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Abstract

Egg rejection is the most effective and widespread defense used by host species to counteract the

extreme fitness costs frequently imposed by obligate avian brood parasites. Yet, the proximate

mechanisms underlying between- and within-individual variation in host responses remain poorly

explored. Emerging evidence suggests that egg rejection is dependent on individual physiological

states, and draws attention to the role of hormones as mediators of flexible antiparasitic responses.

In this perspective article, I outline recent advances in our understanding of the proximate factors

that mediate egg rejection. I also point out some areas where knowledge remains still lacking, es-

pecially those related to the development and maintenance of effective cognitive functions, the po-

tential role of oxidative stress, immunological state, and developmental stressors. I propose new

hypotheses that stimulate future research on behavioral host responses toward brood parasitism.
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Avian brood parasitism is an important selective force shaping a range

of morphological and behavioral adaptations in some bird popula-

tions (Rothstein 1990). Obligate brood parasites lay their eggs in the

nest of host species thereby exploiting the parental care that they pro-

vide to their offspring (RoldÄn and Soler 2011). The degree of viru-

lence of brood parasitic species (i.e., the fitness costs that brood

parasitism inflicts on hosts) is largely determined by the behavior of

the parasitic chick, which often eliminates or outcompetes their foster

siblings (Soler 2014; MoskÄt et al. 2017). In response, hosts have

evolved successive lines of antiparasitic defenses that operate at all

stages of the reproductive cycle (Feeney et al. 2014; Soler 2014,

2017a). The recognition and subsequent rejection of brood parasitic

eggs is the most effective antiparasitic behavior (Feeney et al. 2014;

Soler 2014), which can be achieved through the ejection of the parasit-

ic egg or, alternatively, the abandonment of the complete clutch

(Davies and Brooke 1989; Peer and Sealy 2004). Natural selection has

favored the evolution of mimetic and polymorphic eggs in many

brood parasitic species, which makes egg recognition harder for hosts

(Brooke and Davies 1988; Yang et al. 2017). Egg-rejection decisions

involve sensory stimuli associations within the nest, as well as flexible

adjustments resulting from updating available information on the

parasitism context (Ruiz-Raya and Soler 2020).

There is remarkable variation in egg rejection at all levels: individual,

population, and species (Soler 2014). In some cases, this variation reflects

differences in the extent of local adaptation across host populations as a

result of dissimilar coevolutionary histories with brood parasites

(Thompson 2005; Møller and Soler 2012); but also, absence of egg rejec-

tion may be the consequence of recent parasitism (evolutionary-lag hy-

pothesis; Rothstein 1990). Sometimes, the acceptance of foreign eggs

might be adaptive, presumably when rates (or costs) of brood parasitism

are very low (evolutionary–equilibrium hypothesis; Rothstein 1990;

KrÏger 2011). Finally, spatial and temporal differences in egg rejection can

result from flexible adjustments in host responses according to the current

risk of parasitism, previous experience, parasite retaliation, or social con-

text (reviewed in Ruiz-Raya and Soler 2017). Egg rejection is the outcome

of a decision-making process driven by 2 key components: host cognitive

abilities and the influence of conditional factors (Stokke et al. 2005; Soler

et al. 2012; Ruiz-Raya and Soler 2017). Co-evolutionary processes that
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shape antiparasitic defenses have received considerable research attention

over the last decades (reviewed in Feeney et al. 2014; Soler 2017a,

2017b). Egg-rejection experiments have revealed that hosts rely on dis-

cordance mechanisms (i.e., the rejection of the most dissimilar egg) and/or

innate or learned templates of their own eggs’ appearance (template-based

mechanism) to recognize and reject foreign eggs (Manna et al. 2017).

Studies on avian vision have provided detailed information about the spe-

cific visual cues and cognitive rules leading to egg rejection (e.g., Cassey et

al. 2008; Spottiswoode and Stevens 2010; Stevens et al. 2013), and have

shown the existence of marked sensory constraints in the cognitive deci-

sion rules used by some host species (Hanley et al. 2017).

However, comparatively few studies have explored the proxim-

ate causes behind between- and within-individual variability in egg

rejection. Cognitive functions depend on individual physiological

states, so cognitive performance is expected to be largely determined

by the organisms’ capacity to withstand environmental challenges

(Buchanan et al. 2013; Maille and Schradin 2016; Cauchoix et al.

2020). It remains to be addressed whether the hosts’ capacity to

identify and reject parasitic eggs is dependent on their physiological

state (e.g., hormone levels, energetic and immunological states, and

oxidative status), or whether the development and maintenance of

effective cognitive functions at adulthood can be constrained by ad-

verse early-life conditions (Figure 1). Likewise, little is known about

the physiological mechanisms that mediate the host propensity to

egg rejection once the foreign egg has been identified. Hormones are

prime candidates to mediate between- and within-individual vari-

ation in antiparasitic defenses (Abolins-Abols and Hauber 2018).

Until recently, a handful of pioneering studies had investigated the

role of hormones in host-brood parasite systems (Briskie et al. 1994;

IbÄ~nez-àlamo et al. 2012; Mark and Rubenstein 2013; Hahn et al.

2017; Ruiz-Raya et al. 2018; Antonson et al. 2020; Scharf et al.

2021a, 2021b). Because, experimental evidence has confirmed that

hormones indeed mediate host responses to brood parasitic eggs

( Abolins-Abols and Hauber 2020a).

In this perspective article, I point out a number of physiological

factors which could potentially impact host cognitive performance

and explain individual variation in egg rejection. I provide new

hypotheses to stimulate future research on condition-dependent

responses to brood parasitic eggs. Finally, I discuss recent evidence

on the endocrine mechanisms underlying egg rejection, with a spe-

cial emphasis on prolactin, a pituitary hormone involved in the regu-

lation of avian parental behavior.

Condition Dependence and Host Cognitive
Performance

As in many other ecological contexts, effective cognitive functions

are crucial in avian brood parasitic systems. Parasitic cowbirds

(Molothrus sp.), for example, show sex-specific hippocampal spe-

cialization that allows females to map the location of host nests

and form dynamic memory libraries on available parasitism

opportunities (Scardamaglia et al. 2017; Sherry and Guigueno

2019). On their part, hosts can assess the local parasitism risk by

combining personal and social information about the presence of

brood parasites (for example, Gill and Sealy 2004; Welbergen

and Davies 2012; Thorogood and Davies 2016; Tryjanowski

et al. 2018). Rejecter hosts are able to acquire and integrate dif-

ferent informative signals that guide optimal rejection decisions,

including the perceptual and cognitive process leading to egg rec-

ognition (Ruiz-Raya and Soler 2020). The host ability to identify

and reject foreign eggs has evolved as the result of the strong se-

lection pressures imposed by brood parasitism (Davies and

Brooke 1989), and frequencies of potential rejecters and accept-

ors within host populations are known to have a strong genetic

base (MartÕn-GÄlvez et al. 2006, 2007). Nonetheless, individual

variation in cognitive performance can be caused by a number of

noncognitive factors, such as experience or current motivational

state (Rowe and Healy 2014).

Figure 1. Potential physiological mechanisms mediating egg rejection. Egg rejection is a multi-stage process that requires effective perceptual and cognitive func-

tions (cognitive performance), as well as the accurate integration of external cues of parasitism and the assessment of potential costs associated with the re-

sponse (decision). Besides the genetic background, cognitive performance is determined by individual physiological states (cognitive flexibility; e.g., hormone

levels, immunological state, and oxidative status) and developmental conditions (developmental cognitive plasticity). Main hormones involved in the regulation

of parental care, such as prolactin, CORT, and testosterone, could also mediate changes in incubation and associative maternal behaviors in the nest, thereby

impacting the probabilities of egg rejection.

632 Current Zoology, 2021, Vol. 67, No. 6



Environmentally induced changes in physiology can either en-

hance or impair cognitive functions and explain much of the individ-

ual cognitive variation within bird populations (Buchanan et al.

2013; Maille and Schradin 2016). Beyond the genetic background,

host cognitive abilities would therefore be expected to vary under

different environmental contexts. The term cognition commonly

refers to the acquisition, processing, and use of valuable information

from the environment, this being essential for biologically relevant

processes such as learning, memory, or decision making

(Shettleworth 2010).Given the nonunitary nature of cognition, it is

necessary a more precise delimitation of the specific cognitive ability

that we are investigating (Rowe and Healy 2014). In egg-rejection

studies, “host cognitive abilities” typically refer to the host capacity

to recognize parasitic eggs so, accordingly, I will adopt this termin-

ology throughout the present article to specifically refer to that cog-

nitive task.

Despite the importance of effective egg-recognition abilities for

rejecter species, the extent to which host cognitive performance

depends on individual physiological states is unclear. There is evi-

dence that some cognitive traits, such as problem-solving or learn-

ing, are condition-dependent, with individuals in better

physiological states showing more effective cognitive abilities

(BÆkony et al. 2014). In addition, the impact of early environmen-

tal conditions on the development of effective cognitive functions is

another important factor that could explain individual differences in

cognitive functions at adulthood (Buchanan et al. 2013). We still do

not know whether environmental challenges can induce shifts in

host cognitive performance, or whether cognitive functions underly-

ing antiparasitic defenses are affected by developmental conditions

in early life.

Environmental Stress, Physiological State,
and Cognition

External (environmental) factors such as the social context or abiot-

ic stressors, and the internal physiological state, are known to im-

pact cognitive performance in vertebrates (Cauchoix et al. 2020).

Brain tissues and neural processing are energetically expensive and

require comparatively more energy than several other somatic tis-

sues at rest (Laughlin 2001). Indeed, variations in body mass, or

blood glucose levels, are associated with impaired cognitive abilities

in birds, although the degree of impairment may depend on the in-

tensity of food restriction and the energy status (Maille and

Schradin 2016; Shaw 2017). Seasonal changes in food availability,

body condition, or glucose levels might determine the outcome of

the egg-rejection process, although this link may not be straightfor-

ward. The presence of nonmimetic eggs in the nest is known to im-

pact the energy stores of adult hosts, presumably as a consequence

of energy mobilization to cope with brood parasitism (Ruiz-Raya et

al. 2018). In some species, egg rejection probability appears to be

negatively related to body mass at an intraspecific level (Abolins-

Abols and Hauber 2020b), yet the effects of seasonal changes in

body condition on host cognitive performance are still unclear.

Hormones could mediate the effects of environmental challenges

on cognition and lead to reversible changes in host performance.

Catecholamine and glucocorticoid responses to stress are known to

influence cognitive functions, although their effects depend on the

intensity and duration of stressors (McEwen and Sapolsky 1995;

Maille and Schradin 2016). Moderate and short-term elevations in

corticosteroid levels enhance cognition, whereas greater and sus-

tained increases in circulating corticosteroids can lead to cognitive

impairment (Pravosudov 2003; Lupien et al. 2009). Individual dif-

ferences in baseline glucocorticoids, or changes in glucocorticoid

levels in response to environmental challenges, have been hypothe-

sized to impact the host’s ability to recognize and reject parasitic

eggs. In American robins, Turdus migratorius, an occasional host of

the brown-headed cowbird Molothrus ater, the probability of egg

rejection has been shown to be negatively related to plasma cortico-

sterone (CORT) levels (Abolins-Abols and Hauber 2020b). In an-

other experimental study, the authors found that the suppression of

CORT synthesis through mitotane injections increased the probabil-

ity of egg acceptance by female robins (Abolins-Abols and Hauber

2020a). These results strongly suggest that glucocorticoids mediate

behavioral responses to parasitic eggs and bring new insights into

the endocrine regulation of egg rejection. Future studies should de-

termine whether variations in CORT levels impact host cognitive

performance or, instead, modify maternal behaviors in the nest (e.g.,

maternal attachment to eggs; Figure 1).

Other aspects of host physiology, such as oxidative status, could

mediate life-history trade-offs linked to individual cognitive per-

formance. The relative abundance of pro-oxidant and antioxidant

agents occurring in cells determines the individual reproductive po-

tential, gradual deterioration of bodyline functions, and lifespan

(Monaghan et al. 2009). Specifically, prolonged exposure to oxida-

tive stress is expected to lead to brain damage and cognitive impair-

ment (Liu et al. 2003; DrÎge and Schipper 2007). In birds, plasma

levels of enzymatic antioxidant are positively associated with

enhanced cognitive functions (BÆkony et al. 2014), whereas the

increased production of plasma lipid peroxidation markers (malo-

naldehyde, MDA), and the simultaneous decrease in antioxidants

(superoxide dismutase, SOD and glutathione peroxidase, GPX), are

linked to cognitive impairment (Padurariu et al. 2010). One might

simplistically predict that those individuals showing evidence of

accumulated oxidative damage (e.g., increased plasma MDA levels),

or lower antioxidant levels, will show poorer sensory–cognitive abil-

ities to recognize and reject parasitic eggs. Likely, the study of differ-

ent components of oxidative stress will allow us to obtain a broader

view of individual oxidative status. Among the most feasible meas-

urements are enzymatic and nonenzymatic antioxidant defenses,

total antioxidant capacity, and measurements of oxidative damage

to proteins, lipids, and DNA (Monaghan et al. 2009).

Oxidative stress has been suggested to underly life-history trade-

offs associated with reproductive costs (Monaghan et al. 2009;

Metcalfe and Monaghan 2013). Further experimental investigation

is needed to establish whether there is any link between parental in-

vestment and host cognitive performance. Evolutionary cost–benefit

theory predicts that hosts investing more in reproduction will be

more likely to reject brood parasitic eggs (the “maternal investment”

hypothesis; Hauber et al. 2020). However, if greater reproductive ef-

fort does lead to increased oxidative damage to the soma (and

impaired brain functions), then hosts investing more in their clutch

(e.g., larger eggs and broods, earlier onset of laying, and post-hatch-

ing investment) might exhibit impaired cognitive abilities.

Correlational evidence suggests that hosts with smaller clutches are

more likely to reject brood parasitic eggs (Abolins-Abols and

Hauber 2020b), although further studies are needed to establish a

causal link between parental effort and host cognitive performance.

Similarly, given the link between aging, oxidative stress, and cog-

nitive decline (Golden et al. 2002; DrÎge and Schipper 2007), it
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could be predicted the existence of age-dependent responses to

brood parasitism, with old individuals showing impaired cognitive

performance. Current evidence, however, suggests that egg-rejection

abilities do not decrease over the life. In the great-spotted cuckoo

Clamator glandarius—magpie Pica pica system, longer-lived mag-

pies are more likely to reject cuckoo eggs, so brood parasites are

expected to benefit from exploiting young and naÝve individuals

(MartÕnez et al. 2020). Long-lived hosts might show reduced cu-

mulative oxidative damage, or physiological mechanisms to resist

oxidative stress. As the development and maintenance of cognitive

skills are costly, it should be only favored when individuals obtain

fitness benefits from effective cognitive abilities (Morand-Ferron et

al. 2016). Natural selection should select for physiological mecha-

nisms protecting essential cognitive functions against the detrimental

effects of seasonal environmental challenges (cognitive resilience;

Buchanan et al. 2013). Given the high fitness costs linked to brood

parasitism, resilience mechanisms would reduce the brain suscepti-

bility to stress and allow rejecter species to maintain an effective

cognitive performance. These mechanisms might involve the modu-

lation of glucocorticoid receptor densities, or sensitivity, protecting

essential cognitive abilities against changes in glucocorticoid levels.

Also, the detrimental effects of oxidative stress could be buffered

through the modulation of circulating antioxidants (Buchanan et

al. 2013).

Future studies should explore potential trade-offs between cogni-

tive performance and the immune system in the context of avian

brood parasitism. Pathogens have a negative impact on cognitive

functions in vertebrates, including humans (Jukes et al. 2002;

Binning et al. 2018), and parasite infection is known to impact cog-

nitive performance in birds (Ducatez et al. 2020). Brood parasitism

increases bacterial load in parasitized nests (Soler et al. 2011); how-

ever, whether parasite infection in adult hosts impacts their cogni-

tive performance is unknown. Equally, recent research has

highlighted the role of the gut microbiome as a potential driver of in-

dividual cognitive variation in natural populations. Avian gut micro-

biota is affected by a number of intrinsic (e.g., age, sex, diet, and

behavior) and extrinsic factors (e.g., environment and resources;

Grond et al. 2018), and the gut–brain axis seems to play a key role

in brain functions and the maintenance of effective cognitive abil-

ities (Davidson et al. 2018). Gut microbiota has been characterized

in different brood parasite–hosts systems (Ruiz-RodrÕguez et al.

2009; Lee et al. 2020; Schmiedova et al. 2020), but the link between

gut microbiome and host cognitive performance at adulthood has

not yet been explored. Experimental manipulations of gut microbial

communities at both perinatal environments and adulthood would

likely help to disentangle the potential link between host perform-

ance and gut microbiota (Davidson et al. 2018).

Developmental Conditions and Cognitive
Performance

Early-life events induce anatomical, behavioral, and physiological

changes in developmental trajectories (West-Eberhard 2003).

Environmental conditions experienced during early development

shape individual phenotypes and have long-lasting effects on cogni-

tive functions (Buchanan et al. 2013). Early-life stress has deleteri-

ous effects on a number of cognition-dependent traits in birds, such

as spatial memory or vocal learning (Buchanan et al. 2003; Spencer

et al. 2003; Pravosudov 2009). Nutritional deficits and chronic ex-

posure to glucocorticoids during postnatal development impair cog-

nitive performance at adulthood (Kitaysky et al. 2003; Pravosudov

et al. 2005; Lucassen et al. 2013). In some brood parasitic systems,

host nestlings are exposed to important nutritional and physiologic-

al stressors. Nonevictor parasitic young are preferentially fed by

their foster parents (Soler et al. 1995; Lorenzana and Sealy 1999;

Soler 2017b) and outcompete host nestlings (Soler 2017b), not only

for quantity of food, but also for high-quality food, thereby impos-

ing nutritional restrictions on host offspring (Ladin et al. 2015).

Host nestlings may respond by increasing the intensity of begging

signals to compete with their parasitic nestmates (Rivers et al.

2010), which could lead to immunological (Moreno-Rueda 2010)

and oxidative costs (Noguera et al. 2010). Interestingly, IbÄ~nez-

àlamo et al. (2012) found that magpie nestlings reared together with

great-spotted cuckoos had higher CORT levels than magpies from

unparasitized nests, which indicates that sharing the nest with para-

sitic chicks is an important physiological stressor for developing

hosts (but see Scharf et al. 2021b).

Brood parasitism is associated with faster growth rate and

shorter nestling periods in hosts, these effects being more pro-

nounced in host species showing higher sibling competition (Remes

2006). Faster growth rates may cause the loss of cognitive abilities

in adulthood (Fisher et al. 2006), so the accelerated nestling growth

might impact the host’s ability to respond against brood parasitism

in adulthood, especially in small-sized hosts in which sibling compe-

tition is more intense. Alternatively, it could be predicted the exist-

ence of resilience mechanisms protecting hosts from the negative

effects of early-life stressors. Brood parasitism is known to result in

carry-over effects on future reproductive effort in adult hosts (Mark

and Rubenstein 2013); however, whether sharing the nest with para-

sitic chicks has long-term effects on host cognitive performance is

still unknown.

Beyond Egg Recognition: Endocrine Regulation
of Flexible Host Responses

The outcome of the egg-rejection process is largely determined by in-

trinsic sensory and perceptual abilities, but egg rejection is likewise

conditioned by a number of environmental and life-history factors,

such as the risk of parasitism or parasite retaliation, the moment of

the breeding season, or previous experience (reviewed in Ruiz-Raya

and Soler 2017). This means that egg rejection does not only depend

on the host’s ability to recognize foreign eggs, but also on its propen-

sity to reject them. Several hypotheses have been proposed to ex-

plain how hormones mediate the host propensity to either reject or

accept foreign eggs, paving the way for clear predictions about prox-

imate factors underlying flexible changes in rejection responses.

Abolins-Abols and Hauber (2018) provided a comprehensive over-

view on the endocrine mechanisms potentially underlying antipara-

sitic behaviors at different stages of the breeding cycle. The authors

argue that the propensity to accept or reject any egg in the nest is

mediated by major hormones involved in the regulation of avian

parental behavior. For instance, endocrine pathways involved in the

suppression of maternal behavior might regulate the ejection of

parasitic eggs or nest desertion decisions. Whereas empirical evi-

dence on the endocrine regulation of egg rejection is still scarce, re-

cent experimental studies have provided strong support for the role

of certain hormones (e.g., prolactin and CORT) as mediators of

host responses to brood parasitism. Below, I outline recent advances

and future avenues in understanding the hormonal bases of

egg rejection.

Prolactin is a pituitary hormone that mediates major aspects of

avian parental care, including ultimate decisions such as the
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abandonment of eggs and chicks (Angelier and Chastel 2009).

Plasma prolactin levels are positively related to the initiation and

maintenance of associative parental behavior in birds (e.g., egg incu-

bation and post-hatching parental care), whereas decreasing prolac-

tin concentrations are often linked to breeding failure (Angelier and

Chastel 2009; Angelier et al. 2016; Smiley 2019). Prolactin is

thought to mediate those antiparasitic defenses that entail the sup-

pression of affiliative parental behaviors, such as the ejection of for-

eign eggs and the complete abandonment of parasitized clutches

(Abolins-Abols and Hauber 2018; Ruiz-Raya and Soler 2020).

Recent studies have revealed that the experimental reduction of

plasma prolactin concentrations through bromocriptine implants

increases the probabilities of egg rejection in Eurasian blackbirds

(Turdus merula; Ruiz-Raya et al. submitted for publication).

Notably, bromocriptine-treated blackbirds showed higher ejection

rates and faster rejection decisions (without incurring in recognition

errors) in response to mimetic model eggs. Experimental evidence

confirms that decreasing prolactin levels facilitate egg-ejection deci-

sions, yet future research should investigate whether prolactin can

somehow impact cognitive performance in other host species.

Circulating prolactin levels often decrease in response to envir-

onmental stressors (Angelier and Chastel 2009; Angelier et al.

2016). This prolactin response to stress may help to disentangle the

proximate mechanisms mediating flexible responses to parasitic

eggs. Cues of brood parasitism, such as the presence of adult para-

sites or social information on parasitism risk, might lead to changes

in plasma prolactin levels and thus facilitate egg-rejection decisions.

Whereas the presence of nonmimetic eggs in the nest does not seem

to modify prolactin levels in adult hosts, experimentally parasitized

individuals exhibit a more robust prolactin response to standardized

stressors (Ruiz-Raya et al. 2018). This suggests that prolactin re-

sponse may be more complex than expected and require multiple

cues of parasitism (e.g., a parasitic egg and the presence of the adult

parasite). Experimental studies assessing the host’s prolactin re-

sponse to variable risk of parasitism will be essential to understand

the role of endocrine flexibility in mediating antiparasitic defenses.

Prolactin regulation of antiparasitic defenses may be especially

important in host species that use nest abandonment as the main re-

jection mechanism, as are the cases of many brown-headed cowbird

hosts (Hosoi and Rothstein 2000). In such cases, individual differen-

ces in circulating prolactin could determine the host propensity to

abandon the nests. In medium-sized hosts, the experimental reduc-

tion of plasma prolactin concentrations does not affect the probabil-

ity of nest abandonment in response to experimental parasitism

(Ruiz-Raya et al. submitted for publication). However, it is note-

worthy that medium-sized ejectors might not use nest desertion as a

genuine response to brood parasitism (Soler et al. 2015; but see

Hosoi and Rothstein 2000). The role of prolactin in mediating nest

desertion responses should be further explored in small-sized hosts

which are not able to reject parasitic eggs by grasping or puncturing

them. In addition, it should be noted that the adaptive value of nest

desertion is likely determined by life-history traits. As nest abandon-

ment would be adaptive only when the value of current reproduc-

tion is low (e.g., lower clutch sizes; Servedio and Hauber 2006),

prolactin might mediate optimal rejection decisions according to the

fitness payoffs of alternative host responses. Prolactin decreases in

response to environmental stressors can be downregulated to main-

tain parental care when current reproduction has important fitness

value (Angelier and Chastel 2009; Angelier et al. 2016).

Other hormones, such as testosterone and CORT, which both

play key roles as mediators of parental behavior in bird species

(Schoech et al. 1998; BÆkony et al. 2009), could likewise impact

the host propensity to egg rejection (Figure 1). CORT might dir-

ectly affect host’s cognitive performance (see above), but also im-

pact the host behavior once the parasitic egg has been recognized.

CORT responsiveness to environmental factors has been sug-

gested to be an important mechanism mediating flexible host

responses to brood parasitism (Abolins-Abols and Hauber 2018).

For example, raising CORT levels in response to brood parasitism

(or high risk of brood parasitism) could suppress affiliative paren-

tal behavior and facilitate rejection decisions. As seen above,

decreasing CORT levels are known to reduce egg-rejection

responses in American robins (Abolins-Abols and Hauber 2020a).

Experimental parasitism causes an increase in CORT levels in

host species with fine-tuned recognition abilities (Ruiz-Raya et al.

2018); however, accepter species show unaffected plasma CORT

levels in response to foreign eggs (Scharf et al. 2021a). These

results indicate that changes in plasma CORT elicited by parasitic

eggs orchestrate effective responses to brood parasitism, a process

that will likely depend on egg mimicry and host recognition abil-

ities. Finally, given that prolactin can act sequentially or interact

with other hormones such as CORT (Angelier et al. 2016), further

studies should consider that the effect of CORT might depend on

the circulating levels of prolactin.

Concluding Remarks

The host abilities to recognize and reject brood parasitic eggs have

been widely explored in different brood parasitic systems, which

have brought us closer to understanding the co-evolutionary forces

that shape avian brood parasite–host interactions. Despite this, we

still lack knowledge about the proximate mechanisms underlying in-

dividual variation in egg rejection. In this article, I propose that host

cognitive performance and rejection decisions are dependent on in-

dividual physiological conditions (e.g., hormone levels, oxidative

status, immunological, and energetic state). Individual differences in

cognitive performance would be determined not only by genetic in-

heritance, but other factors, such as developmental history (cogni-

tive plasticity), social context, or the effects of environmental

stressors, should also be considered (Boogert et al. 2018; Cauchoix

et al. 2020). Future studies should explore how changes in host

physiology across early-life and adult environments affect cognitive

performance in egg-rejection experiments. Understanding how

physiology determines individual variation in host performance will

likely be challenging because sensory, perception, and cognitive per-

formance cannot be directly observed. Egg-rejection rates alone will

not allow to separate the perceptual and conditional components of

egg rejection, so future research will benefit from the use of both be-

havioral (e.g., egg-touching behavior) and physiological (e.g., hor-

mone variation) proxies of egg recognition to assess cognitive

performance separately from host responses (Ruiz-Raya and

Soler 2020).

Even though individual differences in cognition are well docu-

mented among vertebrate taxa (Thornton and Lukas 2012), the ex-

tent to which these variations determine the reproductive fitness in

wild populations remains challenging (Morand-Ferron et al. 2016).

In avian brood parasitic systems, fine-tuned cognitive abilities (e.g.,

strong egg-recognition abilities) are essential to avoid the frequently

high fitness costs inflicted by brood parasitism, so physiological

mechanisms favoring cognitive resilience would be expected to be

found in host species. These resilience mechanisms might operate by

modulating tissue sensitivity to stress (e.g., glucocorticoids receptor
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density), or protecting the brain from the detrimental effects of oxi-

dative damage (e.g., antioxidant defenses).

The evidence reviewed here strongly suggests that egg rejection is

mediated by endocrine pathways involved in the regulation of par-

ental behavior, yet additional research is needed to unravel whether

the endocrine regulation of host responses is associated with varia-

tions in cognitive performance or changes in associative maternal

behaviors, as seems to be the case with prolactin. Future studies

should explore whether different hormones (e.g., prolactin, CORT,

and testosterone) interact to mediate egg-rejection behaviors.

Finally, besides changes in plasma hormone concentration, the

endocrine regulation of egg rejection will likely involve different

components of endocrine networks such hormone receptor densities

or carrier proteins (Breuner et al. 2012; Rosvall 2013). Studying the

physiological mechanisms mediating egg-rejection behavior will

bring new insights into the causes of individual variation in antipar-

asitic host defenses and shed light on the proximate factors underly-

ing flexible host responses to brood parasitism.
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