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Environmental factors
influencing the risk of
ANCA-associated vasculitis

Wen-Man Zhao, Zhi-Juan Wang, Rui Shi , Yu-Yu Zhu,
Sen Zhang, Rui-Feng Wang and De-Guang Wang*

Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a

group of diseases characterized by inflammation and destruction of small and

medium-sized blood vessels. Clinical disease phenotypes include microscopic

polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic

granulomatosis with polyangiitis (EGPA). The incidence of AAV has been on the

rise in recent years with advances in ANCA testing. The etiology and

pathogenesis of AAV are multifactorial and influenced by both genetic and

environmental factors, as well as innate and adaptive immune system

responses. Multiple case reports have shown that sustained exposure to silica

in an occupational environment resulted in a significantly increased risk of

ANCA positivity. A meta-analysis involving six case-control studies showed that

silica exposure was positively associated with AAV incidence. Additionally,

exposure to air pollutants, such as carbon monoxide (CO), is a risk factor for

AAV. AAV has seasonal trends. Studies have shown that various environmental

factors stimulate the body to activate neutrophils and expose their own

antigens, resulting in the release of proteases and neutrophil extracellular

traps, which damage vascular endothelial cells. Additionally, the activation of

complement replacement pathways may exacerbate vascular inflammation.

However, the role of environmental factors in the etiology of AAV remains

unclear and has received little attention. In this review, we summarized the

recent literature on the study of environmental factors, such as seasons, air

pollution, latitude, silica, and microbial infection, in AAV with the aim of

exploring the relationship between environmental factors and AAV and

possible mechanisms of action to provide a scientific basis for the prevention

and treatment of AAV.
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Introduction

Systemic autoimmune rheumatic diseases (SARDs) are a

group of chronic autoimmune diseases that attack joints, bones,

muscles, blood vessels, and related soft or connective tissues.

Common SARDs include rheumatoid arthritis (RA), systemic

lupus erythematosus (SLE), primary Sjögren’s syndrome (pSS),

systemic sclerosis (SSc), polymyositis (PM), dermatomyositis

(DM), mixed connective tissue disease (MCTD), and systemic

vasculitis. The onset of these diseases is more insidious. The

course of these diseases are longer and require lifelong

treatment, which severely threatens the physical and mental

health of patients and has become an important public health

problem (1–3). Systemic vasculitis, one of the most complex and

challenging SARDs, is classified into large, medium, and small

vessel vasculitis, mainly based on the size of the affected vessels

(2022ACR/EULAR) (4). Anti-neutrophil cytoplasmic antibody

(ANCA)-associated vasculitis (AAV) is an important part of the

classification of vasculitis. AAV can affect many vital organs

throughout the body, including the skin, kidneys, lungs, and

brain. Additionally, untreated vasculitis progresses rapidly,

causing irreversible damage to vital organs in the body and

even death. Therefore, exploring the etiology and pathogenesis

of AAV is crucial for early diagnosis and timely treatment.

AAV is a multisystem autoimmune disease that primarily

involves small blood vessels throughout the body, and it is

associated with the presence of ANCA in the serum (5, 6).

ANCA, which was first identified by Davies in patients with

necrotizing glomerulonephritis, is divided into two main types:

cytoplasmic (C-ANCA) and perinuclear (P-ANCA), whose target

antigens are proteinase 3 (PR3) and myeloperoxidase (MPO),

respectively. Growing evidence confirms the pathogenic role of

ANCA in AAV. Transfer of splenocytes fromMPO-deficient mice

immunized with mouse MPO into wild-type mice resulted in

hyperimmune systemic vasculitis (7). Pendergraft et al. (8)

demonstrated that complementary proteinase-3 (cPR3)

antibodies may induce PR3-ANCA. Additionally, a new ANCA-

targeting human lysosome-associated membrane protein-2

(LAMP-2) has been described as a sensitive and specific marker

for renal limited vasculitis (RLV). Rats produce LAMP-2 and

induce crescentic glomerulonephritis when immunized with the

adhesin FimH, which has strong homology with human LAMP-2

(9, 10).

The incidence of AAV has been increasing with the introduction

of ANCA testing (11, 12). The prognosis of patients with AAV has

improved since the introduction of immunosuppression in the 1960s.

However, some severe cases with cumulative renal and pulmonary

disease remain aggressive. The exact etiology of AAV is unknown,

and a complex association exists between factors, such as polygenic

genetic susceptibility (13, 14), epigenetic influences (15), and

environmental factors (16), and AAV. AAV is probably not caused

by any single factor, but the interaction and combination of multiple
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factors ultimately lead to the occurrence of this disease (17, 18).

ANCA-associated necrotizing glomerulonephritis has been reported

in two sets of identical twins, suggesting that genetic factors may be

involved in disease pathogenesis (19). Two genome-wide association

studies (GWAS) in European and North American populations have

identified disease susceptibility loci in AAV. The genetic background

of different clinical subtypes of AAV is different (13). GPA,MPA, and

EGPA are associated with HLA-DP1, HLA-DQ, and HLA-DRB4,

respectively. Additionally, genetic variants in non-MHC regions, such

as CTLA-4, FCGR2A, PTPN22, SERPINA1, and TLR9, were

significantly associated with AAV. These findings help to elucidate

the etiology of AAV and develop new biomarkers for diagnosis and

targeted therapy.

In recent years, increasing research evidence has emphasized

that environmental factors are involved in the occurrence and

development of AAV. Many environmental factors, including

silica exposure, season, latitude, and microbial infection, have

been reported to be associated with AAV. Several studies (20, 21)

have shown that sustained exposure to silica in an occupational

setting results in a 3.4–7-fold increased risk of positive ANCA.

Additionally, season and latitude have different effects on the

incidence of different subtypes of AAV. Generally, AAV tends to

occur during winter (22, 23). The incidence of GPA and EGPA

increased with increasing latitude and decreasing environmental

ultraviolet radiation, whereas the incidence of MPA did not

change significantly with changes in latitude and ultraviolet

radiation (24). Kronbichler et al. (25) suggested that nasal

staphylococcus aureus infection may be an important risk

factor for the onset and recurrence of AAV. This review

summarized the environmental risk factors and possible

mechanisms of AAV to provide a scientific basis for the

prevention and treatment of AAV.
Classification of AAV

Clinically, AAV is classified into three types: granulomatosis

with polyangiitis (GPA), microscopic polyangiitis (MPA), and

eosinophilic GPA (EGPA) (4, 26). This type of disease is

characterized by necrotizing small vessel vasculitis. AAV has a

predilection for the kidney, with more than 75% of patients

having renal involvement. Vasculitis confined to the kidney is

known as RLV, and it is characterized clinically by rapidly

progressive glomerulonephritis. ANCA is an autoantibody

against neutrophil granules and monocyte lysosomal

components. The serological marker for AAV is ANCA

positivity. All the above diseases are usually associated with

circulating ANCA, and accurate ANCA testing is important for

diagnosis, treatment, and prognosis. The main target antigens

for C-ANCA and P-ANCA are PR3 and MPO, respectively.

Additionally, due to the significant overlap in the clinical

features of GPA and MPA, CHCC2012 recommended adding
frontiersin.org

https://doi.org/10.3389/fimmu.2022.991256
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.991256
a prefix to the clinical phenotype of patients with established

AAV (classified as PR3-ANCA disease and MPO-ANCA disease

based on ANCA specificity) (26). MPA was associated with PR3-

ANCA in 26% of cases and MPO-ANCA in 58% of cases (27).

Whereas GPA was characterized by PR3-ANCA in 66% of

patients and MPO-ANCA in 24% of patients. Studies have

shown a higher rate of disease recurrence in PR3-ANCA and a

higher mortality rate in MPO-ANCA disease. As an important

clue to disease diagnosis, a positive ANCA does not necessarily

confirm the diagnosis of AAV, whereas a negative ANCA does

not exclude the diagnosis of AAV. For example, the presence of

ANCA is absent in 40%–50% of patients with EGPA (28).

Therefore, clinicopathological findings are the gold standard

for the diagnosis of AAV.
Epidemiology of AAV

The introduction of ANCA testing in the 1990s has led to a

marked increase in the incidence of AAV in recent years (12, 29).

Currently, the prevalence of AAV is approximately 300/million,

with an annual incidence of 13–20/million (11, 12). In Norway, the

annual incidence of AAV is as high as 24.7/million. The incidence

of adult GPA, MPA, and EGPA are 15.6/million, 6.5/million, and

2.7/million, respectively (12, 29). The overall incidence of AAV is

increasing in Spain, Germany, and the UK (29, 30). Compared to

incidence studies, relatively few studies on AAV prevalence have

been reported. The overall prevalence of AAV per million adults

reported in Norway in 2013 was 351; the prevalence of GPA, MPA,

and EGPAwere 261, 58.2, and 32.9, respectively (29). The increased

prevalence of AAV may be related to factors, such as increased

incidence, improved disease definition, and improved vasculitis

registry systems.

Unlike other autoimmune diseases, AAV tends to develop in

older and male patients. Studies in both the UK and New

Zealand have confirmed that the peak incidence of AAV is at

the age of 60–79 years (31–33). The reason for the tendency of

AAV to develop in patients of advanced age is unclear. This may

be related to advances in ANCA testing that have led to the

detection of previously unrecognized AAV. Additionally, AAV

is more common in men than in women (31, 34). Studies have

shown a male prevalence to female prevalence ratio between

1.07:1 and 1.48:1 (31, 35–37). In Germany and New Zealand, no

significant gender differences are present in the incidence of

AAV. The reasons for the above occurrence are not clear.
Immunology of AAV

The mechanisms of the AAV autoimmune response have not

been fully elucidated, but molecular mimicry and dysregulation of B

and T lymphocytes have dominated the disease process. Activated B

lymphocytes can produce pathogenic ANCA. Regulatory B (B reg)
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cells induce T cell differentiation into regulatory T (T reg) cells away

from T helper 1 (TH1) and TH17 phenotypes and reduce B cell

productionofANCA(38).NeutrophilsarebothtargetsofANCAand

mediators of endothelial injury. When exposed in response to

infection or inflammation, the ANCA antigen-binding site can

bind and activate neutrophils, leading to their degranulation and

production of reactive oxygen species (ROS). It subsequently

mediates vascular endothelial cell damage (18). Concurrently,

intracellular signaling pathways are activated, resulting in changes

in the expression and conformation of adhesion molecules, which

promote the adhesion and migration of neutrophils in the vascular

endothelium (39). Activated neutrophils undergo a specific form of

cell death (NETosis), releasing neutrophil extracellular traps (NETs).

NETs canmediate direct damage to the endothelium, transferMPO/

PR3 to the vascular endothelium and dendritic cells for antigen

presentation, and activate the alternative pathway of complement.

Tissue deposition of chemokines, PR3, and MPO lead to the

recruitment of autoreactive T cells and monocytes, thereby

aggravating vascular tissue damage. The therapeutic targets of

NETs in different diseases mainly depend on the components of

NETs. AAV-induced NETs were enriched in citrullinated histones,

whereasSLE-inducedNETswereenrichedinoxidizedmitochondrial

DNA (40).

GPA is characterized by granuloma formation. Early

granulomas are characterized by activated neutrophils forming

microabscesses and scattered multinucleated macrophages. These

macrophages release pro-inflammatory cytokines that promote the

recruitment of neutrophils and monocytes from the blood to the

lesion site. Recruited neutrophils release lytic enzymes and ROS

upon encountering microorganisms and undergo lysis, leading to

the formation of a necrotic core of the lesion. Advanced granulomas

consist of a central area of necrosis withmultinucleated giant cells at

the margin, surrounded by dendritic cells, T lymphocytes, B

lymphocytes, and plasma cells, forming a follicular structure of

ectopic lymphoid tissue (41, 42). Lymphangiogenesis, defective

transport capacity, and formation of ectopic lymph node-like

structures are important mechanisms for the development of

acquired immunity. Granuloma formation may be driven by B

and T lymphocytes (43, 44). In patients with EGPA, elevated levels

of TH2 cytokines, such as IL-4 and IL-5, are associated with

eosinophilia. Eosinophils infiltrating tissues secrete eosinophilic

granules, including major basic protein, eosinophilic neurotoxin,

and eosinophilic cationic protein, that destroy vascular tissues.
Environmental risk factors
associated with AAV

Seasons

Many studies have confirmed that the onset of AAV is

strongly associated with seasonal changes, but the specific
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results are inconsistent. Most studies (22, 23) report a higher

number of patients with AAV hospitalized in winter, with a peak

incidence during winter, and demonstrate a higher incidence of

kidney damage in patients with AAV during winter. However,

Mahr et al. (45) suggested that the incidence of AAV is

significantly higher during summer, particularly in August. In

studying the factors related to AAV relapse, Kemna et al. (46)

showed that AAV is prone to relapse during autumn,

accompanied by increased titers of ANCA-related immune

markers. In contrast, no significant seasonal variation was

found regarding the timing of symptom onset in a study of

445 patients with GPA (47). These findings cannot be merely

limited to seasonal changes but also need to be extrapolated to

specific causes or triggers.

The possible mechanisms that affect the incidence of AAV in

different seasons may be different. Winter is a high incidence

period for respiratory-related diseases, and infection may trigger

the occurrence of AAV (48). Additionally, the level of vitamin D

is an important factor affecting the pathogenesis of AAV. The

active form of vitamin D is 1,25-dihydroxy vitamin D3 (1,25

(OH)2 D3), which is an immunomodulator. Vitamin D and

vitamin D-activating enzymes are widely present in various

tissues, especially immune-related cells (Figure 1). The

concentration of vitamin D in the body fluctuates with

seasonal variations, and the concentration is the lowest during
Frontiers in Immunology 04
winter (49, 50). Kälsch et al. (50) reported that patients with

AAV had significantly lower serum vitamin D levels than

healthy controls. Immune dysfunction caused by vitamin D

deficiency may be involved in the development of AAV. The

high incidence of AAV during summer may be caused by

exposure to sunlight or air pollutants. Spring and summer are

common seasons for various allergy-related diseases.

Furthermore, AAV-related nasal disease may be caused by an

immune response driven by Th2 cells. However, more studies

are needed to confirm these speculations (30, 51, 52). Seasonal

inconsistency may be due to differences in AAV disease

subtypes, geographic regions, patient records, onset time

deviations, and regional differences in medical levels in

each study.
Air pollution

Air pollution has become a serious environmental problem,

severely endangering public health (53–55). Air pollution is

composed of a variety of gases and particles, including carbon

monoxide (CO), sulfur dioxide (SO2), nitrates (NOX), ozone (O3),

lead, toxic by-products of tobacco smoke, and particulate matter

(PM). Fuel combustion is a major source of ambient air pollution.

Combustion releases various pollutants, such as carbon oxides,
FIGURE 1

Schematic diagram of the environmental factors in the onset of AAV. ANCA autoantigens (PR3 and MPO) are usually hidden in the primitive
granules of neutrophils. Environmental factors such as silica, air pollution, and infection, lead to neutrophil initiation and PR3 and MPO
movement to the cell surface. Binding of ANCA to these autoantigens leads to activation of neutrophils, which adhere to the vascular
endothelium. Neutrophil degranulation leads to the release of reactive oxygen species (ROS), proteases and neutrophil extracellular traps (NETs),
which in turn destroy endothelial cells. Chemokines and tissue deposition of PR3 and MPO lead to increased tissue damage by recruitment of
autoreactive T cells and monocytes. Additionally, ANCA binds to cell surface autoantigens, leading to neutrophil activation and release of factors
that activate the complement replacement pathway. The production of the allergenic toxin C5a further attracts neutrophils and enhances
neutrophil initiation and activation upon binding to cell surface C5a receptors, thereby promoting vascular inflammation.
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sulfur oxides, nitrogen oxides, polycyclic aromatic hydrocarbons

(PAHs), and PM, and harmful metals, such as lead and cadmium,

into the atmosphere. Additionally, transportation is an important

source of ambient air pollution, which can produce a large

amount of pollutants, such as PM, nitrogen oxides, CO, and

polycyclic aromatic hydrocarbons. Studies have shown that air

pollution is associated with various rheumatic immune diseases.

Air pollutants may be involved in the induction of systemic

inflammation and enhancement of autoimmunity, thereby

inducing or aggravating autoimmune rheumatic diseases (56–

58). For example, changes in the concentrations and types of air

pollutants may affect disease activity in patients with SLE. In

recent years, some studies have shown that air pollution may be

related to the occurrence and development of AAV. Data from a

survey on the prevalence of AAV disease in China (22) showed

that CO exposure was positively correlated with AAV incidence,

but air pollutants (PM2.5, PM10, other inhalable particulate

matter, NO2, and SO2) had no significant correlation with AAV

incidence (Table 1). Previous studies have found that CO has anti-

inflammatory effects; therefore, the harmful effect of CO on

vasculitis needs to be further explored (77). Nuyts et al. (65)

found that exposure to hydrocarbons was not a risk factor for

GPA and found no significant association between lead, cadmium,

and GPA. In contrast, Pai et al. (66) found significantly higher

mean hydrocarbon exposure in GPA and MPA cases. Albert et al.

(51) found that heavy metal exposure can significantly increase

the risk of GPA; these heavy metals are mainly cadmium, lead,

and mercury. Subsequently, they found that the GPA population

may be exposed to high levels of industrially generated

contaminants, including trichloroethylene (TCE), vinyl chloride,

methyl tertiary-butyl ether (MTBE), dichloroethene (DCE), and

chromic acid (67).

AAV disease is an occupational hazard of agriculture, and

the reason may be related to exposure to pollutants. Lane et al.

(69) found that a history of organic solvent exposure may be

associated with AAV, especially GAP. The same results were

obtained in two other studies (70, 71). Studies in Scotland,

Germany, and Canada showed that the incidence of AAV in

rural areas is higher than that in cities. This may be related to

environmental pollutants and pesticide exposure in remote areas

(68, 72, 78, 79). Additionally, a large Swedish case-control study

(73) found no association between occupation and GPA

(Table 1). Unfortunately, these studies only reported the

association between pollutants and AAV disease but did not

investigate the mechanisms that influence disease.

Previous studies found that tobacco smoking is associated

with the development of RA and SLE (80–84). However, findings

on the relationship between smoking and AAV have been

inconsistent. McDermott et al. (76) proposed that smoking is a

risk factor for AAV disease, especially with MPO-ANCA.

Yamaguchi et al. (75) found that current smoking status was

associated with recurrence (Table 1). However, Haubitz et al.

(85) found that smoking may have a potential protective effect
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against AAV disease. Additionally, studies have linked exposure

to silica, tillage, or organic solvents to an increased risk of EGPA,

whereas smoking is associated with a lower risk (74). The

immunosuppressive effects of nicotine have been suggested as

a potential explanation for these findings (86). A series of studies

could not elucidate the effect of smoking on AAV disease (69, 70,

87). Current research on smoking and AAV risk has produced

conflicting results, and further research is needed to examine the

link between smoking and AAV disease progression.
Silicon dioxide

Silica is one of the most abundant minerals on earth, and

exposure to silica dust has been identified as a risk factor for

many SARDs, including SS, RA, SLE, and AAV (60, 88).

Individuals working in agriculture, mills, drilling, painting, and

textiles have been identified to have a greater risk of developing

AAV disease (89). Multiple case reports (20, 21) have shown that

continuous exposure to silica increases the risk of positive

ANCA. Several studies have described cases of silica exposure

and AAV. A 74-year-old patient with AAV developed fever and

malaise after prolonged exposure to silica (90). Main and Wroe

(91) described three cases of silica-exposed patients with AAV,

two of whom still required dialysis after treatment. Analysis of

the occupational histories of 16 patients with AAV revealed that

patients with vasculitis were more likely to be exposed to silica

than controls (61). Previous surveys on post-earthquake disease

prevalence, such as the Kobe earthquake in Japan, the Great East

Japan earthquake, and the Yunnan earthquake in China, showed

that the incidence of AAV was higher than before (62–64). The

change was attributed to the harmful effects of air pollution on

the human body due to increased atmospheric levels of silica

from the earthquake. Studies have confirmed the dose-related

effects of silica exposure. A meta-analysis (60) showed that silica

exposure was positively associated with AAV. A case-control

study (59) suggested a 3.4-fold increased risk of ANCA serology

positivity in individuals with occupational silica exposure. Only

a few studies (92, 93) have proposed a relationship between

sustained exposure to silica and AAV. However, research on the

relationship between sustained exposure to silica and severity of

AAV remains inadequate.

The mechanism by which silica causes AAV is unclear. A

previous study (91) found that silica does not have a direct toxic

effect on genetically susceptible individuals but rather enhances

the immune response non-specifically, activates T cells and Treg

cells, and leads to autoimmune dysfunction (Figure 1). With

continued exposure to crystalline silica, the body produces

inflammatory cytokines, including interleukin-1(IL-1) and

tumor necrosis factor-beta (TNF-b), leading to inflammation

and eventual fibrosis (60). Silica can induce apoptosis of

neutrophils, macrophages, and monocytes, and damaged cells

release many proteolytic enzymes, leading to chronic
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TABLE 1 Study on the relationship between environmental pollutants and AAV.

Environmental
factors

Year Region Study
design

Participants Main conclusions

SiO2

Beaudreuil et al.
(59)

2005 France Case-control
study

Patients with
AAV

Silica exposure is dose-dependently associated with ANCA positivity.

Gomez-Puerta et al.
(60)

2013 USA Systematic
review and
meta-analysis

Six studies Exposure to silica increases the risk of AAV by 2.57 times.

Gregorini et al. (61) 1993 Italy Hospital-based
case-control
study

Patients with
AAV

Seven of the 16 cases and one of the 32 controls had positive histories of jobs with
exposure to silica dust.

Gupta et al. (20) 2019 India Case report Patients with
MPA

In a tuberculosis-endemic country, for patients presenting with diffuse alveolar
hemorrhage (DAH), with history of silica exposure, differential diagnosis of ANCA-
associated vasculitis must be considered.

Rao et al. (21) 2020 Australia Case report Patients with
AAV

The relevance of occupational exposures in renal disease and the immune-stimulatory
effect of silica.

Earthquake-related environmental exposures

Yashiro et al. (62) 1999 Japan Case series Patients with
AAV

The frequency of MPO-AAV cases in the Kobe area has more than doubled each year
since the earthquake.

Takeuchi et al. (63) 2017 Japan Retrospective
population-
based cohort
study

Patients with
MPO

The annual incidence of MPO-AAV doubled after the earthquake.

Farquhar et al. (64) 2017 New
Zealand

Retrospective
cohort study

Patients with
AAV

No statistically significant difference in the incidence of AAV existed before and after the
earthquake.

Other pollutants

Li et al. (22) 2018 China Retrospective
cohort study

Patients with
AAV

Carbon monoxide exposure was positively correlated with the frequency of AAV.

Nuyts et al. (65) 1995 Belgium Case-control
study

Patients with
GPA AAV

The association between lead and cadmium and GPA was not significant.
Exposure to hydrocarbons and welding fumes were not risk factors for GPA.

Pai et al. (66) 1998 UK Case-control
study.

Patients with
AAV

The mean hydrocarbon exposure was significantly greater in cases than in controls.

Albert et al. (51) 2004 USA Case-control
study

Patients with
GPA

Mercury was associated with GPA. The association between CO and GPA approached
statistical significance.

Albert et al. (67) 2005 USA Case series Patients with
GPA

This cluster of patients with GPA were potentially exposed to high levels of industrially
generated contaminants.

Chung et al. (68) 2022 Australia Retrospective
study

Patients with
AAV

No significant relationship existed between region and exposure to silica, solvents, metal,
dust, farming, gardening, or sunlight.

Agriculture

Lane et al. (69) 2003 UK Case-control
study

Patients with
AAV

Farming exposure was associated with risk of GPA and MPA but not EGPA. High
occupational silica exposure in the index year was a risk factor for AAV. The risk of MPA
rises with occupations at intermediate or high silica exposure.

Stamp et al. (70) 2015 New
Zealand

Case-control
study

Patients with
GPA

Farming was associated with an increased GPA risk.

Willeke et al. (71) 2015 Germany Case-control
study

Patients with
AAV

Regular farm, cattle, and pig exposure were strongly associated with AAV.

Aiyegbusi et al. (72) 2020 UK National cohort
study

Patients with
AAV

GPA (but not MPA) was positively associated with rurality.

Knight et al. (73) 2010 Sweden Population-
based case-
control study.

Patients with
GPA

No general association existed between 32 selected occupations and GPA.

Smoking

Haubitz et al. (74) 2005 Germany Cross-sectional
cohort study

Patients with
AAV

The prevalence of GPA/MPA among smokers was lower than among the general
population.

(Continued)
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inflammation and tissue fibrosis (94). Another study (95)

suggested that silica can induce the expression of MPO in the

cell membrane of neutrophils and monocytes, causing ANCA-

related autoimmune responses.
Latitude

A previous study (33) found that the incidence of AAV

varies significantly with latitude, further supporting the

influence of geographical region on AAV disease .

Epidemiological studies (33, 34) have shown that the risk of

GPA is high in the northern hemisphere of the earth, whereas

the risk of MPA is high in the southern hemisphere. Quantitative

changes showed marked changes, while the incidence of GPA

and EGPA increased with increasing latitude and decreasing

ambient UV radiation levels (24). Similarly, related studies have

confirmed that the positive rate of PR3-ANCA decreases with

increasing latitude and ultraviolet radiation intensity (96).

UV radiation is a sensitive factor that varies with latitude,

and related studies have found a close relationship between UV

radiation and immune diseases (46). UV radiation, which

changes with latitude, is considered to be the actual cause of

AAV. UV radiation is necessary for the skin’s synthesis of 1,25

(OH)2 D3, which regulates immune system homeostasis. UV

irradiation of the skin induces vitamin D synthesis, which in

turn inhibits the proliferation of Th1 and Th17 cells and the

production of cytokines. These changes cause the immune

system to differentiate into Th2 cells, thereby enhancing the

activity of CD24+, CD25+, and CD8+ cells. This is consistent

with a mechanism mediated by Th1 and/or Th17 cells in the

pathogenesis of GPA (97–99). This may explain why the

association between MPA and UV light is not strong, since

granulomas are not present in MPA. However, accurate

estimation of the average amount of UV radiation in a region

is challenging. The influence of immigration, clothing

characteristics, skin color preferences, religious and cultural
Frontiers in Immunology 07
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influence of dietary intake of vitamin D, related drugs, and

other environmental factors on the final serum vitamin D level

in each region. These challenges should be addressed in

future studies.
Microbial infections

Staphylococcus aureus
Microbial infection is considered to be an important risk

factor for the development of AAV. Intranasal staphylococcus

aureus (S. aureus) infection is most closely associated with AAV

(25). The early symptoms of patients with GPA are mainly

runny nose, nosebleeds, and other symptoms, because the most

prominent feature of the disease is the granulomatous

inflammation of the respiratory tract. S. aureus infection that

colonizes the respiratory tract may trigger GPA disease activity

(100). Previous studies (101) have found that the detection rate

of S. aureus in patients with GPA is significantly higher than that

in healthy individuals, and patients with GPA with chronic S.

aureus infection have a significantly increased risk of recurrence.

A randomized controlled trial (102) in the Netherlands showed

that patients treated with trimethoprim/sulfamethoxazole (T/S,

960 mg three times a week) had a decreased recurrence rate by

66%. In contrast, prophylactic treatment of chronic S. aureus

carriers with T/S did not reduce the risk of relapse (101). This

may be related to factors, such as drug dosage and different

bacterial detection methods (102). Further studies found that the

imbalance in the proportion of various bacteria colonized in

respiratory tract may contribute to the incidence of AAV. The

proportion of S. aureus colonization in nasal samples of patients

with GPA increased, but the diversity of the microbiome

decreased (103–105). Current studies indicate that S. aureus is

only related to the pathogenesis of GPA, but no obvious

relationship seems to exist between S. aureus and the

pathogenesis of MPA and EGPA.
TABLE 1 Continued

Environmental
factors

Year Region Study
design

Participants Main conclusions

Yamaguchi et al.
(75)

2018 Japan Multicenter
retrospective
cohort study

Patients with
AAV

Current smoking status was associated with recurrence. Smoking was significantly
associated with relapse in MPA, in a dose-dependent manner.

McDermott et al.
(76)

2020 USA Case-control
study

Patients with
AAV

Patients with AAV were more likely to be former or current smokers; a dose-response
relationship existed according to pack-years of exposure. These associations were
especially strong among participants with MPO-ANCA-positive disease.

Maritati et al. (69) 2021 UK Case-control
Study

Patients with
EGPA

Exposure to silica, farming, or organic solvents is associated with an increased risk of
EGPA, whereas smoking is associated with a lower risk. These exposures seem to have
distinct effects on different EGPA subsets.
AAV, Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis; GPA, granulomatosis with polyangiitis; MPA, microscopic polyangiitis; EGPA, eosinophilic GPA.
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The role of S. aureus in the pathogenesis of AAV may be as

follows: (1) Superantigens of S. aureus directly stimulate B cells

and T cells. Among them is the polyclonal activation of B cells by

S. aureus cell wall components. Additionally, S. aureus may

directly initiate neutrophils, leading to surface expression of PR3

(106). (2) S. aureus contains a highly homologous complementary

form of the protein in humans. cPR-3 (105–201) acts as a protein

complementary to the human autoantigen PR3 and elicits an

autoimmune response (8). (3) The CpG motif of S. aureus may

trigger B lymphocytes in the peripheral blood of patients in

remission, leading to the production of ANCA and relapse of

AAV (107). (4) The polypeptide 6-phosphogluconate

dehydrogenase (6PGD) 391–410 encoded by the S. aureus

plasmid is homologous to the previously determined

immunodominant MPO-T cell epitope, and it is immunogenic

in humans. Studies have shown that 6PGD induces MPO-related

nephritis (108). (5) S. aureus-derived extracellular adhesion

protein (EAP) and Staphylococcus peroxidase inhibitor (SPIN)

can induce the body to produce ANCA (109). (6) S. aureus is an

effective inducer of NETs, DNA extracellular complex, and

antibacterial factors secreted by neutrophils. Exposure of ANCA

antigens to the immune system can initiate an autoimmune

response to AAV (110, 111).
Viruses
Epstein-Barr virus (EBV) infection is most closely related

to various SARDs (112–116). Multiple case reports found that

patients with AAV may develop anti-MPO antibodies

following EBV infection. Treatment with glucocorticoids

combined with ganciclovir can significantly relieve clinical

symptoms and reduce viral load (117–119). Lidar et al. (120)

found that anti-EBV capsid antigen antibodies and anti-EBV

early antigen antibodies were significantly higher in the sera of

patients with AAV than in healthy individuals. Treatment with

glucocorticoids in combination with ganciclovir significantly

relieved clinical symptoms and reduced viral load. Hepatitis B

virus (HBV) and hepatitis C virus (HCV) may be triggers for

SARDs. An Egyptian study (121) found 62.7% hepatitis C virus

infection in 42 patients with AAV, and C-ANCA levels were

significantly correlated with hepatitis C virus antibody levels.

Lee et al. (122) found a significantly higher risk of relapse in

anti-HBc-positive patients with EGPA. Resolved HBV

infection may have an important impact on vasculitis activity

at diagnosis and subsequent relapse after remission in patients

with EGPA. Recently, ANCA has been identified in patients

with coronavirus disease 2019 (COVID-19) infections, but

relatively few cases have been reported (123, 124). Studies

have proposed the involvement of the parvovirus B19, human

herpesvirus, and hantavirus in the occurrence of AAV (122,

125, 126). However, these studies are few and have not found a

significant correlation between these viruses and the

development of AAV.
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Other microorganisms
Few studies have been conducted on other microorganisms in

AAV. A Japanese study (127) reported that Aspergillus infections,

including Candida, Candida, and Fusarium, were found in patients

with both allergic bronchopulmonary mycosis (ABPM) and EGPA.

Kuwabara et al. (128) found that Mycobacterium tuberculosis

infection and anti-tuberculosis drugs may be related to AAV. Fujita

et al. (129) found that the positive rate of Chlamydia pneumoniae in

patients withMPO-AAVwas 33%. A Japanese report (130) described

a woman who underwent total thyroidectomy, developed PR3-

ANCA 3 months after surgery, and had a chronic infection with

Tsukamurella pulmonis. GPA often occurs in gastrointestinal

mucosal lesions, and the study detected 25 cases of Helicobacter

pylori infection among 36 patients with GPA (131). Currently, the

effect of these microorganisms on AAV is only speculative, and

further large-scale studies are needed to verify.
Other environmental risk factors

Drugs
Drug-induced small vessel vasculitis is a small group of AAV

disorders that still do not have a precise definition. Drugs that may

be associated include hydralazine, allopurinol, propylthiouracil,

phenothiazine, nitrofurantoin, methimazole, minocycline,

phenytoin sodium, penicillamine, lorazepam, levamisole, cocaine,

isoniazid, montelukast, erlotinib, and tofacitinib (86, 89, 128, 132–

134). Among them, the incidence of AAV caused by antithyroid

drugs is higher, especially propylthiouracil. The clinical

manifestations of propylthiouracil-induced AAV disease are

similar to those of primary AAV, whereas the disease severity is

less severe and prognosis is better. After cessation of antithyroid

drug use, symptoms of patients with AAV gradually resolve

and ANCA titers decrease significantly (135). Treatment

strategies for drug-induced AAV differ from those for primary

AAV (136). In patients with mild symptoms, immediate

discontinuation of the relevant drug can lead to disease remission.

Patients with severe diseases should be treated aggressively.

However, immunosuppressive maintenance therapy is often

unnecessary (137). The mechanism of drug-induced AAV disease

may be related to NETs (138). However, further studies are needed

to verify the exact mechanism (132). NETs are associated with

inflammation in various ways. NETs can directly induce endothelial

damage and activate alternative complement pathways (139).

Additionally, they are a major component of thrombosis. The

relationship between NETs and ANCAs seems to be bidirectional,

a vicious circle (111, 140, 141).

Vaccines
The efficacy of vaccines is based on the ability of the host

immune response to the antigen to elicit a memory T-cell

response over a period of time. The influenza vaccine is
frontiersin.org

https://doi.org/10.3389/fimmu.2022.991256
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.991256
generally considered safe and effective. However, in recent years,

the population after influenza vaccination has developed various

autoimmune phenomena, such as Guillain-Barré syndrome, RA,

pemphigus vulgaris, psoriasis, giant cell arteritis, and AAV (142,

143). Several AAV cases associated with influenza vaccination

have been reported (144, 145), but influenza vaccination does not

increase the recurrence rate of AAV disease. The exact etiology of

AAV induced by influenza vaccination is unclear and may be

related to molecular mimicry and autoimmune/inflammatory

syndrome induced by adjuvants (ASIA syndrome) (146–148).

Recent studies (149, 150) have found that AAV may occur after

receiving the COVID-19 mRNA vaccine, and patients with

existing AAV may experience recurrence after receiving the

COVID-19 mRNA vaccine. The mechanism of new or

recurrent AAV after vaccination is still a mystery and may be

similar to the mechanism of AAV caused by influenza vaccine.

Additionally, the enhanced immune response and presence of

monocytes after vaccination may cause MPO-ANCA and PR3-

ANCA (151). However, this evidence originates from individual

case reports, and no specific mechanism has been explored.
Conclusion

Studies to identify modifiable environmental risk factors for

AAV can provide insights into disease pathogenesis and can

facilitate the development of preventive strategies, especially in

those individuals at high risk. The current consensus is that

multiple environmental and epigenetic factors interact in a

complex manner. Different triggers and extent of their roles in

disease activity may vary by subgroups (e.g., ANCA subtype,

geographic region). Numerous epidemiological studies support

the relationship between exposure to various environmental

pollutants, UV radiation deficiency, and microbial infections

and the risk of developing AAV. Other environmental factors,

including seasonal changes, latitudinal changes, medications, and

vaccinations may be associated with an increased risk of AAV.

Further studies are needed to confirm these findings. Additionally,
Frontiers in Immunology 09
future studies on environmental factors and AAV susceptibility

subgroups need to be advanced, and exposures throughout the life

course should be considered comprehensively.
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