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Abstract

Background: Pharmacological modulation of cell fate decisions and developmental gene regulatory networks
holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could
overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following
myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing
specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that
modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or
exogenously delivered progenitor cells in order to promote cardiac regeneration.

Methods: Transcription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac
injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating
pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized
by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of
GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID.
Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and
bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression.

Results: GATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and
ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5
inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+).
Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4.
This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this
line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1
demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene
expression.
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Conclusions: Collectively, these results indicate the potential for therapeutic alteration of cell fate decisions and
pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional
programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within
this study could be used to develop regenerative strategies for myocardial regeneration.

Keywords: Stem cells, Cardiomyocyte subtype, Atrial cardiomyocyte, Ventricular cardiomyocyte, Heart regeneration,
GATA4, NKX2-5

Introduction
Myocardial infarction results in the loss of ventricu-
lar heart tissue which is not efficiently replaced [1].
Exogenously delivered pluripotent stem cell-derived
cardiac progenitors (CPs) or cardiomyocytes repre-
sent a potential cell source for replacement of lost
myocardium in the injured adult heart [2, 3]. Add-
itionally, low levels of endogenous cardiomyocyte
proliferation occurs via de-differentiation into a
progenitor-like state, proliferation of progenitor-like
cells, and re-differentiation into mature cardiomyo-
cytes [4, 5]. Importantly, failure of cells to re-
differentiate after the induction of de-differentiation
and proliferation results in adverse outcomes, including
left ventricular hypertrophy, arrhythmias, and sudden
death [6, 7]. Thus, small molecules capable of influencing
the fate decisions and differentiation programs of multipo-
tent progenitor cells could facilitate therapeutic regener-
ation of lost myocardium. Indeed, though in vitro
expansion and cell transplantation of pluripotent stem cell
(PSC) derived CPs, cardiomyocytes, cardiosphere-derived
cells, and mesenchymal stem cells are being explored as
therapeutic options for cardiovascular diseases [2, 8–16],
it is unknown if exogenously delivered CP differentiation
could be augmented by simultaneous delivery of chemical
inducers of atrial or ventricular cardiomyocyte differenti-
ation. Furthermore, it is unknown whether endogenous
progenitors/stromal cells in the adult human heart could
be chemically induced to generate functional atrial or ven-
tricular heart muscle to treat adult heart diseases. Add-
itionally, cardiomyocyte subtype differentiation could aid
in the generation of stem-cell derived cardiac patches or
bioengineered hearts for transplantation [17–19]. Cardio-
genic compounds might also modify pathological gene ex-
pression programs characterized by activation of fetal
gene expression networks, such as those observed during
adult heart disease [20, 21].
Though previous in vitro studies have led to the identifi-

cation of cardiogenic small molecules targeting develop-
mental signaling pathways [22–26], the ubiquitous role of
these pathways in non-cardiac organ homeostasis and
stem cell niches might limit their use in vivo. This could
be circumvented by developing cardiogenic compounds
targeting tissue-specific proteins, such as combinations of

developmental transcription factors (TFs). Notably, the
transition from proliferative multipotent progenitor cells
to differentiated cardiomyocytes is orchestrated by core
cardiac TFs acting synergistically and antagonistically [27].
These TFs include GATA4/MEF2C/TBX5/NKX2-5, and
loss of function phenotypes of these genes demonstrate
their effects on cardiac morphogenesis and target gene
activation [28–32]. More detailed studies on cardiac TF
machinery have revealed a low number of regulatory TFs
(e.g., GATA4, HAND2, MEF2, and TBX5) that are
required and able to cooperatively reprogram cardiac
fibroblasts into functional cardiac-like myocytes in vitro
and in vivo [1, 33–35]. Moreover, we have previously
identified GATA4 and NKX2-5 as master regulators of
stretch-induced hypertrophic responses in differentiated
cardiomyocytes [36] and reported the structural basis for
the GATA4/NKX2-5 interaction [37]. The observed
nuclear receptor-like structure of the GATA4/NKX2-5
complex provides an opportunity for small molecule inter-
ference, and we subsequently reported a novel family of
compounds targeting the GATA4/NKX2-5 interaction
that inhibited synergistic transcription from reporter
genes possessing NKX2-5 binding sites [38, 39]. Further-
more, we showed that the hit compound 3i-1000 inhibited
cardiomyocyte hypertrophy in vitro and improved left
ventricular ejection fraction/structural remodeling
after myocardial infarction and other cardiac injuries
in vivo [39–41].
Though the importance of GATA4 and NKX2-5 to

cardiovascular development and postnatal function has
been extensively reported [30, 31, 42], it is unknown to
what degree chemical perturbation of GATA4/NKX2-5
synergy affects atrial and ventricular cardiomyocyte dif-
ferentiation of cardiac progenitors. In the present study,
we have tested compounds that we previously identified
to inhibit the GATA4/NKX2-5 interaction in a dual
reporter assay for the differentiation of atrial and
ventricular cardiomyocytes from PSCs, leading to the
identification of small molecules modulating atrial and
ventricular gene expression, respectively. Chemically
induced gene expression changes were characterized by
qRT-PCR, global run-on sequencing (GRO-seq) and
immunoblotting, revealing the alteration of GATA4 pro-
tein and gene regulatory networks by novel compound
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3i-1000 during the differentiation process. Structure-
function analyses of active compounds implicated the in-
volvement of an acetyl lysine-like fragment that is poten-
tially related to the activity of the bromodomain and
extraterminal domain (BET) family of proteins such as
BRD4, and GATA4-BRD4 interactions were confirmed
by analysis of the GATA4 protein interactome by BioID.
Follow-up studies revealed that (+)-JQ1, an inhibitor of
BET bromodomains, increased the activity of both
GATA4-dependent and GATA4/NKX2-5-dependent
chamber-specific transcription programs, and this was
inhibited by 3i-1000. Collectively, these experiments re-
sulted in the identification of small molecules 3i-1000
and 3i-1103 as novel selective regulators of atrial and
ventricular gene expression, as well as provided insight
into the mechanism-of-action of GATA4-targeted com-
pounds involving an acetyl lysine-like subdomain.

Materials and methods
Spontaneous and directed differentiation assays of
mouse embryonic stem cells
Differentiation assays for dual reporter mouse embryonic
stem cells (ESCs) were conducted as described previ-
ously [43], though compound treatment windows were
modified as indicated. Flow cytometry was performed on
a BD Accuri C6 or BD LSRFortessa flow cytometer. Syn-
thesis of compounds used in the present study was per-
formed in the Division of Pharmaceutical Chemistry at
the University of Helsinki, Pharmatory (Oulu, Finland),
Chembridge (San Diego, USA), and Maybridge (Leices-
tershire, UK) as described [38, 39]. All-trans retinoic
acid (ATRA) and (+)-JQ1 were purchased from a com-
mercial provider (Sigma). Compounds were diluted in
DMSO prior to administration (final DMSO concentra-
tion 0.1% in medium) and values were normalized to
DMSO controls. For characterization of chemically dif-
ferentiated embryoid bodies (EBs) by qRT-PCR, RNA
was isolated from D12 EBs using TRIzol reagent
(Thermo Fisher Scientific) and RNeasy MinElute
Cleanup kit. qRT-PCR reactions were performed using
Taqman gene expression assays (Supplementary Table 1),
and values were normalized to a reference gene (Actb).
qRT-PCR reactions were performed on a Fluidigim Bio-
mark HD system.

Immunoblotting of GATA4
GATA4 protein was examined in mESC-derived EBs
collected on D5 and D12 of differentiation with com-
pound treatments. For overexpression studies, HEK293
cells were transfected with GATA4-V5 tagged plasmid.
See extended description of these studies in the Supple-
mentary Methods.

Analysis of protein sequences and compound
conformations
Protein sequences for GATA4 were downloaded from
UniProt Knowledgebase (UniProtKB) which contains
two separate sections: UniProtKB/Swiss-Prot (SP, manu-
ally annotated) and UniProtKB/TrEMBL (TR, computa-
tionally annotated). Sequences were aligned by using
Clustal Omega (European Bioinformatics Institute,
EMBL-EBI).
The commercial modeling package MOE 2019.0102

(Chemical Computing Group Inc., Montreal, Canada;
http://www.chemcomp.com) with LowModeMD module
was utilized to generate small-molecule conformation
databases. A force field MMFF94x suitable for small
molecule calculations was applied for molecule parame-
terizations and energy minimizations as described previ-
ously [39]. Moreover, default settings were employed to
score and rank conformational databases. The lowest en-
ergy conformation was selected as a representative struc-
ture of the compound.

GRO-seq
The GRO-seq method was performed as described pre-
viously [44]. Neonatal rat ventricular myocytes (NRVM)
were cultured as previously described [39], and isolation
of nuclei was performed as detailed in Supplementary
Methods. Samples from two biological replicates were
pooled so that in GRO-seq analysis there were around 5
M nuclei/sample. A run-on reaction was performed with
Br-UTP in the presence of sarkosyl that prevents loading
of new polymerases. The run-on products were purified
and DNAse treated. Base hydrolysis was used for RNA
fragmentation. Anti-BrUTP beads were used to enrich
run-on products. Poly-A tailing was used in the first step
of sequencing library preparation.

BioID measurements
Cell line generation for expressing GATA4 or NKX2-5
with N-terminal MAC tag, sample preparation and mass
spectrometry was performed similarly as described [45],
with the modification of using 1% n-Dodecyl-β-D-Mal-
toside, instead of 0.5% IGEPAL, during sample prepar-
ation. Proteins detected by BioID were filtered using the
CRAPome contaminant repository [46].

Bromodomain assays
Selected compounds (10 μM) were subjected to the
Eurofins/DiscoverX BROMOscan™ assay to identify the
interaction with biologically relevant bromodomains. In
brief, this consists of a cell-free assay in which competi-
tive inhibition is identified based on the interference of
the bromodomain interaction under study with a known
ligand. In total, test compounds were assayed against 32
bromodomains.
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Percent control was calculated as follows:
((test compound signal – positive control signal)/

(negative control signal – positive control signal)) × 100.

Reporter gene assays
COS-1 cells were cultured and reporter gene assays were
performed as previously described [40] and in the
Supplementary Methods. Each experiment included
three replicates. For the analysis of the results, the firefly
values were normalized to the vehicle-treated control
values, i.e., GATA4 or GATA4/NKX2-5 synergy.

Data analysis and statistics
Data from differentiation assays, qRT-PCR experiments,
and reporter gene assays were analyzed in R. Data were
normalized to DMSO (vehicle)-treated and are presented
as the mean ± SEM. Differences between compounds-
and vehicle-treated groups were determined by perform-
ing T test or Wilcoxon test as indicated (****P ≤ 0.0001,
***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05).
For GRO-seq analysis, the sequencing reads were

quality controlled using the FASTX toolbox and mapped
to the rat genome using Bowtie. The Homer tool was
used to quantify the GRO-seq signal level (http://
biowhat.ucsd.edu/homer/chipseq/index.html) in four
conditions. Genes were ranked based on their fold
change between 2 h treatment and control, and those
with at least 1.5-fold change were selected for further
analysis based on hierarchical clustering. The library size
normalized read counts were visualized as a heatmap.
USCS genome browser tracks were generated using
Homer to overlay the transcriptional activity data from
GRO-seq with gene annotations. For BioID analysis, the
proteins detected by mass spectrometry were filtered
using the CRAPome contaminant repository [46]. Those
proteins seen in more than 10% (41/411) of CRAPome
database experiments were discarded.

Results
Effects of GATA4-targeted compounds on ventricular
cardiomyocyte gene expression during pluripotent stem
cell differentiation
In order to test for the effects of GATA4-targeted com-
pounds on differentiation programs of cardiomyocyte
subtypes (atrial vs ventricular), a differentiation assay
based on the expression of markers of ventricular (Myl2-
eGFP, venGFP) and atrial (SMyHC3-TdTomato, atrRFP)
cardiomyocytes was used [43]. As compounds affect
GATA4/NKX2-5 protein-protein interactions [38, 39],
and it is unknown to what extent these protein-protein
interactions have temporal characteristics during the
differentiation process, compounds were tested during a
broad treatment window (D2–D10) representing both
mesodermal commitment and activation of differentiation

markers (Fig. 1a). Spontaneous beating is observed on D9
of this assay, in line with activation of venGFP and atrRFP
reporters. Both the % of venGFP+ cells and the single cell
mean fluorescent intensity (MFI) of venGFP were
analyzed for all tested compounds to assess ventricular
cardiomyocyte differentiation. To assess differentiation to
the atrial fate, atrRFP and the atrRFP/venGFP ratio were
also measured for a subset of compounds.
Primary compound screening was conducted for 32

derivatives of GATA4-targeted lead compound 3i-1000
(Supplementary Table S2, Figures S1 and S2), and active
compounds were evaluated in follow-up experiments.
Statistically significant increases in the %venGFP+ cells
were observed for 3i-1000, 3i-1047, 3i-1103, 3i-1148,
and 3i-1236 (Fig. 1b). A trend for increases in
%venGFP+ cells were observed for 3i-1194 (Fig. 1b), 3i-
2042, 3i-2043, and 3i-2045 (Supplementary Figure S1a).
All-trans retinoid acid (ATRA), a known inhibitor of
embryonic multipotent CPs [47], induced statistically
significant dose-dependent decreases in the %venGFP+
cells, as expected (Fig. 1b).
The single-cell mean fluorescent intensity (MFI) was

also measured in order to understand the levels of acti-
vation of marker gene expression in cardiac cells at a
single-cell level (Fig. 1c, Supplementary Figures S1b,
S2b). As GATA4-targeted compounds inhibit NKX2-5-
dependent transcription [38, 39], and germline deletion
of NKX2-5 in mouse embryos resulted in detectable, but
downregulated expression of the venGFP promoter se-
quence (encoded by Myl2) [32], a decline in venGFP
MFI at a single cell level would be consistent with previ-
ous models of NKX2-5 regulation of ventricular tran-
scriptional networks. Indeed, statistically significant
decreases in venGFP-MFI were observed upon com-
pound treatment with 3i-1000, 3i-1103, 3i-1148, and
ATRA (Fig. 1c). Additionally, there was a tendency of
venGFP-MFI to decrease upon treatment with 3i-1047,
3i-1165 (Fig. 1c), and 3i-2043 (Supplementary Figure
S1b). We therefore concluded that active compounds in-
creased the proportion of venGFP+ cells, but venGFP
levels in these cells decline compared to control samples,
consistent with expected effects of interruption of
GATA4/NKX2-5 interactions.

Subclass of GATA4-targeted compounds possessing an
acetyl lysine-like domain associated with ventricular
differentiation
In order to determine the effects of compounds on
stem cell differentiation, venGFP was utilized to rank
the activity of GATA4-targeted compounds in the
spontaneous differentiation assay. Based on our previ-
ous studies [38, 39], a group of 32 structurally or func-
tionally similar compounds (Supplementary Table S2)
were selected for screening experiments (n > = 2).
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Screening results (Fig. 1b, Supplementary Figures S1a,
S2a) reveal a consistent finding: all compounds that
were either inactive (90–110%, 10 out of 32
compounds) or agonistic (> 110%, 3 out of 32 com-
pounds) in previous GATA4/NKX2-5 synergy studies

(Supplementary Table S2) showed no significant change
(> twofold) of %venGFP+ cells in spontaneous differen-
tiation experiments. However, a number of the inhibi-
tory compounds in the GATA4/NKX2-5 synergy assay
(< 90%, 19 out of 32 compounds) were able to

Fig. 1 Compound screening for activation of atrial and ventricular reporter genes. a Screening strategy for identification of cardiogenic
compounds during the spontaneous differentiation of reporter mESCs. GATA4-targeted compounds were screened during a D2–D10 window
encompassing mesodermal commitment, cardiac progenitor specification, and differentiation of spontaneously beating cardiomyocytes.
Differentiation cultures were measured on D12 of differentiation after treatment with GATA4-targeted compounds for b %venGFP+ cells and c
venGFP-MFI. Pluripotent stem cells (PSCs), cardiomyocyte (CM), atrRFP (SMyHC3-TdTomato, atrial), venGFP (Myl2-eGFP, ventricular), all-trans
retinoic acid (ATRA), and mean fluorescent intensity (MFI). Data is presented as mean ± SEM (n≥ 3, independent experiments). ****P≤ 0.0001,
***P ≤ 0.001, **P≤ 0.01, *P ≤ 0.05 (T test or Wilcoxon vs DMSO control). n = 3 (3i-1000 300 nM, 3i-1194 10 μM, 3i-1194 15 μM, 3i-1165 10 μM, 3i-
1165 30 μM), n = 4 (3i-1103 1 μM, 3i-1236 5 μM, 3i-1236 10 μM), n = 5 (3i-1047 3 μM, 3i-1103 3 μM, 3i-1148 5.5 μM), n = 7 (3i-1103 5 μM), n = 8 (3i-
1047 10 μM), n = 10 (ATRA 10 μM), n = 11 (3i-1000 1 μM), n = 13 (ATRA 2.5 μM), n = 21 (3i-1000 5 μM), n = 26 (3i-1000 3 μM)
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demonstrate an effect on the number of venGFP+ cells.
Therefore, screening data of 32 compounds demon-
strate that GATA4/NKX2-5 inhibitory activity is pre-
ferred for the chemical modulation of ventricular
differentiation. A more detailed structural comparison
of low energy conformations revealed a structure-
activity relationship with an independent subclass of
GATA4/NKX2-5 inhibitory compounds that contrib-
uted to %venGFP+ cells (Fig. 2). Computational analysis
of active compounds indicates a common nominator
for the subclass of GATA4/NKX2-5 inhibitory com-
pounds that mimics the electrostatic field of an acety-
lated lysine residue. Strikingly, the most potent
venGFP-activating compounds, e.g., 3i-1000, 3i-1047,
3i-1148, and 3i-1194 (excluding compound 3i-1103
with different chemotype), carry the electrostatically
similar acetyl lysine-like domain that separates those
from other potent GATA4/NKX2-5 synergy inhibitors,
e.g., 3i-0662, 3i-1037, 3i-1043, and 3i-1165. Addition-
ally, another structurally similar set of compounds,
namely 3i-2042, 3i-2043, and 3i-2045 (Fig. 2) demon-
strated a trend to increase the number of venGFP+
cells.

Modulation of atrial gene expression programs by
GATA4-targeted compounds
In addition to the analysis of ventricular reporter expres-
sion, expression of an atrial reporter was examined for a
subset of compounds. Importantly, in addition to being

the earliest atrial-specific marker during embryogenesis,
the atrRFP promoter was shown to be positively regu-
lated by GATA4, but not by GATA4 co-activators
NKX2-5 or MEF2C [48]. The expression of atrial
markers was also affected by treatment with novel com-
pounds, reflected by changes in the %atrRFP cells and
the atrRFP-MFI (Fig. 3a, b, Supplementary Figures S3a-
b). Statistically significant increases in %atrRFP+ cells
were observed following treatment with 3i-1000 and 3i-
1103 (Fig. 3a). An increasing trend in the %atrRFP cells
were observed following treatment with 3i-1228 (Supple-
mentary Figure S3a) and 3i-1229 (Fig. 3a), whereas a sta-
tistically significant decrease in the %atrRFP+ cells was
only observed upon treatment with ATRA (Fig. 3a).
Statistically significant increases in atrRFP-MFI were
observed upon treatment with 3i-1000, 3i-1103 (Fig. 3b),
3i-1235, 3i-1236, and 3i-1238 (Supplementary Figures S3b).
Thus, the potent GATA4-targeted compounds 3i-1000 and
3i-1103 were also potent activators of atrRFP expression.
The effects of atrialization of CPs were observed by

analysis of %atrRFP/%venGFP and atrRFP/venGFP-
MFI (Fig. 3c, d, Supplementary Figure S4a-b). Statisti-
cally significant decreases in the atrial/ventricular ra-
tio were observed for 3i-1000 (Fig. 3c, 5 μM),
suggesting that this compound promotes the differen-
tiation of ventricular, rather than atrial cardiomyo-
cytes. Only ATRA led to statistically significant
increases in atrial/ventricular ratio, consistent with
previous reports [43, 49], though trends for increases

Fig. 2 Subclass of structure-dependent GATA4/NKX2-5 synergy inhibitors demonstrate a substantial increase of %venGFP+ cells. a Electrostatic
distribution of compound 3i-1000 partially resembles the electrostatic field of an acetyl lysine residue. b Subclass of GATA4/NKX2-5 synergy
inhibitors 3i-1000, 3i-1047, 3i-1148, and 3i-1194 contain the acetyl lysine-like domain and increased the %venGFP+ cells in the spontaneous
differentiation assay (n = 3–26). c Highly potent GATA4/NKX2-5 synergy inhibitors 3i-0662, 3i-1037, 3i-1043, and 3i-1165 are not structurally aligned
with the acetyl lysine-like domain and do not activate ventricular gene expression (n = 2–3). d Low affinity GATA4/NKX2-5 synergy inhibitors 3i-
2042, 3i-2043, and 3i-2045 demonstrated a trend to increase the number of venGFP+ cells in the differentiation assay (n = 2)
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were observed for 3i-1000 (1 μM), 3i-1103 (1 μM),
and 3i-1229 (3 μM) (Fig. 3c). Statistically significant
increases in atrRFP/venGFP-MFI were observed for
3i-1000, 3i-1103, ATRA (Fig. 3d), and 3i-1238 (Sup-
plementary Figure S4b). Intriguingly, these results
demonstrate the differential modulation of both atrial
and ventricular gene expression by GATA4-targeted

compounds during the differentiation of PSCs to the
cardiomyocyte fate.

Alteration of expression of cell identity genes during
pluripotent stem cell differentiation
In order to gain insight into the full scope of changes in
gene expression induced by the GATA4-targeted

Fig. 3 Compound screening for activation of atrial and ventricular reporter genes. GATA4-targeted compounds were screened during D2–D10 of
spontaneous differentiation and measured for a %atrRFP+ cells, b atrRFP-MFI, c atrial/ventricular ratio, and d atrRFP/venGFP ratio. All-trans retinoic
acid (ATRA), atrRFP (SMyHC3-TdTomato, atrial), and mean fluorescent intensity (MFI). Data is presented as mean ± SEM (n = independent
experiments). ****P≤ 0.0001, ***P ≤ 0.001, **P≤ 0.01, *P ≤ 0.05 (T test vs DMSO control). n = 2 (3i-1000 1 μM), n = 3 (3i-1229 3 μM), n = 4 (3i-1103
1 μM, 3i-1103 3 μM, 3i-1103 5 μM), n = 9 (3i-1000 3 μM, 3i-1000 5 μM), n = 10 (ATRA 10 μM)
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compounds, qRT-PCR was performed on D12 EBs after
ten-day treatment with the lead compound 3i-1000
(1 μM, 3 μM, 5 μM) for markers of cardiomyocytes
(pan-, atrial-, ventricular), CPs, stromal cells, cardiac
transcription factors, and developmental signaling path-
ways previously implicated in cardiomyocyte differenti-
ation and cardiac subtype specification. In-depth
characterization was restricted to 3i-1000 based on the
beneficial effects of this compound demonstrated in previ-
ous studies [38–40, 50], in addition to its possession of an
acetyl lysine-like fragment characteristic of compounds
promoting ventricular gene expression. The results are
shown in Fig. 4a and Supplementary Figure S5. Statisti-
cally significant declines were observed for cardiac
transcription factors Tbx5, Nr2f2 and Pitx2 (Fig. 4a),
suggesting perturbation of the cardiac gene regulatory net-
work by 3i-1000. Though the atrial-specific Sln showed a
statistically significant decline at 3 μM, no changes where
observed at the concentration of 5 μM 3i-1000. However,
atrRFP showed a statistically significant increase when
treated with 5 μM 3i-1000 (Fig. 4a), suggesting this may
be a key threshold for atrial-specification. Furthermore,
non-canonical Wnt marker Alcam showed a statistically
significant decrease, whereas canonical Wnt signaling
marker Axin2 was upregulated. Statistically significant up-
regulation of the retinoic acid degrading gene Cyp26a1
was also observed (Fig. 4a). Furthermore, endothelial
marker Pecam1 and fibroblast marker Thy1 were upregu-
lated by 3i-1000 treatment, whereas the smooth muscle
marker Acta2 and fibroblast marker Vim displayed statis-
tically significant declines. Finally, progenitor markers Kdr
and Pdgfra were downregulated in EBs, suggesting that a
more differentiated phenotype is induced by 3i-1000 treat-
ment (Fig. 4a), Importantly, Gata4 mRNA levels were un-
changed by 3i-1000 (Supplementary Figure S5).

GATA4 protein levels during the differentiation of
chamber-specific mESCs
To further elucidate the mechanism-of-action of the lead
compound 3i-1000 and its regulation of atrial and ven-
tricular gene expression, we measured GATA4 protein
levels during the spontaneous differentiation of mESCs.
Similar to primary screening experiments, EBs were cul-
tured in the presence of 3i-1000 during D2–D10 of dif-
ferentiation, and EBs were collected for immunoblotting
at D5 and D12 (Fig. 4b and Supplementary Figure S6).
Treatment with 3i-1000 decreased GATA4 protein levels
(50 kDa band), and this effect was more pronounced
with addition of a higher concentration of 3i-1000 (Fig.
4b). Surprisingly, we also observed a heavier protein
band with an estimated molecular weight of 70 kDa
(GATA4-70 kDa) (Fig. 4b). To confirm that the 70 kDa
band maintained by 3i-1000 was not the result of non-
specific binding of the GATA4 antibody, GATA4 with a

V5-tag was overexpressed in HEK293 cells (Fig. 4c and
Supplementary Figure S7). Indeed, the V5-antibody rec-
ognized both 50 kDa and 70 kDa bands in samples with
GATA4-V5 overexpression, but not in samples without
overexpression of GATA4-V5, indicating that the
GATA4-70 kDa band observed in mESC differentiation
experiments indeed represents GATA4 protein.

Stage-specific addition of GATA4-targeted compounds
promotes the differentiation of multipotent CPs to
ventricular cardiomyocytes
In order to more precisely define effects of GATA4-
targeted compounds on multipotent cardiac progenitors,
we next explored whether shorter compound treatment
windows might promote cardiomyocyte differentiation
in a defined cardiac progenitor cell assay. For this pur-
pose, a second assay was utilized based on a directed dif-
ferentiation system with defined progenitor cell
populations (Fig. 5a) [43]. Importantly, D6 cells repre-
sent second heart field CPs expressing Isl1, as described
previously [43], and beating is never observed prior to
D7 in this assay, assuring their undifferentiated pheno-
type. In contrast to the primary screening assay, which
was based on flow cytometry, this assay is based on total
venGFP fluorescence. Though total fluorescence was
used as measurement in the compound screening assay,
we observed cardiomyocyte differentiation efficiencies of
~ 10–40% in basal conditions as measured by flow cy-
tometry in directed differentiation. Compounds were
tested during two windows, one in which compounds
were administered before the onset of spontaneous beat-
ing (D6–D8), and one in which compounds were admin-
istered after the onset of spontaneous beating (D7–D9).
Selected compounds tested in this assay showed previ-
ous activity within the primary spontaneous differenti-
ation assay (Fig. 5b, Supplementary Figure S8). Both 3i-
1000 (3 μM) and 3i-1103 (5 μM) induced statistically
significant increases in venGFP total fluorescence when
added to CPs, but not to differentiated cardiomyocytes
(Fig. 5b). Addition of cytotoxic (20 μM) concentrations
of 3i-1000 led to a statistically significant decline in
venGFP signal, as expected. Furthermore, 3i-1047
(20 μM) induced statistically significant increases in
venGFP total fluorescence when added after the onset of
spontaneous beating. Thus, GATA4-targeted
compounds 3i-1000 and 3i-1103 also promote ventricu-
lar cardiomyocyte differentiation programs in multipo-
tent CPs.

Analysis of the protein interactome by BioID
In order to gain further insight into GATA4 interactions
that could underlie 3i-1000 mechanisms-of-action, par-
ticularly in regard to novel GATA4 binding partners af-
fecting atrial and ventricular differentiation, we analyzed
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Fig. 4 Characterization of chemically induced differentiation by qRT-PCR and immunoblotting. a D12 cultures were collected and analyzed by
qRT-PCR for markers of cell identity genes, transcription factors, and signaling pathways. Data is presented as mean ± SEM (n = 4, independent
experiments). *P ≤ 0.05 (Wilcoxon test vs DMSO control). b Modulation of GATA4 isoforms by compound treatment in differentiating mESCs.
Differentiating mESCs were treated with 3i-1000 during D2–D10 window of differentiation and collected for immunoblotting at D5 and D12.
Anti-GATA4 detection, lanes 1–4 (day 5 samples); lane 1: medium only (M), lane 2: DMSO (D), lane 3: 3i-1000 (3 μM), lane 4: 3i-1000 (5 μM), and
lanes 5–8 (D12 samples) lane 5: medium only (M), lane 6: DMSO (D), lane 7: 3i-1000 (3 μM), lane 8: 3i-1000 (5 μM). Note the heavier GATA4-70 kDa
band is abundant in differentiating mESCs. c For confirmation of this band as GATA4, overexpression of GATA4-V5 in HEK293 cells and
immunoblotting for anti-GATA4 and anti-V5. Lane 1: protein ladder, lane 2: GATA4-V5, lane 3: GATA4-V5 (1/5), and lane 4: GATA4-V5 (1/25). Note
that GATA4-70 kDa is detected in cells with overexpression by both anti-GATA4 and anti-V5 antibodies
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the protein interactome of GATA4 and NKX2-5 by
BioID (Fig. 6a, Supplementary Figure S9 and Tables S3,
S4). During this experiment, GATA4 or NKX2-5 was
expressed in HEK293 cells and biotinylated proteins
were identified by mass spectrometry. Gene ontology
enrichment analysis of BioID results demonstrated a
comparable protein-protein interactome for both TFs
GATA4 and NKX2-5 (Supplementary Tables S3 and
S4). TFs and their co-factors, chromatin and RNA poly-
merase II binders, and regulators of epigenetic signaling
are highly enriched among the most abundant co-
proteins. BioID results also demonstrate the frequent
interaction/proximity of GATA4 with bromodomain-
containing protein 4 (BRD4).
Importantly, bromodomain-containing proteins inter-

act with acetylated lysines on histones [51], overlapping
with the acetyl lysine-like domain within the ventricular
differentiation inducers of the subclass of GATA4-
targeted compounds (see the “Subclass of GATA4-
targeted compounds possessing an acetyl lysine-like do-
main associated with ventricular differentiation” section).
To further explore the role of the acetyl lysine-like do-
main associated with cardiogenic compounds, we con-
ducted comparisons of sequence conservation in zinc
fingers of GATA4 among different species (Supplemen-
tary Figure S10). It is well-recognized that human and
other mammals are unable to regenerate cardiomyocytes

after birth or injury [52] and that they also carry a
conserved arginine (R310) at the C-terminal tail of the
zinc finger domain. To our great surprise, regenerative
species such as zebrafish, Eastern newt, bat star, sea
cucumber, African clawed frog, and Hydra vulgaris carry
conserved expression of lysine (K310) at the same site.

Combinatorial effects of GATA4-targeted compounds and
BET bromodomain inhibitor on activation of chamber-
specific reporter gene expression
Finally, in order to rule out the possibility that GATA4-
targeted compounds interact directly with bromodo-
mains via their acetyl lysine-like fragment, compounds
3i-1000 and 3i-1047 were screened in the BromoMAX
assay (Supplementary Figure S11). These experiments
revealed that compounds 3i-1000 and 3i-1047 were in-
active against bromodomain proteins and, therefore, did
not have affinity across those protein target classes.
However, intrigued by the possibility that chemical
modulation of epigenetic signaling might regulate
GATA4-dependent transcription, we tested the BET
bromodomain inhibitor (+)-JQ1 [53] in reporter assays
using either a GATA-dependent promoter (NP112) or
an NKX2-5 dependent promoter (3xHA-NKX2-5), re-
spectively. Importantly, NP112 promoter sequences are
originally from the chamber-specific Nppb gene, and
NKX2-5 is known as a master regulator of ventricular

Fig. 5 a Strategy for confirmatory assay for the cardiogenic activity of novel compounds. Compounds were added either prior to (D6–D8, cardiac
progenitors) or after (D7–D9, cardiomyocytes) the onset of spontaneous beating in defined, serum-free conditions. b venGFP total fluorescence
upon compound treatment with 3i-1000, 3i-1103, and 3i-1047. Cardiac progenitor (CP) and venGFP (Myl2-eGFP, ventricular). Data is presented as
mean ± SEM (n = 4, independent experiments). *P < 0.05 (T test vs DMSO control)
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Fig. 6 a Protein networks of GATA4 and NKX2-5 in HEK293 cells identified by single BioID experiment reveal overlapping functional protein
classes regulating transcriptional pathways. Proteins detected by BioID were filtered using the CRAPome contaminant repository. Proteins seen in
more than 10% (41/411) of CRAPome database experiments were discarded. Then, the top 100 interactors with the highest peptide-spectrum
match (PSM) values were illustrated for both GATA4 and NKX2-5. b Regulation of the expression of a chamber-specific reporter reveals joint
transcriptional modulation by GATA4/NKX2-5 and BET bromodomain inhibitors. Modulation of transcriptional activity resulting from GATA4
binding sites and GATA4 overexpression. NP112 (Nppb promoter sequence) was transfected into COS-1 cells in combination with a GATA4
overexpression vector and luciferase activity was measured in the presence or absence of GATA4-targeted compounds and/or the BET
bromodomain inhibitor (+)-JQ1. c Modulation of transcriptional activity resulting from activation of a 3xHA-NKX2-5 luciferase cassette containing
NKX2-5 binding sites in combination with GATA4/NKX2-5 overexpression in the presence or absence of GATA4-targeted compounds and/or the
BET bromodomain inhibitor (+)-JQ1. NP112—rat minimal BNP promoter-luciferase construct containing GATA4 binding sites, pMT2—plasmid
backbone only (no TF overexpression), 3xHA-NKX2-5—promoter-luciferase construct containing three high affinity NKX2-5 binding sites upstream
of a rat albumin minimal promoter. Data is presented as mean ± SEM (n ≥ 2, independent experiments)
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cell fate determination and maturation [54]. Overexpres-
sion of either GATA4 alone or the combination of
GATA4 and NKX2-5 was performed in conjunction
with compound treatment. Strikingly, (+)-JQ1 increased
GATA4-mediated transcription from the NP112 pro-
moter, and this was attenuated by treatment with 3i-
1000 (Fig. 6b). Similarly, (+)-JQ1 treatment led to
increases in reporter activity from the NKX2-5-
dependent 3xHA-NKX2-5 promoter in conjunction with
GATA4/NKX2-5 overexpression, and this was also at-
tenuated by 3i-1000 (Fig. 6c). However, exposure to
other bromodomain inhibitors PFI-3 (probable global
transcription activator SNF2L2 (SMARCA2) and tran-
scription activator BRG1 (SMARCA4)) and GSK4027
(histone acetyltransferase KAT2A and histone acetyl-
transferase KAT2B) did not change luciferase-activity in
GATA4/NKX2-5 reporter assays (data not shown).
Thus, selective BET family bromodomain inhibition
leads to modulation of GATA4 activity, and this is fur-
ther modulated by the GATA4-targeted lead compound
3i-1000. The GATA/NKX synergy activator, 3i-0777
(Supplementary Table S2), was not able to inhibit
(+)-JQ1-mediated increases in GATA-dependent
transcription.

Analysis of global transcriptional changes in
differentiated primary ventricular cardiomyocytes
Intrigued by the possibility that GATA4-targeted com-
pounds could also modulate the maturation of fully
differentiated ventricular cardiomyocytes, we measured
the effect of compound 3i-1000 on transcription in

primary neonatal rat ventricular myocytes by global run-
on and sequencing (GRO-seq) to identify pathways af-
fected by 3i-1000 treatment (Fig. 7a, b and Supplemen-
tary Table S5). Identification and quantification of gene
regions that changed their transcriptional activity was
performed after short-term exposure of 3i-1000 (30 and
120 min) to focus on direct effects on transcriptional
regulation, rather than indirect effects resulting from
prolonged compound treatment. The results revealed an
upregulation of early response genes, e.g., activity-
regulated cytoskeleton-associated protein (Arc), and or-
phan nuclear receptor proteins (NR4A-family) (Fig. 7a,
b). GRO-seq results also indicated chemical modulation
of cardiac cell fate regulators in ventricular cardiomyo-
cytes, such as bone morphogenetic protein, which was
upregulated following two-hour exposure to 3i-1000.

Discussion
Transplantation of PSC-derived cardiac progenitors [2]
and cardiomyocytes [8] is being actively explored as a
therapeutic modality to replace tissue lost following
myocardial infarction, but it is uncertain if transplanted
cells are able to maintain a fully differentiated phenotype
in the adult heart. Furthermore, it is unclear whether
these cells are able to assume subtype-specific gene
expression programs characteristic of mature atrial and
ventricular cardiomyocytes [8]. Small molecule com-
pounds might represent a viable strategy to overcome
these challenges, though the in vivo utility of compounds
that induce cardiomyocyte differentiation by targeting
ubiquitous signaling pathways might be limited due to

Fig. 7 GRO-seq experiment (two biological replicates pooled for GRO-seq analysis). a Heat map depicting differentially expressed genes following
30 and 120min treatments with GATA4-targeted compound 3i-1000 versus DMSO control in neonatal rat ventricular cardiomyocytes. b Most
prominently up- and downregulated genes following GRO-seq experiments
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unwanted systemic effects. Furthermore, these compounds
do not direct differentiation to specific subtype fates, such as
atrial and ventricular cardiomyocytes [22–26]. The develop-
ment of small molecule compounds that could enhance the
therapeutic potential of exogenous delivery of stem cell-
derived cardiac progenitors [2], cardiomyocytes [8], or car-
diospheres [10] to the infarcted heart would represent a sig-
nificant advance in the field of cardiac regeneration.
In the present study, we explored the effects of GATA4-

targeted compounds on the expression of atrial and ven-
tricular reporter genes in differentiating PSCs and identi-
fied a structural subclass that distinctly alters atrial and
ventricular gene expression. These compounds target the
GATA4/NKX2-5 interaction, a tissue-specific combin-
ation that might confer selectivity towards the heart [8].
Treatment of differentiating PSCs with 3i-1000 and 3i-
1103, previously identified inhibitors of the GATA4/
NKX2-5 protein-protein interaction [38, 39], resulted in
an increased proportion of venGFP+ cells, while leading
to decreases in venGFP-MFI measured at the single cell
level. This observation is in line with reported phenotypes
arising from germline deletion of NKX2-5 [32, 55]. In
addition to altering expression of ventricular reporters,
GATA4-targeted compounds induced an increase in both
atrRFP+ cells and atrRFP-MFI. As atrRFP is known to be
GATA4, but not NKX2-5 dependent [48], this increase in
GATA4-dependent transcription could be explained by
TF repositioning in response to interruption of TF

synergy, as has been described previously in genetic loss-
of-function models [27]. This suggests that novel GATA4-
targeted compounds specifically affect TF interactions and
that inhibition of these interactions might enhance the ac-
tivity of a single TF at some promoter sequences. Our ap-
proach thus includes the comprehensive modulation of
TF machinery, as inhibition of the GATA4/NKX2-5 inter-
action allows for more efficient cardiac gene activation/
differentiation via alternative synergistic/repressive
GATA4 complexes. Therefore, we have created a model
in which GATA4-targeted compounds modulate atrial
and ventricular target gene expression during the differen-
tiation process (Fig. 8).
Compounds detailed within the present study target

the GATA4/NKX2-5 protein-protein interaction, and
protein-protein interactions have only recently been
considered as a new type of drug target for small mole-
cules [56]. Protein–protein interactions regulate a variety
of cellular functions, including cell cycle progression,
signal transduction, and metabolic pathways [57].
However, targeting protein-protein interactions with a
small molecule compound is a challenging task, and
protein-protein interactions have previously been con-
sidered as “undruggable,” although the paradigm is now
changing due to more and more successful examples
[58]. Protein-protein networks are highly interconnected,
and challenges also lie in the development of reliable
primary assays and in the identification of valid positive

Fig. 8 Summary model figure depicting proposed actions of GATA4-targeted compounds and the bromodomain inhibitor (+)-JQ1 on cardiac
gene regulatory networks. Ventricular cardiomyocytes (vCMs), atrial cardiomyocytes (aCMs), bromodomain-containing protein 4 (BRD4),
transcription factor (TF), atrRFP (SMyHC3-TdTomato, atrial), and venGFP (Myl2-eGFP, ventricular)
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hits. Furthermore, identification of the target site and
structure-based design of new compounds may be chal-
lenging if the proteins of interest have not yet been co-
crystallized. Indeed, the precise mechanism-of-action in-
volving the impact on TF interactions must be further
resolved in order to develop more selective compounds
with in vitro and/or in vivo bioactivity.
In the present study, structural analysis of GATA4/

NKX2-5 inhibitory compounds highlights a scaffold that
carries a position-specific molecular fragment mimicking
the electrostatics of an acetyl lysine domain. Further-
more, sequence-based comparison revealed a GATA4-
specific point-mutation (R310K) that associates with re-
generative species and may represent a promising target
site for compound design and gene editing. The associ-
ation of the arginine-lysine switch with the function of
GATA4 in regenerative species is currently unclear, and
evaluation of common genetic variation among human
populations (dbSNP Build 153) did not recognize
GATA4-mutation R310K (data not shown). Therefore,
K310 conserved in regenerative species may represent a
modification that will have an impact on compound de-
sign and could be introduced by genome editing in a
therapeutic setting. Furthermore, computational model-
ing suggests direct binding of GATA-targeted com-
pounds to the C-terminal zinc finger of GATA4 that
mediates DNA binding and the majority of protein-
protein interactions (unpublished observations). Interest-
ingly, BioID analysis of the GATA4 interactome revealed
interactions between GATA4 and bromodomain-
containing proteins, such as BRD4. We further showed
novel functional crosstalk between GATA4 and BRD4
by using the BET bromodomain inhibitor (+)-JQ1 and
reporter gene assays derived from the chamber-specific
Nppb promoter. Notably, GATA4-mediated transcrip-
tion was regulated independently by either GATA4-
and/or BRD4-acting compounds. These results suggest
an important role for the GATA4-BRD4-axis in the
regulation of chamber-specific gene expression and
could indicate a framework through which novel thera-
peutic avenues could be developed. Interestingly, BET
bromodomain inhibition has previously been shown to
be beneficial in animal model of heart failure [59].
In addition to GATA4/NKX2-5 synergy inhibition,

compound binding will most likely have a broad impact
on the cardiac TF network. Indeed, characterization of
cells resulting from chemically induced differentiation
with GATA-targeted compounds revealed that long-
term inhibition of GATA4/NKX2-5 affected the mRNA
levels of several cardiac TFs, cell markers, and differenti-
ation pathways measured by qRT-PCR. A potential limi-
tation of this analysis is that bulk qRT-PCR is not
necessarily suitable for the analysis of heterogenous pop-
ulations, such as embryoid bodies. Another limitation

was that we used predefined non-toxic concentrations
for several compounds (e.g., 3i-1040, 3i-1212, 3i-1234
and 3i-1238) that may have accordingly limited their
ability to engage their target protein and induce cell dif-
ferentiation and thus influenced the interpretation of the
results. However, by utilizing a shorter compound treat-
ment window (48 h) in a defined directed differentiation
assay, 3i-1000 and 3i-1103 increased venGFP expression
in multipotent CPs, but exerted no effects on reporter
expression when added after the onset of spontaneous
beating. This suggests that the GATA4/NKX2-5 inter-
action might be necessary for CP maintenance and self-
renewal and that this can be perturbed chemically to in-
duce differentiation. Of note, we have previously charac-
terized a structurally distinct subclass of GATA4-acting
compounds that causes stem cell toxicity, and during
these differentiation studies, there were no compounds
able to overcome those structural preconditions [60].
Decreased GATA4-protein levels have been shown to
associate with stem cell death [61, 62], and here de-
creased GATA4 protein levels (50 kDa band) were ob-
served particularly at the higher concentration of 3i-
1000. Additionally, we observed declines in GATA4 pro-
tein levels but not declines in Gata4 mRNA levels upon
3i-1000 treatment in differentiating PSCs. We and others
have previously observed that GATA4 mRNA levels re-
main constant despite declines in protein levels due to
extensive post-transcriptional and post-translational
regulation of GATA4 during both homeostasis and in
certain disease models [63, 64].
In addition to the alteration of gene expression in dif-

ferentiating stem cells, GATA-targeted compounds were
shown to modulate gene expression in differentiated,
primary ventricular cardiomyocytes, including the upreg-
ulation of Arc, NR4-related proteins, and bone morpho-
genetic proteins (BMPs). Arc protein has been
previously reported to have a cardioprotective role by
inhibiting apoptosis and preserving mitochondrial integ-
rity [65]. The NR4A-family protein Nurr77 (NR4A2) has
been linked to muscle regeneration and cardiac remodel-
ing, as well as to cardioprotection and regulation of car-
diac apoptosis [66]. BMP-2, a secreted protein necessary
for both mesodermal formation and cardiogenesis, was
upregulated after 2-h exposure to 3i-1000 [67]. Interest-
ingly, BMP-2 also regulates patterning of the atrioven-
tricular canal and the regulation of both atrial and
ventricular identity [68]. Thus, GRO-seq in ventricular
cardiomyocytes provided additional evidence that 3i-
1000 regulates cardiomyocyte subtype gene programs.

Conclusion
In conclusion, our findings indicate that pharmacological
targeting of cardiac TFs with a structural subclass of
GATA-targeted compounds allows selective alteration of
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atrial and ventricular differentiation in PSCs. Though
the TF networks for influencing cardiac progenitor dif-
ferentiation towards the cardiac fate are well-recognized,
the molecular mechanisms of chemically induced effects
on TFs and epigenetics remains poorly understood. In
order to achieve further progress in the field, novel phys-
ical, genetic, and pharmacological interventions are
needed to uncover previously unrecognized molecular
level mechanisms of cardiac differentiation. Here, we
show that GATA4-dependent transcription remains at
the core of progenitor cell signaling which leads to car-
diac differentiation. Additionally, these experiments re-
sulted in the identification of compounds selectively
regulating atrial and ventricular gene expression, as well
as provided insight into the mechanism-of-action of
novel GATA4-targeted compounds involving an acetyl
lysine-like subdomain. Moreover, the data presented
here could lead to further refinement of GATA-targeted
compounds, with the hope of developing targeted ther-
apies for the treatment of heart diseases. Indeed, the
compound scaffolds uncovered in the present study
could be used to develop cardiac regenerative strategies
based on the pharmacological modulation of cell fate de-
termination of exogenously delivered or endogenous car-
diac progenitor cells to specific atrial and ventricular
subtypes.
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Additional file 1: Supplementary Figure S1. Primary screening of
GATA4-targeted compounds in differentiating stem cells for the activa-
tion of a ventricular reporter gene (venGFP, Myl2-eGFP). Compounds
were screened during D2-D10 window of spontaneous differentiation of
mouse embryonic stem cells (mESCs). Differentiation cultures were mea-
sured on D12 of differentiation after treatment with GATA4-targeted
compounds for (a) %Myl2-eGFP (ventricular, venGFP+) cells out of total
cell population, (b) the mean fluorescent intensity (MFI) of venGFP. Data
is presented as mean (n ≥ 2, independent experiments). Supplementary
Figure S2. Compound screening for activation of ventricular reporter
gene (venGFP, Myl2-eGFP). Compounds were screened during D2-D10
window of spontaneous differentiation of mouse embryonic stem cells
(mESCs). Differentiation cultures were measured on D12 of differentiation
after treatment with GATA4-targeted compounds for (a) %Myl2-eGFP
(ventricular, venGFP+) cells out of total cell population, (b) the mean
fluorescent intensity (MFI) of venGFP. Data is presented as mean ± SEM
(n ≥ 3, independent experiments). Supplementary Figure S3. Com-
pound screening for activation of atrial reporter gene (SMyHC3-TdTo-
mato, atrRFP). Compounds were screened during D2-D10 window of
spontaneous differentiation of mouse embryonic stem cells (mESCs). Dif-
ferentiation cultures were measured on D12 of differentiation after treat-
ment with GATA4-targeted compounds and measured for (a) %SMyHC3-

TdTomato (atrial, atrRFP+) cells out of total cell population, (b) the mean
fluorescent intensity (MFI) of atrRFP. Data is presented as mean ± SEM
(n ≥ 3 (1228, n = 2), independent experiments). **P < 0.01, *P < 0.05 (T-test
vs DMSO control). Supplementary Figure S4. Ratio of expression be-
tween ventricular and atrial reporter genes. Compounds were screened
during D2-D10 window of spontaneous differentiation of mouse embry-
onic stem cells (mESCs). Differentiation cultures were measured on D12
of differentiation after treatment with GATA4-targeted compounds and
measured for (a) atrial/ventricular ratio and (b) atrRFP/venGFP ratio. Data
is presented as mean ± SEM (n ≥ 3 (1228, n = 2), independent experi-
ments). **P < 0.01, *P < 0.05 (T-test vs DMSO control). Supplementary
Figure S5. Characterization of chemically induced differentiation by
qRTPCR. D12 cultures were collected and analyzed for markers of cell
identity genes, transcription factors, progenitors, and signaling pathways.
Data is presented as mean ± SEM (n = 4, independent experiments). *P <
0.05 (Wilcoxon test vs DMSO control). Supplementary Figure S6. Ori-
ginal whole Western blot images. Differentiating mouse embryonic stem
cells (mESCs) were treated with compound 3i-1000 during D2-D10 win-
dow of differentiation and collected at D5 and D12. The cells were lysed
into 1% SDS in 50 mM Tris-HCl and protein concentration was deter-
mined. a On first experiment 80 μg of protein was loaded on gel and b
on second experiment 30 μg protein was loaded on gel. Membranes
were immunoblotted (IB) at first with anti-GATA4 antibody and after strip
wash with anti-β-actin antibody. Samples: medium only (M), DMSO (D),
3i-1000 (3 μM), 3i-1000 (5 μM). Independent experiments were repeated
two times. Supplementary Figure S7. Original whole Western blot im-
ages for HEK-cells with GATA4-V5 Tet-On/Off overexpression. The cells
were lysed into 4′ Laemmli buffer with 2-mercaptoethanol. From the
crude cell lysate, a sample was diluted 1/5 and further 1/25 with 1′
Laemmli buffer. A 10 μl sample from each dilution was loaded on gel
and immunoblotted (IB) with GATA4 or V5 antibodies. a For control, HEK-
cells were transfected with rtTA, the samples were prepared similarly as
for GATA4-V5 overexpression and loaded on gel with decreasing amount
1/1, 1/5, 1/25. b At the second repetition, for control, the cells with
GATA4-V5 overexpression were lysed into RIPA-buffer, protein concentra-
tion was determined and 5, 10 and 16 μg samples were loaded on gel.
Independent experiments were repeated two times. Supplementary
Figure S8. GATA4-targeted compounds promote differentiation of ven-
tricular cardiomyocytes in a directed differentiation assay. Compounds
were added either prior to (D6-D8, cardiac progenitors) or after (D7-D9,
cardiomyocytes) the onset of spontaneous beating in defined, serum-free
conditions. Total fluorescence of ventricular reporter gene (venGFP, Myl2-
eGFP) upon compound treatment is depicted for compounds 3i-1148, 3i-
1120, 3i-1165, and 3i-1194. Data is presented as mean ± SEM (n = 4, inde-
pendent experiments). Supplementary Figure S9. Protein interactome
of GATA4 and NKX2-5 by BioID after CRAPomefiltering. Proteins in more
than 10% (41/411) of CRAPome database experiments were discarded.
Supplementary Figure S10. High sequence conservation in zinc finger
domain of GATA4 among different species. Human and other mammals
are unable to regenerate cardiomyocytes after birth and express an argin-
ine (hR310, purple) at the C-terminal tail of the zinc finger. However, spe-
cies with regenerative capacity, including Zebrafish (Q09JY7), Eastern
newt (F2W888), Bat star (Q6XZF5), Sea cucumber (A0A2G8JQ98), African
clawed frog (Q91677) and Hydra vulgaris (T2MH05) have consistent ex-
pression of lysine at the same position (green). Conserved residues re-
sponsible for C4-coordination of zinc fingers are highlighted with gray
color. In the bottom row, the alignment results are represented as fol-
lows: The asterisk (*) indicates a single and fully conserved residue. A
colon (:) indicates conservation between groups of strongly similar prop-
erties. A period (.) indicates conservation between groups with weakly
similar properties. A number at the end of the line indicates the running
number of the last amino acid of the respective sequence. Protein se-
quences were downloaded from UniProt Knowledgebase (UniProtKB)
which contains two separate sections; UniProtKB/Swiss-Prot (SP, manually
annotated) and UniProtKB/TrEMBL (TR, computationally annotated). Se-
quences were aligned by using Clustal Omega (European Bioinformatics
Institute, EMBL-EBI). Supplementary Figure S11. BromoMAX assay
shows no significant perturbation of bromodomain proteins in cell-free
assays by compounds 3i-1000 and 3i-1047 at 10 μM, indicating that the
acetyl-lysine like domain within the compounds do not bind directly to
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bromodomains. Supplementary Table S1. Taqman assays used for the
characterization of embryoid bodies from chemically induced differenti-
ation experiments. Supplementary Table S2. Structural derivatives of
GATA-targeted compounds [3, 5] examined for stage-specific activation
of atrial and ventricular reporter genes in differentiating pluripotent stem
cells. Supplementary Table S3. Gene ontology (GO) enrichment ana-
lysis of CRAPome-filtered BioIDresults for GATA4 (320 identified proteins)
determines the most abundant functional associations. Supplementary
Table S4. Gene ontology (GO) enrichment analysis of CRAPome-filtered
BioIDresults for NKX2-5 (359 identified proteins) determines the most
abundant functional associations. Supplementary Table S5. Summary
of differentially expressed genes following 30 and 120 min treatments
with GATA4-targeted compound 3i-1000 versus DMSO control in neo-
natal rat ventricular cardiomyocytes.
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