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Abstract: Multiple sclerosis (MS) is an immune-mediated, demyelinating disease of the central
nervous system. In this study, an MS cohort and healthy controls were stratified into Caucasian and
African American groups. Patient hematological profiles—composed of complete blood count (CBC)
and complete metabolic panel (CMP) test values—were analyzed to identify differences between MS
cases and controls and between patients with different MS subtypes. Additionally, random forest
models were used to determine the aggregate utility of common hematological tests in determining
MS disease status and subtype. The most significant and relevant results were increased bilirubin
and creatinine in MS cases. The random forest models achieved some success in differentiating
between MS cases and controls (AUC values: 0.725 and 0.710, respectively) but were not successful
in differentiating between subtypes. However, larger samples that adjust for possible confounding
variables, such as treatment status, may reveal the value of these tests in differentiating between
MS subtypes.

Keywords: multiple sclerosis; random forest; electronic health records

1. Introduction

Multiple sclerosis (MS) is a complex disease of the central nervous system in which the
myelin sheaths of the neurons in the brain and spinal cord are damaged. As presentation
of the disease varies widely between patients, several subtypes of MS have been defined
based on patterns of its progression. Relapsing remitting multiple sclerosis (RRMS), the
most common form of MS, is characterized by unpredictable attacks (with potentially
permanent deficits) followed by periods of disease quiescence [1]. Over time, RRMS
patients typically transition into secondary progressive multiple sclerosis (SPMS), which
is characterized by steady disease progression. In contrast, a minority of MS cases are
classified as primary progressive multiple sclerosis (PPMS), in which disability accrues
from disease onset without relapses. PPMS patients constitute only about 10% of all MS
patients [2].

Characterizing physiological differences present in MS and its subtypes has been of
significant interest in the MS research community [3–6]. A number of case–control studies
have reported cerebrospinal fluid (CSF) and hematological biomarkers associated with MS
disease status [7–10]. Such biomarkers may also have utility as predictors of MS clinical
features such as disease progression. Past work has uncovered CSF and hematological
biomarkers that correlate with MS subtype [6,11–13]. In addition to fluid biomarkers
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associated with MS subtype, one study has found low-frequency genetic variants that
influence MS subtype susceptibility [14]. While a number of subtype biomarkers have
been reported in the literature, there are currently no predictive biomarkers for MS disease
course in clinical use. In light of this scarcity of clinical predictors of disease course, and to
further investigate physiological changes in MS patients in general, we performed a survey
study of hematological profiles in MS patients and controls using commonly employed
hematological panels. Additionally, we used random forest classifiers to determine the
predictive potential of these blood panels in the context of MS case status and disease
subtype. Random forest classifiers have been used to discover novel disease-biomarker
relationships and to classify patients in a variety of settings [15–17], as well as in other
clinically relevant applications [18,19].

In our analyses, we utilized two common hematological panels, the complete blood
count (CBC) panel and comprehensive metabolic panel (CMP). Both panels are routine
measurements used by clinicians to understand the overall health of a patient [20]. These
tests are performed frequently on both ill and healthy patients. The CBC measures blood
cell values such as hemoglobin, platelet count, and white blood cell count. The tests in the
CMP quantify clinical chemistry values, such as blood serum levels of albumin, various
ions, and several liver enzymes. Several values measured in these panels have been shown
to be correlated with MS disease status, subtype, and disease progression [21–23]. In
particular, studies have found an association between the neutrophil-to-lymphocyte ratio
(NLR) and MS disease status, disability, and subtype [23–27]. Creatinine and bilirubin have
also been implicated in similar studies [10,21,22,28]. In this study, we performed three
analyses: first, to better understand the physiological differences present in MS patients in
general, we investigated whether differences exist in CBC and CMP values between MS
cases and controls. Al-Hussain et al. performed a similar analysis in 2017 using a small
MS cohort and a subset of CBC and CMP tests [26]. We used a larger dataset to attempt to
replicate their findings for this subset of tests and discover novel associations involving
tests not included in their study. Second, due to the lack of clinical biomarkers of MS
subtype and the widespread clinical use of the CBC and CMP, we investigated differences
in hematological profiles between RRMS/SPMS and PPMS patients. Finally, to evaluate
the overall utility of these blood panels in differentiating between MS cases and controls
and between PPMS and RRMS/SPMS patients, we trained random forest classifiers using
a subset of patients and tested the classifiers on the remaining patients.

2. Materials and Methods
2.1. Sample Population and Data Preprocessing

Laboratory values for MS patients and control patients were retrieved from de-
identified health records in Vanderbilt University Medical Center’s Synthetic Derivative
(SD). The SD also provided the patient race (observer recorded) and sex data used in the
analyses. Patients with missing demographic values, a reported race other than African
American or Caucasian, or multiple reported races were excluded from the analysis. MS
subtype was determined for each patient using previously published extraction algo-
rithms [29]. Only patients with one of the three major MS subtypes (PPMS, RRMS, or
SPMS) were included in the final dataset, with RRMS and SPMS patients grouped together
to stratify the cohort into relapsing and progressive groups. Demographic characteristics
of the groups are noted in Table 1.

The two blood panels (CBC and CMP) collectively contain patient lab values for 35
biomarkers. Median values were calculated for each patient and used in all analyses.
Neutrophil-to-lymphocyte ratio (NLR) measurements were calculated for each patient with
a value for both neutrophil absolute count and lymphocyte absolute count on a given date,
and the median ratio was used. Patient age at the time of the most recent measurement
was used as a covariate in the analyses. Lastly, the data were stratified into Caucasian and
African American groups for statistical analysis. For both groups, the group averages of all
lab values were within the reference ranges. Not all patients had data for each biomarker;
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the number of patients ultimately used for each analysis can be found in Supplementary
Table S1.

Table 1. Demographic and clinical data of the study populations.

RRMS/SPMS PPMS All MS
Cases Controls

Caucasian
Cohort Number of patients 1643 259 4306 38,592

Average Age (years) 47.1 53.6 56.3 58.2
% Female 76.9% 68.0% 76.4% 51.9%

African
American

Cohort
Number of patients 227 47 596 3425

Average Age (years) 44.0 52.4 52.5 51.1
% Female 84.1% 68.1% 79.8% 61.6%

Age is calculated for the year 2018 using patient birth year.

2.2. Statistical Methods

Logistic regression analysis was performed in R (R Core Team, Vienna, Austria,
version 3.1.3). Each of the 36 lab tests was analyzed separately as an independent variable.
For the case–control analysis, patient median value for the given lab test was used to
predict MS disease status. For the subtype analysis, patient median value for the given lab
test was used to predict MS subtype. Gender and patient age were included as covariates
in all analyses. As seen results, some analyses were not performed in the African American
group due to insufficient sample sizes.

To correct for multiple testing, Bonferroni correction (α = 0.05) was applied at the
group level in each of the analyses (four total adjusted p-values were calculated). The
adjusted p-value calculated for the Caucasian case–control analysis, the African American
case–control analysis, and the Caucasian group in the subtype analysis was 0.0014. The
adjusted p-value calculated for the African American group in the subtype analysis (with
fewer tests) was 0.0017. Analysis results are reported below. Multiple regressions were
performed with biologically related lab tests. Mean platelet volume and platelet count
were analyzed in one regression. White blood cell count and absolute neutrophil count
were analyzed in another regression.

To measure the utility of the CBC and CMP blood panels in classifying patients as
MS cases or controls, as well as differentiating between MS subtypes, a random forest
model was fitted to each of the previously described study populations. These analyses
were restricted to include only individuals without missing values for each laboratory
test, and tests with a significant number of missing values were excluded altogether.
The analysis utilized the package “randomForest” in R (standard parameters were used).
Receiver operating characteristic (ROC) curves and area under the curve (AUC) values
were generated using the “ROCR” package to assess the performance of each random
forest model in classifying subjects.

3. Results
3.1. Case–control Analysis

The results of the case–control analysis and subtype analysis are displayed in
Tables 2 and 3, respectively, for both the Caucasian (C) and African American (AA) groups.
In the case–control analysis, hemoglobin levels (p-values: 1.84 × 10−39 (C) and 1.03 × 10−5

(AA)) and mean platelet volume (p-values: 1.61 × 10−6 (C) and 1.05 × 10−4 (AA)) were
significant in both groups, with an association with MS. Packed cell volume (p-values:
2.80 × 10−49 (C) and 9.10 × 10−9 (AA)), red blood cell count (p-values: 1.38 × 10−8 (C) and
7.77 × 10−6 (AA)), and anion gap (p-values: 8.11 × 10−37 (C) and 1.17 × 10−6 (AA)) showed
the same significant trend. Conversely, white blood cell count (p-values: 4.55 × 10−19 (C)
and 1.67 × 10−4 (AA)) and albumin (p-values: 2.88 × 10−16 (C) and 1.05 × 10−4 (AA))
levels had significant protective effects in both groups. Bilirubin (p-values: 3.7 × 10−104 (C)
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and 1.50 × 10−14 (AA)) was the most significant biomarker and had the lowest odds ratio
in both the Caucasian group (OR: 0.19, 95% CI: 0.16–0.22) and the African American group
(OR: 0.19, 95% CI: 0.13–0.29).

Table 2. Comparison of hematological profiles of MS cases and controls.

Caucasian African American
Odds Ratio (95% CI) p-Value Odds Ratio (95% CI) p-Value

CBC
Hemoglobin (Hgb) 1.15 (1.13–1.18) 1.84 × 10−39 1.14 (1.08–1.21) 1.03 × 10−5

Immature platelet fraction (IPF) 0.99 (0.95–1.03) 0.714 0.99 (0.88–1.08) 0.763
Immature reticulocyte fraction (IRF) 1.01 (0.99–1.03) 0.212 1.02 (0.98–1.07) 0.306

Mean corpuscular hemoglobin (MCH) 1.03 (1.01–1.04) 0.002 1.00 (0.97–1.03) 0.981
MHC concentration (MCHC) 1.04 (1.01–1.06) 0.011 0.91 (0.84–0.98) 0.010

Mean corpuscular volume (MCV) 1.01 (1.00–1.01) 0.041 1.01 (0.99–1.02) 0.396
Mean platelet volume (MPV) 1.11 (1.07–1.16) 1.61 × 10−6 1.25 (1.12–1.40) 1.05 × 10−4

Packed cell volume (PCV) 1.06 (1.05–1.07) 2.80 × 10−49 1.06 (1.04–1.09) 9.10 × 10−9

Platelet count (PltCt) 1.00 (1.00–1.00) 7.46 × 10−9 1.00 (1.00–1.00) 0.099
Red blood cell count (RBC) 1.20 (1.12–1.27) 1.38 × 10−8 1.44 (1.23–1.68) 7.77 × 10−6

Red cell distribution width (RDW) 0.95 (0.93–0.98) 1.19 × 10−4 0.92 (0.88–0.97) 0.003
RDW standard deviation (RDWSD) 1.01 (1.00–1.01) 0.191 1.00 (0.98–1.02) 0.880

Reticulocytes absolute value (RetAbs) 1.01 (1.00–1.02) 0.003 1.01 (0.99–1.03) 0.192
Reticulocyte Hgb equivalent (RETHE) 0.97 (0.94–1.01) 0.118 0.98 (0.91–1.04) 0.552

Reticulocyte count (RetiCt) 1.00 (0.92–1.08) 0.924 0.98 (0.71–1.23) 0.863
White blood cell count (WBC) 0.95 (0.94–0.96) 4.55 × 10−19 0.94 (0.91–0.97) 1.67 × 10−4

Neutrophil absolute count (NeutAbs) 0.93 (0.91–0.94) 5.36 × 10−27 ‡
Lymphocyte absolute count (LymAbs) 0.98 (0.95–1.00) 0.071 ‡
Neutrophil-to-lymphocyte ratio (NLR) 0.95 (0.94–0.96) 4.93 × 10−16 0.97 (0.93–1.00) 0.042

CMP
Albumin (Alb) 1.47 (1.34–1.61) 2.88 × 10−16 1.68 (1.30–2.18) 1.05 × 10−4

Alkaline phosphatase (AlkP) 1.00 (1.00–1.00) 0.875 1.00 (1.00–1.00) 0.091
Anion gap (ANGAP) 1.10 (1.08–1.12) 8.11 × 10−37 1.11 (1.07–1.16) 1.17 × 10−6

Blood urea nitrogen (BUN) 1.01 (1.00–1.01) 0.010 1.00 (0.99–1.02) 0.555
Calcium (Ca) 1.05 (0.98–1.13) 0.148 1.17 (0.96–1.42) 0.115
Chloride (Cl) 0.96 (0.95–0.97) 1.66 × 10−13 0.98 (0.95–1.01) 0.255

Carbon dioxide (CO2) 1.01 (0.99–1.02) 0.375 1.00 (0.97–1.05) 0.826
Creatinine (Creat) 0.48 (0.40–0.57) 2.32 × 10−16 0.79 (0.64–0.92) 0.012

Glucose (Gluc) 1.00 (1.00–1.00) 7.50 × 10−5 1.01 (1.00–1.01) 1.23 × 10−4

Icterus index (IctIdx) 0.76 (0.34–1.39) 0.447 ‡
Potassium (K) 1.14 (1.04–1.26) 0.007 1.42 (1.10–1.83) 0.008

Lipid index (LipIdx) 1.01 (0.99–1.02) 0.465 1.02 (1.00–1.05) 0.079
Sodium (Na) 1.02 (1.01–1.04) 0.005 1.07 (1.03–1.12) 0.002

Aspartate amino transferase (SGOT) 1.00 (0.99–1.00) 1.03 × 10−5 1.00 (1.00–1.00) 0.471
Alanine amino transferase (SGPT) 1.00 (1.00–1.00) 0.444 1.00 (1.00–1.00) 0.947

Bilirubin (TBil) 0.19 (0.16–0.22) 3.7 × 10−104 0.19 (0.13–0.29) 1.50 × 10−14

Total protein (TProt) 1.11 (1.04–1.19) 0.002 0.99 (0.84–1.17) 0.920

After Bonferroni correction, the adjusted p-value for both groups was 0.0014. Significant tests are bolded above. Odds ratios represent risk
of having MS. ‡ It was not possible to calculate the upper limit of the confidence interval.

Table 3. Comparison of Hematological Profiles of RRMS/SPMS and PPMS Patients.

Caucasian African American
Odds Ratio (95% CI) p-Value Odds Ratio (95% CI) p-Value

CBC
Hemoglobin (Hgb) 1.03 (0.93–1.14) 0.579 1.08 (0.85–1.38) 0.520

Immature platelet fraction (IPF) 1.03 (0.90–1.38) 0.769 †
Immature reticulocyte fraction (IRF) 1.05 (0.95–1.20) 0.433 †

Mean corpuscular hemoglobin (MCH) 1.05 (0.97–1.12) 0.224 1.05 (0.92–1.20) 0.463
MHC concentration (MCHC) 1.14 (0.99–1.32) 0.070 0.99 (0.71–1.37) 0.947

Mean corpuscular volume (MCV) 1.01 (0.98–1.04) 0.547 1.03 (0.97–1.08) 0.344
Mean platelet volume (MPV) 1.23 (1.01–1.51) 0.046 1.20 (0.76–1.94) 0.442

Packed cell volume (PCV) 1.00 (0.97–1.04) 0.837 1.03 (0.95–1.13) 0.454
Platelet count (PltCt) 1.00 (1.00–1.00) 0.022 1.00 (0.99–1.00) 0.435

Red blood cell count (RBC) 1.02 (0.74–1.39) 0.926 0.92 (0.47–1.83) 0.808
Red cell distribution width (RDW) 0.91 (0.82–1.03) 0.129 0.99 (0.80–1.27) 0.959
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Table 3. Cont.

Caucasian African American
Odds Ratio (95% CI) p-Value Odds Ratio (95% CI) p-Value

RDW standard deviation (RDWSD) 0.99 (0.95–1.03) 0.456 1.00 (0.91–1.10) 0.930
Reticulocytes absolute value (RetAbs) ‡ †
Reticulocyte Hgb equivalent (RETHE) 0.98 (0.78–1.18) 0.825 †

Reticulocyte count (RetiCt) 0.80 (0.51–1.33) 0.358 0.98 (0.19–5.29) 0.983
White blood cell count (WBC) 0.95 (0.90–0.99) 0.029 0.92 (0.81–1.06) 0.254

Neutrophil absolute count (NeutAbs) 0.91 (0.86–0.97) 0.003 0.86 (0.72–1.03) 0.092
Lymphocyte absolute count (LymAbs) 0.99 (0.83–1.19) 0.945 0.69 (0.45–1.07) 0.090
Neutrophil-to-lymphocyte ratio (NLR) 1.00 (0.96–1.06) 0.984 0.93 (0.77–1.17) 0.497

CMP
Albumin (Alb) 1.02 (0.68–1.50) 0.927 1.88 (0.84–4.17) 0.112

Alkaline phosphatase (AlkP) 1.00 (0.99–1.00) 0.738 0.99 (0.98–1.00) 0.122
Anion gap (ANGAP) 1.05 (0.97–1.14) 0.220 1.40 (1.09–1.82) 0.009

Blood urea nitrogen (BUN) 1.01 (0.98–1.04) 0.683 1.03 (0.96–1.11) 0.487
Calcium (Ca) 1.09 (0.81–1.45) 0.553 2.58 (1.12–6.16) 0.028
Chloride (Cl) 1.03 (0.98–1.08) 0.249 0.82 (0.70–0.96) 0.014

Carbon dioxide (CO2) 0.95 (0.90–1.01) 0.123 1.08 (0.90–1.30) 0.396
Creatinine (Creat) 2.23 (1.05–5.13) 0.051 4.78 (1.04–29.11) 0.066

Glucose (Gluc) 1.00 (1.00–1.01) 0.714 1.01 (1.00–1.03) 0.110
Icterus index (IctIdx) 0.75 (0.19–2.63) 0.656 †

Potassium (K) 1.21 (0.80–1.83) 0.376 1.03 (0.31–3.50) 0.965
Lipid index (LipIdx) 1.07 (0.99–1.22) 0.226 †

Sodium (Na) 1.02 (0.96–1.09) 0.461 0.96 (0.79–1.16) 0.692
Aspartate amino transferase (SGOT) 1.01 (1.00–1.02) 0.309 1.02 (1.00–1.08) 0.422

Alanine amino transferase (SGPT) 1.00 (1.00–1.01) 0.353 1.03 (0.99–1.07) 0.191
Bilirubin (TBil) 0.88 (0.67–1.41) 0.443 0.22 (0.05–0.83) 0.029

Total protein (TProt) 1.06 (0.76–1.46) 0.730 1.79 (0.93–3.44) 0.076

After Bonferroni correction, the adjusted p-value was 0.0014 for the Caucasian group and 0.0017 for the African American group. No tests
were significant with these p-values. Nominally significant tests are bolded above. Odds ratios represent risk of having PPMS compared
to RRMS/SPMS. † Too few patients had data available to perform the analysis. ‡ It was not possible to calculate the upper limit of the
confidence interval.

Red cell distribution width (p-values: 1.19 × 10−4 (C) and 0.003 (AA)), neutrophil-
to-lymphocyte ratio (p-values: 4.93 × 10−16 (C) and 0.042 (AA)), and creatinine (p-values:
2.32 × 10−16 (C) and 0.012 (AA)) reached significance in the Caucasian group and nominal
significance in the African American group. As with WBC and bilirubin, an increase in
either led to decreased risk of having MS in both groups. Creatinine had odds ratios of
0.48 (95% CI: 0.40–0.57) and 0.79 (95% CI: 0.64–0.92) in the two groups, considerably lower
than any of the other biomarkers except bilirubin. Chloride (p-value: 1.66 × 10−13 (C)) and
neutrophil absolute count (p-value: 5.36 × 10−27 (C)) reached significance in the Caucasian
cohort but failed to reach significance in the African American cohort.

Multiple regression was performed for significant, related lab tests. In the CBC, both
mean platelet volume (p-values: 1.5 × 10−8 (C) and 3.8 × 10−6 (AA)) and platelet count
(p-values: 5.6 × 10−5 (C) and 0.005 (AA)) remained significant when regressed together.
In a subsequent regression, neutrophil absolute count (p-value: 1.72 × 10−11) remained
significant in the Caucasian cohort, while white blood cell count did not (p-value: 0.077).
The reverse was seen in the African American cohort, with only white blood cell count
remaining significant (p-value: 4.28 × 10−5).

3.2. Subtype Analysis

In the subtype analysis, no test was significant after Bonferroni correction, but several
lab values were nominally significant in both groups. For the odds ratios, a larger odds
ratio represents an increased risk of PPMS relative to RRMS/SPMS. In the Caucasian
group, increased MPV (p-value: 0.046) had a risk-increasing effect, while increased WBC
(p-value: 0.029) and neutrophil absolute count (p-value: 0.003) lowered PPMS risk. In the
African American group, increased calcium (p-value: 0.028) and anion gap (p-value: 0.009)
carried increased PPMS risk, and higher levels of chloride (p-value: 0.014) and bilirubin
(p-value: 0.029) corresponded to decreased risk. Creatinine levels approached significance
(p-values: 0.051 and 0.066) in both groups and carried increased risk. In the subtype
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analysis, all nominally significant tests for the Caucasian group were found in the CBC,
and all nominally significant tests for the African American group were found in the CMP.

Multiple regression was performed for nominally significant lab values with closely
related biology. In multiple regression analysis with the Caucasian mean platelet volume
and platelet count as covariates, platelet count remained significant (p-value: 0.036), while
mean platelet volume did not (p-value: 0.177). Similarly, in the African American group,
in an analysis with anion gap, calcium, and chloride as covariates, anion gap remained
significant (p-value: 0.032) while calcium (p-value: 0.331) and chloride (p-value: 0.153) did
not. Additionally, in the same group, analyzing creatinine and bilirubin together resulted in
bilirubin retaining its significance (p = 0.044); creatinine remained statistically insignificant
(p-value: 0.083).

3.3. Random Forest Classification

ROC curves in Figure 1 summarize the predictive performance of the random forest
model for each dataset. Both the CMP and CBC performed adequately at differentiating
between MS cases and matched controls, with average AUC values of 0.725 and 0.710,
respectively. However, when differentiating between PPMS and RRMS/SPMS patients,
neither the CMP model nor CBC model achieved notably improved performance over the
random guess baseline represented by the gray line, likely due to small sample sizes.

Figure 1. ROC curves showing performance of each random forest model.

4. Discussion

In this study, we characterized differences in hematological profiles between MS cases
and controls in both African American and Caucasian cohorts; furthermore, we performed
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a similar analysis to investigate differences between RRMS/SPMS and PPMS patients.
A number of biomarkers differed between groups in our analyses, although we were
unable to replicate the statistically significant relationships reported by Al-Hussain et al.
Interestingly, increased MPV was not only associated with MS in both the Caucasian and
African American groups, but it was also associated with PPMS in the Caucasian cohort in
the subtype analysis and trended in the same direction for the African American group.
Increased WBC had the opposite effect: in both groups of the case–control analysis and the
Caucasian group in the subtype analysis, it carried a protective effect, and this directionality
was also seen in the African American group during the subtype analysis, though not
significantly. Possible explanations for the lack of significance in the African American
subtype analyses include smaller sample sizes and physiological differences between the
groups. In the African American analyses, higher anion gap was associated with both MS
(case–control) and PPMS (subtype analysis). These results were not found in the Caucasian
subtype analysis. To our knowledge, none of these relationships have been previously
reported in the literature.

Previous studies have reported that bilirubin, creatinine, and the NLR have utility
for distinguishing between MS cases and controls and between MS subtypes. Due to
the MS subtypes present in our cohort, we were unable to compare our results to those
previously reported by Ljubisavljevic et al. evaluating bilirubin as a biomarker of MS
disease progression [21]. However, as both Ljubisavljevic et al. and Peng et al. reported,
bilirubin levels were significantly reduced in MS patients in our dataset [10,21]. Despite
the results of four previous studies that found that the NLR was elevated in MS patients,
our case–control analysis found that higher NLR was associated with decreased risk
of MS [24–27]. Two previous studies had reported inconsistent results regarding the
ability of the NLR to predict disease course [23,25]. We found that the NLR was not
associated with MS disease course. In our case–control analyses, creatinine was lower in
MS patients, which contradicts the results in three other studies [22,28,30]. As with the
NLR, conflicting evidence exists regarding the ability of creatinine to discriminate between
MS subtypes [28,30]. While our results only approached significance, they indicated that
creatinine was elevated in PPMS patients.

Given that the laboratory values in this study were selected based on availability rather
than biological significance, it is encouraging that the case–control random forest models
were able to perform notably better than the baseline. We expect that with sufficient samples
improved performance from the subtype models would be observed, as well. Altogether,
our results demonstrate that common laboratory values have utility in classifying MS cases
and controls; larger samples are needed to assess their value in classifying patients based
on MS subtype.

This study has several limitations. First, we were unable to account for the effects of
medication use and other clinical characteristics (age of MS onset, disease duration) on
hematological profile due to a lack of data for these variables. It has been reported that
MS treatments can affect hematological values [31–33], so our observed associations may
correlate with treatments and not necessarily disease onset. Observed associations may
also be due to changes as MS progresses, rather than onset. Second, as we used EHR data,
we were dependent on previously ordered tests, which limited our sample size for some of
the less common tests. Our sample sizes were also limited by the relative rarity of MS in
African American populations [1].

5. Conclusions

This study highlights several compelling trends; however, future studies are needed
to replicate these findings while controlling for possible confounding factors and ensuring
adequate study power for the subtype analyses.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/6/3318/s1, Table S1: Number of patients in each case–control analysis, Table S2: Number of
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