapeutic potential of FXR
induction and avoid some of its undesirable pharmacokinetic and
kinetic properties.

GW4064 is a highly effective and selective nonsteroidal agonist
of FXR. GW4064 was found to raise HDL cholesterol levels and
decreased triglycerides in various animal species [70]. Due to some
limitations, such as solubility limitation, potentially toxicity and
UV instability, GW4064 is not a good drug candidate. It is now usu-
ally used as a tool compound for investigating the physiological
functions of FXR [71]. Many nonsteroidal FXR agonists are devel-
oped based on the structure of GW4064. Here we will introduce
several promising nonsteroidal agonists.

Cilofexor, also known as GS-9674, is a developed synthetic
derivative of GW4064 by Gilead Sciences [72]. Cilofexor is being
evaluated in a phase 3 study in noncirrhotic subjects with primary
sclerosing cholangitis (PSC) (NCT03890120). Cilofexor is also in a
phase 2 study to evaluate the safety, tolerability and efficacy of
regimens in subjects with NASH (NCT02781584). A clinical trial
demonstrated that cilofexor was well tolerated in patients with
PSC and improved the markers of cholestasis, liver biochemistry,
C4 and serum bile acids [73]. In addition, cilofexor is combined
with selonsertib and firsocostat in a phase 2 trial to circumvent
its weak efficacy and dose-dependent development of pruritus
observed in the mono treatment (NCT03449446), and is also cur-
rently tested in combination with fenofibrate and Vascepa
(NCT02781584).

Tropifexor, previously known as LJN452, is another nonsteroidal
FXR agonist developed by the Novartis internal drug discovery pro-
gram [59]. As one of the most advanced synthetic FXR agonists in
the clinic, tropifexor has been evaluated for its efficacy in NASH
and PBC patients (NCT04065841 and NCT02516605, respectively).
Tropifexor is a highly selective and highly potent FXR agonist. In
the first-in-human study, tropifexor was well tolerated at pharma-
cologically active doses and no drug induced pruritus was observed
[74]. In addition, tropifexor has completed the investigation in
combination with cenicriviroc, a CCR2 antagonist in patients with
NASH and fibrosis (the TANDEM study, NCT03517540) in 2020
[60].

Nidufexor (LMB763), a compound based on a tricyclic dihy-
drochromenopyrazole core, is a partial and highly selective FXR
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agonists [61]. Nidufexor did not activate GPBAR1 with an EC50

value greater than 80 lM, and also did not activate other nuclear
receptors in vivo (EC50 > 10 lM) or in vitro (EC50 > 30 lM) [61].
Nidufexor was well-tolerated in healthy volunteers and is being
investigated in phase 2 trials in patients with NASH and diabetic
nephropathy (NCT02913105 and NCT03804879, respectively). Dis-
couragingly, trial NCT02913105, which investigated the safety and
efficacy of Nidufexor in NASH, has been terminated due to an
increased incidence of major adverse event - pruritus - compared
to the placebo group: 54.05% (20/37) in the LMB763 100 mg group,
29.55% (13/44) in the LMB763 50 mg group, and 15.00% (6/40) in
the placebo group, respectively.

(E)-3-[1-(4-tert-Butylphenyl)-2,5-dimethyl-1H-pyrrol-3-yl]acr
ylic acid (18) [75], a compound derived from a FXR/PPAR agonist
[76], is a selective FXR agonist. 18 activates FXR with EC50 = 1.4 lM,
and Kd = 4 lM [75]. 18 exhibits favorable metabolic stability and is
non-cytotoxic in vivo [75].

4.3.3. Partial FXR agonists
Partial FXR agonists may be a valuable strategy to avoid

mechanism-based side effects induced by complete FXR activation
[38]. Complete FXR activation blocks bile acid biosynthesis and
hinders metabolic cholesterol degradation, leading to elevated
cholesterol levels in OCA clinical trials [52]. Partial agonists induce
conformational changes in FXR-LBD compared to full agonists
(Fig. 3) [38]. These conformational changes may induce activation
of FXR and reduce efficacy [77]. However, the molecular mecha-
nism of FXR binds to corepressors in the partial agonism remains
unknown and needs to be further investigated. Several partial FXRs
agonists have been reported [38,55,78]. TERN-101 (LY2562175) is
a potent partial FXR agonist with an EC50 value of 193 nM [55].
In the insulin resistant female ZDF rat model, LY2562175 signifi-
cantly reduced triglycerides and elevated high-density lipoprotein
(HDLc) by up to 95% [55]. DM175, another partial FXRs agonist,
exhibits a partial agonistic/antagonistic profile [38]. DM175 acti-
vated FXR with an EC50 value of 350 nM in a transactivation assay
[38]. DM175 also showed partial FXR antagonistic potency
(IC50 = 10.9 lM) and repressed GW4064-induced FXR activity to
26 ± 2% activation [38].

4.3.4. Dual FXR and GPBAR1 agonists
Dual FXR and G protein-coupled bile acid receptor 1 (GPBAR1,

also known as TGR5) agonists appear to be a strategy for treatment
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of related diseases. The dual FXR and GPBAR1 agonist not only reg-
ulates pathways from both single agonism but may also provide
additional mechanisms to the prevention and treatment for related
diseases [79]. BAR502 and INT767 are both non-bile acid steroidal,
dual agonists for FXR and GPBAR1 [80,81]. In a NASH model,
BAR502 reversed the development of NASH like features in mice.
BAR502 attenuated body weight gain and increased BMI index
caused by feeding mice with a high fat diet and fructose (HFD-F)
[82]. BAR502 reduced liver fat accumulation, inflammation and
liver fibrosis. BAR502 attenuated liver damage in non-obstructive
cholestasis animal models without inducing pruritus [83,84].
4.4. FXR antagonists

Much research interest has been devoted into the identification
and discovery of FXR agonists. In fact, some groups aimed at the
unexplored field of FXR antagonists (Fig. 5) [62,65,85,86]. FXR
antagonists have proven beneficial in animal models of cholestasis
and hypercholesterolemia, as well as in pancreatic and colon can-
cers [87–89]. FXR antagonists may be used for the treatment of
type 2 diabetes (T2DM) or other metabolic diseases [90,91]. Vari-
ous types of FXR antagonists have been reported [92] including
natural antagonists [62,93], NDB [85], trisubstituted-pyrazolone
derivatives [94], T3 [95], N-phenylbenzamide analogs [96],
trisubstituted-pyrazol carboxamide analogs [97], oxadiazole ana-
logs [98] and so on. But none is successful in clinical trials so far.
Some FXR antagonists have been shown in Fig. 5.

a- and b-Muricholic acids (MCA), generated in the liver from
CDCA, are primary bile acids and antagonists of FXR [62]. Increased
tauro-b-MCA inhibits FXR signaling FGF15 expression and cera-
mide synthesis [99]. Gly-MCA is a potential candidate to treat
metabolic disease owing to its selective inhibition of the intestine
FXR rather than the hepatic FXR [100].

Guggulsterone is the first example of nonselective natural FXR
antagonist [93]. Guggulsterone decreased CDCA-induced FXR acti-
vation with IC50 values of 15–17 mΜ [101]. Guggulsterone was
once considered as a potentially effective treatment for patients
with HCV genotype 1 who did not respond well to first-line ther-
apy (NCT01492998) [64]. However, the trial was terminated.

Ivermectin, a drug approved for nematode and arthropod para-
sites, is a highly selective FXR antagonist [44]. Ivermectin shows
antidiabetic activity by enhancing insulin sensitivity in an FXR-
dependent way [44]. As a treatment for human filarial infections,
ivermectin is safe and well tolerated in humans and is a safe com-
pound on the basis of which novel FXR antagonists can be designed
for the treatment of metabolic diseases.

NDB is identified as a selective FXR antagonist [85]. In primary
mouse hepatocytes, NDB treatment reduces the GW4064-
stimulated FXR/RXR interaction and represses the expression of
FXR target genes, including SHP and BSEP [45]. NDB may be an
anti-diabetes agent by decreasing the expression of glycogen
genes.
Table 2
Agonist Activities to FXR and GPBAR1.

Compound FXR EC50 (mM) GPBAR1 EC50 (mM)

LCA 20 0.58
BAR502 2 0.4
CDCA 8.3 6.71
OCA 0.099 0.918
INT-767 0.033 0.670
Nidufexor 0.007 >80
Tropifexor 0.0002 >10

*The high ratio value represents the high selectivity of compound for FXR.
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(Z)-4-(4-Hydroxy-3-methoxybenzylidene)-1-(3-nitrophenyl)-3
-phenyl-1H-pyrazol-5(4H)-one (12u) strongly suppresses the
expression of FXR target genes [94]. 12u lower the triglyceride
and cholesterol levels in HepG2 cells and in the cholesterol-fed
C57BL/6 mice [94]. T3, a FXR antagonist, significantly decreases
the plasma levels of non-HDL cholesterol and apolipoprotein B in
a dose-dependent manner in cynomolgus monkeys receiving HFD
[95]. FLG249, a nonsteroidal FXR antagonist, regulates the expres-
sion of three FXR target genes, FGF15, apical sodium-dependent
bile acid transporter (ASBT), and SHP, in the mouse ileum [102].
Noteworthy, Helmstädter et al [75] reported a novel chemotype
that bound to FXR and was tunable in its activity type between
agonism and antagonism with central heterocycle and side chain
saturation acting as switches. The antagonist 3-[5-(4-tert-Butylphe
nyl)-1H-pyrazol-3-yl]propanoic acid (24) robustly decreases
CDCA-induced activation with an IC50 values of 0.06 lM [75]. 24
binds directly to FXR-LBD with Kd = 0.3 lM [75].

Other compounds have also been identified to exhibit antago-
nistic activity on FXR include andrographolide (representative
bioactive constituent of Andrographis paniculata Nees) [103], tuber-
atolides (from the Korean marine tunicate Botryllus tuberatus)
[104] 3,5-disubstituted oxadiazole core [98], DY268 [97] and so on.
4.5. Side effects of FXR agonists

The results of clinical trials of FXR agonists indicate that FXR
agonists may be a promising strategy for treating liver disease,
but is associated with some side effects [105]. Pruritus is a com-
mon and dose-dependent symptom among FXR agonists-related
side effects [106]. The incidence of pruritus in PBC patients treated
with 25 mg OCA is up to 51%, which is even higher than that in
patients treated with placebo [106]. Recent reports have suggested
that GPBAR1 activation may increase gallbladder weight and acti-
vate itching receptors in the skin [68,107]. The similar chemical
structure of FXR agonists endows them with the potency to active
GPBAR1, which might exacerbate certain side effects and limit
their use in clinics. Previous studies measured the potency and
selectivity of several FXR agonists. We summarized the EC50 values
of these FXR agonists against FXR and GPBAR1 in Table 2. Based on
the fact that the potency of Nidufexor against FXR is much greater
than GPBAR1 [61], Nidufexor should not have GPBAR1-related side
effects such as pruritus. However, Nidufexor was shown to induce
pruritus in clinical trials, which may be due to unknown mecha-
nisms. This needs further study in the future.

Yang et al recently reported the structure of the INT-777/
GPBARGS complex, which provides the structural basis for GPBAR1
activation and bile acid recognition (Fig. 6A) [111]. In the structural
analysis of the complex, INT-777 interacts with F96 and Y240 at
the bottom of the orthosteric site of GPBAR1 [111]. OCA is an
FXR agonist and shows a high binding affinity for GPBAR1. OCA
forms hydrogen bonds with FXR [35] (Fig. 6B). When superposed
into the INT-777/GPBAR1 structure, OCA appears to accommodate
FXR selectivity index, EC50 ratio (GPBAR1/FXR)* References

0.03 [108]
0.2 [84]
0.81 [108,109]
9.3 [59]
20 [110]
>11,000 [61]
>50,000 [59]



Fig. 6. Structural superposition of OCA with GPBAR1. (A) Structure of INT-777/GPBAR1 complex (7CFN). GPBAR is shown in limon and INT-777 is colored red. (B) Structure of
OCA/FXR complex. The hydrogen bonds between OCA (orange) and FXR-LBD (greencyan) are shown as black dashed line. (C) Structural superposition of OCA with GPBAR1.
Residues involved in the interactions are labeled and shown as sticks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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well into the binding sites of GPBAR1 [37] (Fig. 6C), a finding con-
sistent with the biochemical assay. A second binding pocket also
exists around the receptor surface and is bound with bile acids
and their derivatives [111]. Thus, OCA may also be able to bind
with this second pocket of GPBAR1 to regulate receptor activity.
Nevertheless, the OCA/GPBAR1 structure has not yet been solved
and further investigation is needed to clarify the mechanism of
pruritus is induced by FXR agonist treatment.

The dual FXR and GPBAR1 agonists may provide additional
mechanisms to the treatment for related diseases compared to sin-
gle agonist [79]. However, GPBAR1 activation may lead to some
potential side effects, such as pruritus and increased gallbladder
volume [68,107]. Furthermore, to avoid these side effects, partial
agonists and combination therapy (cilofexor and selonsertib, tropi-
fexor and cenicriviroc et al) appear the next step in drug develop-
ment to avoid these side effects.
5. Summary and outlook

Increasing evidence indicates that FXR signaling is critical for
metabolism. Currently, the highly selective FXR agonists and par-
tial FXR agonists provide a potent and effective strategy for the
treatment of liver diseases, and some of these compounds have
been or are still in the process of being evaluated in clinical trials.
OCA has been approved by the FDA for PBC treatment and, if
approved, might be the first drug to treat the NASH patients with
advanced fibrosis worldwide. However, several challenges still
exist in the field of FXR agonist development, such as the side
effects. Based on the structural differences between FXR and
GPBAR1, structural modification of FXR agonists may be a strategy
to improve the efficacy, selectivity and safety of drugs used for
2157
liver disease. FXR antagonists might be a promising strategy for
the treatment of type 2 diabetes or other metabolic diseases.
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