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Surface and interface play critical roles in energy storage devices, calling for operando characterization

techniques to probe the electrified surfaces/interfaces. In this work, surface science methodology, including

electron spectroscopy and scanning probe microscopy, has been successfully applied to visualize

electrochemical processes at operating electrode surfaces in an Al/graphite model battery. Intercalation of

anions together with cations is directly observed in the surface region of a graphite electrode with tens of

nanometers thickness, the concentration of which is one order higher than that in bulk. An intercalation

pseudocapacitance mechanism and a double specific capacity in the electrode surface region are expected

based on the super-dense intercalants and anion/cation co-intercalation, which are in sharp contrast to the

battery-like mechanism in the electrode bulk. The distinct electrochemical mechanism at the electrode

surface is verified by performance tests of real battery devices, showing that a surface-dominant,

nanometer-thick graphite cathode outperforms a bulk-dominant, micrometer-thick graphite cathode. Our

findings highlight the important surface effect of working electrodes in charge storage systems.

Keywords: surface science methodology, aluminum ion battery, operando characterization, surface effect

INTRODUCTION

Fundamental understanding of elementary electro-
chemical processes at electrified surfaces/interfaces
of electrochemical energy storage devices strongly
relies on development and application of in
situ/operando characterization techniques. Signifi-
cant progresses have been made in recent decades
[1,2], and successful characterization techniques
include X-ray diffraction (XRD) [3-5], transmis-
sion electron microscopy (TEM) [6-9], X-ray
spectroscopy and topography [4,10,11], nuclear
magnetic resonance (NMR) [12], etc. Rich elec-
tronic, chemical, and geometric information from
the bulk regions of electrodes and electrolytes can
be derived while overlooking surface and interface
processes. It is well known that device perfor-
mance is mainly governed by surface and interface
electrochemical reactions in most state-of-the-art
nanosized electrodes [10,13,14], which thus call for
operando surface and interface analysis.

Surface science methodology such as electron
spectroscopy and scanning probe microscopy, has
proven to be successful in providing a detailed
description of how chemical reactions take place
on solid surfaces [15]. Applications of the so-
phisticated surface science techniques to electro-
chemical devices should address key issues at the
electrified surface/interface, which remain less ex-
plored, and more challenging in contrast with sur-
face catalysis research [15-18]. First, surface sci-
ence analysis is mostly done in ultrahigh vacuum
(UHV), and thus it is difficult to explore electro-
chemical reactions occurring at liquid/solid inter-
faces. Nevertheless, solid-state or ionic liquid (IL)
electrolytes are UHV compatible [6,7,9,10,19,20],
and even water/solid interfaces can be probed
by newly developed near ambient pressure sur-
face techniques [18,21,22]. Second, most surface-
sensitive techniques need to probe open and well-
defined surfaces, but electrode surfaces in real
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Figure 1. Model AIB devices and their electrochemical behaviors. (a) Schematic for
Al/graphite model battery enabling simultaneous electrochemical measurements and
surface science measurements using photons or scanning probes over the open elec-
trodes (left panel). Side views of the model battery showing that ions intercalate
into graphene layers from liquid/graphite interfaces and diffuse over um or even mm
distances (right panel). (b) Cyclic voltammetry (CV) curves (0—-2.45 V, 0.5 mV/s) and
(c) galvanostatic charge-discharge (GCD) curves (60 wA, cutoff voltage: 2.42 V, dis-
charge plateaus: ~2.2 V) from the model battery. (d) Operando OM images (700 um x
950 rem) captured at the indicated charging times on 2 V over HOPG electrode. Diffu-
sion frontiers are highlighted by red dashed lines.

electrochemical devices are all buried by electrolytes
and current collectors which are totally inaccessi-
ble to surface probes. Thus, it is crucial to con-
struct model electrochemical devices having pla-
nar and open electrified surfaces for surface analysis
[9,10,19,23].

In this work, taking an aluminum (Al) ion
battery (AIB) as an example [24,25], we built a
planar Al/graphite model battery consisting of
Al foil anode | 1-ethyl-3-methylimidazolium chlo-
ride (EMImCI)/AICl; (1:1.3 by mole ratio) IL
electrolyte | highly ordered pyrolytic graphite
(HOPG) cathode. Using the UHV compatible
IL electrolyte and open electrode, the model de-
vices were successfully placed into various surface
systems including Raman, X-ray photoelectron
spectroscopy (XPS) and atomic force microscopy

Page 2 of 8

(AFM) for multiple operando characterizations of
the working electrode surfaces. The comprehensive
surface analysis provides an unprecedented chance
to follow elementary electrochemical reaction
steps at electrode surfaces. More interestingly, a
distinct electrochemical reaction mechanism was
identified in the surface regions of a bulk electrode,
which allowed us to predict successfully doubling
of the specific capacity using surface-dominant,
nanometer-thick graphite electrode materials in real
coin-type batteries.

RESULTS AND DISCUSSION

Model AIB devices and their
electrochemical behaviors

For the operando surface science analysis, a pla-
nar model AIB with open electrode surface was de-
signed. As illustrated in Fig. 1a (left), a freshly exfoli-
ated HOPG flake (a few millimeters long and wide,
and tens of micrometers thick) was employed as the
working electrode (WE), which was placed parallel
with an aluminum foil (counter electrode, CE). IL
electrolyte was dropped on the gap between the elec-
trodes. Notably, most of the HOPG surface was free
from electrolyte and open to the surface probe. Al-
ternatively, HOPG flake, glass fiber separator filled
with IL electrolyte, and Al foil can be stacked to
form a sandwich-like AIB model device (Fig. Sla).
Electrochemical tests were performed over the
model devices. As shown in Fig. 1b and Fig. S1b, in-
tercalation peaks around ~1.9, 2.1, and 2.4 V were
observed in cyclic voltammetry (CV) curves upon
charging the model devices. Furthermore, galvano-
static charge-discharge (GCD) curves of the model
batteries are shown in Fig. 1c, and two charged
plateaus in the range of 1.9-2.3 V and 2.3-2.4 V are
clearly seen. Overall, the model devices displayed the
same electrochemical behaviors as real Al/graphite
batteries [24].

In addition to the electrochemical performance,
diffusion of ions inside the HOPG electrode was
recorded in real-time by optical microscope (OM)
using an operando OM/Raman cell equipped with a
transparent quartz window (Fig. S2). Figure 1d dis-
plays a set of images captured at 2 V for different
charging times. It can be seen that dark contrast of
the graphite surface is induced by the ion intercala-
tion and the diffusion frontiers can be clearly distin-
guished by OM. Accordingly, ultrafast (~3.7 m/s)
and ultralong (up to centimeters) diffusion of the
intercalated ions underneath the HOPG surface
was directly confirmed through the operando OM
measurements. The varied optical contrasts sug-
gest different charging states (Fig. S3, Videos 1-3).
Based on open HOPG electrode and long-distance
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Figure 2. Operando surface science analysis of the graphite electrode. (a) Operando Raman spectra showing evolution of graphite G band (left) and
intercalation ion signals (middle) upon charging at different potentials and different times (right). (b and c) A set of operando XPS Al 2p (b) and C 1s
(c) spectra when charging from 1.95 to 2.45 V. The bottom Al 2p spectrum in (b) is from surface-adsorbed AICl,~ species (Al,qs) contaminated on the
pristine electrode at open circuit voltage (OCV), while the top spectrum in (b) is mainly from intercalated AICl,~ species (Al;,;) on the completely charged
electrode (2.45 V for 2 h). The bottom and top C 1s spectra in (c) are from the electrode surface before and after the charging process, respectively.
(d) Dependence of intercalated Cl (Cl;,) and intercalated N (N;;) contents with intercalated Al (Al;,;) contents in the charging process, showing that CI/Al
and N/Al atomic ratios are 4.1 and 1.6 at all potentials. (e) Atomic ratios between intercalated Al (Al;:) and host-C (Cps:) at different potentials. Al/Cost
ratios at the fully charged state from the theory limit (dashed line) [5], XPS measurement over the bulk electrode (red star), and chemical analysis of the
whole graphite electrode (green star) are included (Fig. S16).

lateral jon transport within the electrode, our planar
model battery with the HOPG WE provides an ideal
model system for the operando surface science stud-
ies (Fig. 1a, right).

Operando surface science analysis
of the graphite electrode

Structural changes of the graphite electrode were
studied by operando Raman spectroscopy at the
open electrode surface of the planar AIB device
(Fig. 2a). Upon charging, the characteristic G band
of pristine graphite (denoted as G, uncharged
state) shifts to higher wavenumber positions, which
can be assigned to graphene layers charged by adja-
cent ions (G.) [26]. Charging at 2.2 V produces a
stage-2 graphite intercalation compound (GIC), as
indicated by the dominant G.; peak at ~1620 cm™ L
With the potential set at 2.35 V, a new peak around
1635 cm™! (denoted as G.,) appears and finally
becomes dominant, which can be attributed to
more strongly charged graphene layers in stage-1
GIC [27-30]. Besides the graphite signals, inter-
calated electrolyte species were also detected by
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Raman from the open electrode surface. When the
potential is higher than 2.1 V, two peaks at ~350
and ~600 cm™" start to appear (Fig. 2a), which
are characteristic of AICl,~ and EMI™ ions, respec-
tively [24]. Therefore, operando Raman measure-
ments give direct evidence of co-intercalation of
AICl;~ and EMI" ions and formation of stage-1
GIC in the surface region of HOPG which depth is
< 100 nm because of strong absorption of light by
graphite [31]. Upon discharging, the evolution of G
band is fully reversible, i.e. G, = G + G, —
Ge1 = Gy + Go = Gy, when probing the HOPG
surface close to the electrolyte/graphite interface
(Fig. $4).

The sandwich-like AIB devices (Fig. S1) were
loaded into a system for operando XPS measure-
ments. Chemical component and charge transfer
in the surface region of the graphite electrode were
investigated in detail. During the XPS measure-
ments, graphite electrodes were always grounded
and external potentials ramped from 1.95 to 2.45V
(Vgraphite — Va) were applied to Al anodes
(Fig. S1). During the charging process, Al 2p, Cl 2p,
and N Is core-level signals appear at lower binding
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energy (BE) positions and show remarkable inten-
sity increase (Fig. 2b and details in Figs S5-S7).
These newly appeared spectra all present —1.7 eV
BE shifts compared with those from the supported
IL overlayers (Fig. S8 and Table S1). In contrast,
the C 1s signal intensity decreases largely, as a result
of attenuation by the intercalated ions (Fig. 2c
and Fig. $9). A HOPG electrode was deliberately
coated with an ultrathin gold layer and Au 4f peak
position acquired from this operating electrode
remained constant during the charging process
(Fig. S10). This reference experiment confirms that
the newly appeared Al 2p, CI 2p, and N 1Is signals
are caused by electrochemical intercalation of
electrolyte ions into HOPG. Work function of the
operating HOPG electrode surface was measured
by operando scanning Kelvin probe microscopy
(SKPM), which increases by ~1.7 eV in the fully
charged state (Fig. S11). Thus, it is the downshift
of the Fermi level at the charged graphite surface
that results in the observed rigid BE shifts for
all intercalated Al, Cl, N, and C elements [32]
(Fig. S12).

The chemical composition of the intercalants and
GICs can be further determined from the XPS data
(Fig. 2d and e). The intercalation of AICl, ™ together
with EMI™ is unambiguously confirmed by the facts
of Al /Cline = 1 : 4.1 and Al;, /N, = 1 : 1.6, which
agree with the above operando Raman results. By
subtracting the contributions from guest C atoms in
intercalated EMI™ (C-N at 285.2 eV/(C-N)j; and
C-C at 283.6 eV/(C-C)iye) [20,33], the atomic ra-
tios between Al and Cj,og atoms (Chogt including
uncharged graphite at 284.5 eV/C,. and charged
graphite at 283.9 eV/C,, Fig. 2c and Fig. $13) at dif-
ferent potentials were obtained (Fig. 2¢). We found
that the Ali,/Chos ratio increased to 1:1.7 at the
fully charged state, which is about one order higher
than the theoretical limit in AIB (1:24) [S]. For
the first time, the electrochemical reaction of AIB in
the surface region can be described by the following
formula:

C, + 5[AlCl, ] + 4[EMIT] — C,[AICL]s
x[EMI]4 + e~ (n ~ 8.5). (1)

The small n (8.5) indicates an abnormal super-
dense intercalant state, forming multi-layered
cations/anions within the graphene layers like
the formation of the super-dense lithium phase in
bilayer graphene [9,34].

Such super-dense intercalation structure and
large amount of cation co-intercalation may be un-
stable, and the electronic structure evolution in-
duced by redistribution of the intercalated cations
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and anions under open circuit (OC) condition was
investigated by operando XPS. The Al, Cl and N
core levels shifted by +0.4 eV at the OC state for
72 h (Fig. S14). Such relaxation may be attributed
to charge redistribution in the cation/anion multi-
layers in between the graphite layers, similar to that
in supercapacitors [35], which does not happen in

the bulk regions (Fig. S15).

Distinct electrochemical process at
electrode surface compared to bulk

To make a comparison of the electrochemistry at
the electrode surface and in bulk, quasi in situ Raman
and XPS measurements were carried out on a fully
charged electrode subjected to mechanical exfolia-
tion (exposure of the bulk region to surface analysis)
(Supplementary data, Scheme 1). Figure 3a shows
depth-dependent graphite intercalation structures:
stage-1 GIC at the surface vs. stage-4 GIC in the
bulk. Our experimental evidence for different inter-
calation stages between the electrode surface and
bulk confirms the theoretical hypothesis of core-
shell structure of intercalated electrode particles
[30]. XPS Al 2p, N 1s, and C 1s (C-N);,; peaks from
the bulk region have similar BE positions to those
from the as-charged surface but their intensities are
all strongly weakened (Fig. 3b and Fig. $16), while
the C 1s signal from Cjy atoms becomes much
stronger (Fig. S16). The determined Aliy/Chost
ratio is 1: 19.1 and Aly,¢/Njy, ratio is 1: 0.7 (Fig. 2e
and Fig. S16). Both intercalated AICl,~ and co-
intercalated EMI* concentrations in bulk are much
smaller than those in the surface region. To validate
the semi-quantitative results from the XPS analy-
sis, the chemical composition of the fully charged
graphite electrode was analyzed by chemical analysis
methods, producing similar results. Figure 2e and
Fig. S16 indicate Aly/Chost = 1:17.5 and
Al /Niye = 1: 1.1, which are considered to be nor-
mal in comparison with previous reports [5,25]. The
depth-dependent intercalation reaction can be also
confirmed by ex situ time-of-flight secondary ion
mass spectrometry (TOF-SIMS) measurements.
The mass spectrometry (MS) signals related to
the intercalation concentration (Al”/C;~) keep
on decreasing with the increasing sputtering time
(Fig. S17), revealing that the intercalant concen-
tration gradient is present in the surface region.
The thickness (d) of the unusual surface region is
estimated to be within 100 nm (Fig. S18).

The distinct electrochemical behavior in the
surface region is further verified by operando
XRD measurements (Fig. $19) over two kinds of
graphite materials: nanometer-thick graphite films
(d = ~50 nm) vs. micrometer-thick graphite films
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Figure 3. Depth/thickness-dependent electrochemical intercalation process. Distinct electrochemical intercalation process
at surface region. (a and b) Raman spectra (a) and XPS Al 2p spectra (b) acquired from as-charged graphite surface and bulk
region of the electrode after exfoliation of the surface layer, respectively. (¢ and d) Operando XRD patterns from (c) thick
graphite film (d = ~20 wm) electrode and (d) thin graphite film (d = ~50 nm) electrode. The bottom and top XRD patterns in
(c) and (d) are from the electrode before and after the charging process, respectively. (e and f) /n situ atomic force microscope
(AFM) images of a nano graphite flake at OCV (e) and fully charged state (f), respectively. The inset line profiles show the
step heights labeled by the red rectangles. (g and h) Ex situ SEM cross-section images of a graphite flake at OCV (g) and fully

charged state (h), respectively.

(d = ~20 wm). An ordered stage-4 GIC structure
forms in the thick graphite film electrode (Fig. 3c),
while the fully charged ultrathin graphite film
electrode has a disordered structure (Fig. 3d). Ex
situ grazing incidence X-ray diffraction (GIXRD)
measurement probes the surface region directly
and confirms the same surface structure (Fig. S20).
The volume expansion of ultrathin electrode during
intercalation was measured by in situ AFM analysis
over a 52 nm-thick graphite flake, which reveals
more than S-fold volume expansion (Fig. 3e and f,
Figs S21 and S$22). The micrometer-thick graphite
flake shows the normal 2-fold thickness increase
by imaging its cross-section with ex situ scanning
electron microscopy (Fig. 3g and h). The much
larger volume expansion and less-ordered phase in
the nanometer-thick cathode is consistent with the
above finding of super-dense intercalated multi-
layered ions in graphite layers at the surface region
as concluded from the operando XPS measurements
(Fig. 2e).

Electrode surface effect on battery
performance
The above characterization results demonstrate a re-

markable surface effect on the electrochemical re-
action in AIB, which may subsequently affect the
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device performance. We first explored the inter-
calation kinetics in electrodes of nanometer-thick
graphite film (d = ~50 nm, area of 1 x 1 cm?)
and micrometer-thick graphite film (d = ~20 pum,
area of 1 X 1 cm?), in which surface region and bulk
region are dominant in the two electrodes, respec-
tively. CV tests are performed at different scan rates
in the three-electrode mode. According to Fick’s law
of semi-infinite diffusion, peak current (i) and scan
rate (v) follow the formula i = a - v* [36]. Much
sharper redox peaks at lower intercalation poten-
tial were observed in the CV curves acquired from
the device using the ultrathin graphite film cathode
(Fig. 4aand Fig. $23) with a derived b value of ~0.91
(Fig. 4b), revealing a charge-transfer-limited inter-
calation pseudocapacitance process [37]. In con-
trast, the b value measured from the device using
the thick graphite film cathode is 0.57, indicating a
diffusion-limited battery-like process. The two con-
trast charging mechanisms are also present in the
real coin-type devices (Fig. S24). The sharper CV
peaks observed from the nanometer-thick graphite
electrodes also reveal the higher diffusion rate of
intercalated ions within the ultrathin electrodes
and the formed uniform local structure around the
intercalated ions [14].

The above characterization data confirm that
electrochemical processes within electrode surface
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of real AIB devices after the 20th cycle at a current density of 0.5 A/g using nano
graphite powder (NGP) and micrometer graphite powder (MGP) as cathode materials
(cutoff voltage: 2.42 V). (d) Schematic illustration of depth-dependent charge storage
processes: multi-layer AICI,~ and EMI* intercalated in near surface region with in-
tercalation pseudocapacitance mechanism vs. dominant AICl,~ intercalation in bulk
region with battery process.

regions or in ultrathin electrodes are dominated
by the intercalation pseudocapacitance charging
mechanism as manifested by one order higher
AICl,; ™ concentration compared with the theoret-
ical value but co-intercalation of [AICl,]s and
[EMI*],. Accordingly, the theoretical capacity is
expected to be doubled in this case. Guided by
this insight, we assembled two coin-type devices us-
ing nano graphite powder (NGP) (3-10 nm thick
and 5-10 um large) and micrometer graphite pow-
der (MGP) (diameter ~15 jum) as cathode ma-
terials, respectively. As shown in Fig. 4c, the ca-
pacity has been improved from 61 mAh - g~
with the MGP cathode to 116 mAh-g~! with the
NGP cathode at 0.5 A - g!, and such performances
are maintained for 100 cycles (Fig. S25a) and at
higher current density (Fig. S25b). Notably, the dif-
fusion lengths in both NGP and MGP cathodes
are in the same scale of micrometers (Fig. S26),
and the only difference is the thickness. As shown
above (Fig. 1d), intercalation of electrolyte ions and
their lateral diffusion in graphite cathodes are feasi-

ble and ultrafast in the Al/graphite battery [24,25].
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Therefore, the observed different electrochemical
reaction mechanisms and device performances be-
tween the surface and bulk regions should not be
attributed to the diffusion limit or surface adsorp-
tion, which are commonly used to explain size
effect in energy storage processes [14,38,39]. It is
suggested that the demonstrated surface effect may
originate from the enhanced structural flexibility of
the electrode surface regions [40], allowing accom-
modation of more intercalation ions in graphene lay-
ers (Fig. 4d), and this explains the origin of bet-
ter performance with the nanometer-thick graphene
electrodes compared with the micrometer-thick
graphite electrodes [25,41].

CONCLUSION

Distinct electrochemical intercalation reactions in
electrode surface regions were revealed by com-
prehensive operando surface science measurements
over well-designed Al/graphite model batteries.
Multi-layer super-dense anions with co-intercalated
cations, with concentration about one order higher
than that in electrode bulk, were observed. The
depth-dependent charge storage mechanism can
be described as the intercalation pseudocapaci-
tance mechanism dominant in the surface regions
in contrast with the battery-like process occurring
in the bulk regions. The revealed surface effect on
electrochemical storage guides to double the capac-
ity using a nanometer-thick graphite electrode. This
work suggests a new strategy for operando stud-
ies of surface electrochemical reaction over elec-
trode surface using surface-sensitive techniques, and
highlights the significance of electrode surfaces in
electrochemical device performance.

METHODS
Operando Raman and XPS measurements

Operando Raman characterizations were based on
the planar model batteries. The model batteries were
placed into an in situ Raman cell (Fig. S2). The bat-
tery devices and then the cell were assembled in an
Ar-filled glove box (H,0, O, < 0.5 ppm). Raman
spectra were recorded with a LabRAM HR 800 Ra-
man spectrometer using a 532 nm laser. The inci-
dent laser was illuminating on the open area of the
HOPG flake.

The model battery used for XPS measurements
has a sandwich structure (Fig. S1), which was as-
sembled onto Omicron-type direct-current heating
sample holders in a glove box and then transferred
to the XPS analysis system using a mobile UHV
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transfer chamber. The HOPG flake (5 x 12 mm?)
was connected with the sample holder and thus
grounded. A small piece of glass fiber separator layer
adsorbed with IL was placed at one end of the
HOPG flake. Subsequently, a small piece of Al foil
was put on top of the separator and then connected
to a contact bar, which was insulated from the sample
holder.

XPS core level spectra were recorded under
UHV conditions (P < 10~® mbar) using pass en-
ergy of 20 eV. Data analysis was done by Casa-XPS
software with a Shirley background and 70/30
Gaussian-Lorentzian fits. The chemical composi-
tion (Fig. 2d and e) of the GICs was determined
by XPS fitting results (as shown in Fig. S13).
Aliy/Chost was calculated with the formula:
Aline/Chost = Aline/ (Ctotal_Nint X 3) aCCOfding to
the stoichiometric ratio of EMI™.

Comparisons between surface and bulk were
measured by quasi in situ XPS and Raman measure-
ments on exfoliated as-charged HOPG electrodes
(Supplementary data, Scheme 1). For each process
including assembling, transfer, charging and exfolia-
tion, exposure to air was avoided in both operando
and quasi in situ measurements.

In situ AFM measurements

In situ AFM was performed over a nano graphite
flake (mechanical exfoliation from a HOPG crystal)
on aflat glassy carbon (GC) substrate (Gaoss Union
company Wuhan, China) operated by a Cypher
ES AFM (Asylum Research, Oxford Instruments,
USA) installed in an Ar-filled glove box (Fig. S21).
Before testing, the sample is calcined under Ar at
900°C for 3 h to remove the residue tape. The
AFM tip (AC160TSA-R3-10, 250 Hz, 20 N/m) is
totally immerged in the electrolyte drop and can
measure the nanosheet height during the charging.
For comparison, the expansion of thick graphite
flake was measured by ex situ SEM (Phenom
ProX, Phenom World, Netherlands) imaging of the
cross-section over the same sample edge.

Operando XRD measurements

Large area high-quality graphite films of different
thicknesses (Fig. S23) were synthesized by high tem-
perature thermo-reduction of graphene oxide (GO)
layers [25,42]. Operando XRD measurements of
the graphite electrodes were studied with a Rigaku
Ultima IV X-ray diffractometer (Cu Ko, 40 kV,
40 mA) in an in situ XRD cell (Fig. S19). The
electrochemical operando XRD patterns were ac-
quired in 26 range of 15°-35° with a scan rate of
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5° - min~'. Operando XRD analysis was performed
using constant charging potential as illustrated in
Fig. 3c and d. The stage number n of the GIC is cal-
culated by the ratio between two interplanar spac-
ings of dominant diffraction peaks: (0, 0, n + 1)
and (0, 0, n + 2) [43]. Ex situ GIXRD measure-
ments were performed by SmartLab XRD (Rigaku,
Japan). The angle of incidence X-ray is 1° and 0.3°
(Fig. S20). The ex situ GIXRD patterns were ac-
quired in 26 range of 20°-30°, with a scan rate of

5° - min~ L.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.
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