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ABSTRACT
We address a problem in inference from retrospective studies where
the value of a variable is measured at the date of the survey but
is used as covariate to events that have occurred long before the
survey. This causes problem because the value of the current-date
(anticipatory) covariate does not follow the temporal order of events.
We propose a dynamic Bayesian approach for modelling jointly the
anticipatory covariate and the event of interest, and allowing the
effects of the anticipatory covariate to vary over time. The issues
are illustrated with data on the effects of education attained by the
survey-time on divorce risks among Swedishmen. The overall results
show that failure to adjust for the anticipatory nature of education
leads to elevated relative risks of divorce across educational levels.
The results are partially in accordance with previous findings based
on analyses of the same data set. More importantly, our findings pro-
videnew insights in that thebias due to anticipatory covariates varies
over marriage duration.
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1. Introduction

Anticipatory (current-date) covariates are variables whose values refer to what is attained
by the date of the survey but are used to explain behaviour in life course which took place
before the survey. Highest educational level and social class attained at survey time are
typical examples of anticipatory covariates.

Such variables are common in many retrospective studies because the data collection
focuses on, say, birth or employment histories but contain no history on educational
careers or social class mobility. The use of anticipatory covariates causes problems in
inference because they are treated as fixed variables although, in fact, they are inherently
time-varying.

Consider, for instance, a retrospective survey where the interest is to investigate dif-
ferentials in the risk of divorce across educational levels attained before marriage but the
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available information is only respondents’ highest educational level at the time of the sur-
vey. We have information on the age of individuals and the year at which they achieved
the reported highest educational level. But, we have no idea of their educational level at the
time of marriage on which we want to base our investigation. At least some should have
had lower educational level at the time of marriage than what they have reported at the
time of the survey but we have no idea of how much lower it was.

The main goal of this paper is to propose a method of restoring the temporal order of
the educational level and, thereby, disentangle the effects due to misclassification of the
educational level into wrong categories from those that are attributable to real differences
in educational levels.

The two recent studies that attempted to adjust for the anticipatory nature of educational
level [9,10] are based on the assumption of proportional risks (constant relative risks) of
divorce for educational levels across marriage durations. In the present study, we propose a
dynamic Bayesian adjustment model that (i) allows covariate effects to vary over time and
(ii) adjusts for the bias due to misclassification of anticipatory educational levels.

Our proposed methodology allows for modelling jointly the risk of divorce and the
process of educational level transitions. We use a reversed time Markov chain process to
estimate themost probable educational level before exposure to the event of interest. These
estimated values are, then, used to compute adjusted effects of the covariate on the event
under investigation.

Results show that ignoring the anticipatory nature of education leads to increased edu-
cational gradients in divorce risks with significant difference between those with secondary
and tertiary education. But, such difference disappears when we adjust for the anticipa-
tory nature of education and we find no significant differences in divorce risks across
educational levels.

In Section 2, we introduce the data set and the specific problem to be addressed. In
Section 3, we present the proposed dynamic Bayesian adjustment model. In Section 4, we
fit themodel, and present our results and compare themwith those from previous analyses
of the same data set. We summarise our findings by way of discussion in Section 5.

2. The data set and our specific problem

2.1. The data set

The data set on which we base our illustration is a subset from a Mail Survey of Swedish
men where data on attitudes towards children and family was collected from about 3200
men [17]. Apart from attitudes and family plans the survey also collected other information
such as parental background as well as respondents’ highest educational level attained at
the time of the survey.We have chosen this data for our illustration because it was analysed
in previous studies [9,10] with which we want to compare our results.

The usable records for our present case are 1312 ever married men who have either
divorced before the survey date (events) or were still married (censored). The variable of
interest for our present purpose is educational level and its effects on the risk of divorce.
Table 1 presents the data classified bywhether the individual completed his reported educa-
tional level before hemarried (the non-anticipatory cases) or after hemarried (anticipatory
cases).
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Table 1. Distribution of sample across when education was completed.

Completed Education Status

Still married Divorced Total % divorced

Before marriage Primary 371 71 442 16
(non-anticip.) Secondary 433 55 488 11

Post Secon. 116 21 137 15
Sub-total 920 147 1067 14

After marriage Primary – – – –
(anticipatory) Secondary 66 28 94 30

Post-Secon. 120 31 151 21
Sub-total 186 59 245 24
Total 1106 206 1312 16

10 15 20 25 30 35 40 45 50
Age (in years) at completion of highest reported educational level

10

15

20

25

30

35

40

45

50

A
ge

 (
in

 y
ea

rs
) 

at
 m

ar
ria

ge

Reference
Primary
Secondary
Post-secondary

Figure 1. Distribution of the data by age at marriage and at completion of reported education. The
observations below the main diagonal are anticipatory cases.

Thus 245 of the 1312 respondents (close to 20%) are anticipatory cases in the sense that
they completed their highest reported educational level after they married. These are also
shown to the right of the diagonal line in Figure 1. As would be expected, all of those who
reported to have primary level education at the time of the survey have completed this
level before they married (indicated by blue ‘+’ in Figure 1). For those who reported to
have secondary or post-secondary education at the survey time, on the other hand, some
have attained the reported educational level after they married. The exact figures are that
16% of those with secondary level education (the green ‘o’ in Figure 1), and 52% of those
with post-secondary education (the red ‘x’ in Figure 1) are anticipatory cases.

Overall, 442 of the 1312 respondents (33.69%) have reported primary level educa-
tion, 582 (44.36%) have reported they have secondary level education, while the rest 288
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(21.95%) have reported to have achieved post-secondary-level education by the survey
time.

It can also be noted that out of the entire sample of 1312 respondents (who had at
least primary level education by the survey time), 870 (66.31%) progressed to secondary
level education. Of these, 288 (33.10%) progressed further to post-secondary level educa-
tion. These figures are relevant for comparison with our estimated transition rates between
educational levels to be presented in Section 4.2.

2.2. The specific problem

Our specific problem is that some individuals have achieved their reported highest educa-
tional level after marriage and, in fact, a smaller proportion have completed the reported
educational level after they divorced.

The question that remains to answer is what to do with these respondents whose educa-
tional level does not follow the temporal order of the event of interest. The simplest option
is to discard them from further analyses as in [2]. We label this approach as the reduced
model in the following sections but argue that it leads to loss of information and bias due
to potential selection. Another option, which is the common practice in the literature, is
to ‘blind oneself ’ and proceed with analyses of the entire data set ignoring the anticipa-
tory nature of the covariate. We call this alternative the anticipatory model in subsequent
sections.We also argue that even this approach leads to biased estimates of educational gra-
dients in divorce because potential changes in educational levels (between exposure to the
risk and the event or censoring) are ignored. Thus we propose a model that uses a reversed
timeMarkov chain process to estimate themost probable educational level before exposure
to the risk of divorce. These estimated values are then used to compute adjusted effects of
education on divorce risk. This approach is what we call the adjusted model in the rest of
the paper. Other methods that require data imputation methods include [14–16,18] while
[5,9,10] are examples of approaches based on joint modelling of the risk and the education
process.

3. Dynamic Bayesian adjustment of anticipatory covariates

3.1. Dynamic hazardsmodel

We observe data D = (ti, di, xi, tmi, txi), i = 1, . . . , n, where ti = min(Ti,Ci) represents
the observedmarriage duration for individual iwhich is either event timeTi (years between
marriage and divorce) or a censoring timeCi (years betweenmarriage and the survey date).
The censoring indicator, di, takes the value 1 if the ith respondent was divorced by the sur-
vey time and the value 0 if he was still married (censored). The xi is the highest education
level reported at the time of the survey and have one of three levels (1 for primary level,
2 for secondary level and 3 for post-secondary level). The tmi and txi are, respectively, the
dates the ith respondent married and completed his highest reported education.

We also introduce a variable Z which is the educational level achieved by the date of
marriage. In the reduced and anticipatory models, Z = x, while in the adjusted model, Z
is a latent variable whose value needs to be estimated together with other parameters of
interest.
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If Z is known and fixed, the marriage duration is modelled by assuming a continuous
rate of divorce,

λ (t|Zi) = λ0 (t) exp (β1(t)zi1 + β2(t)zi3) , (1)

where λ0(t), β1(t), β2(t) are functions of time representing, respectively, the baseline haz-
ards and the effects of education levels on divorce risk at marriage duration t, zil = 1 if
Zi = l, and zil = 0 otherwise, for l = 1, 3. Here, secondary (l = 2) is set as the reference
level.

One common approach of parametrizing time-varying covariate’s effects is the semi-
parametric piece-wise exponential (PE) model which expresses them using a Gaussian
randomwalk process [6,12,23]. This is a special case of the spline representation described
in [4,13,22].

The PE model partitions the time interval (in our case, marriage duration) into
smaller intervals, Ij = [τj−1, τj), j = 1, . . . , J, where τ0 = 0 < τ1 < · · · < τJ = max(T),
and assumes that effect parameters and baseline hazard functions are constant within each
interval Ij but can vary between intervals. Thus, for our case, we define λ0(t) = λ0j (where
λ0j > 0) β1(t) = β1j and β2(t) = β2j for t ∈ Ij.

The continuous hazard function in Equation (1) is, therefore, discretized in terms of
interval-specific hazards in the log-linear form:

ln λij = θ0j + β1jzi1 + β2jzi3 (2)

= θ jzi, (3)

where zi = (1, zi2, zi3)
′
, and θ j = (θ0j,β1j,β2j) is the new regression parameter-vector

within interval Ij and contains an intercept θ0j = ln(λ0j). The PE assumption allows to
express the likelihood function in interval Ij as a product of the contributions of individuals
in that interval [6]:

fj
(
tj|θ j,Zj

) =
nj∏
i=1
λ
dij
ij exp

(−λijtij) (4)

where λij is defined in Equation (2), nj is the number of men at risk in Ij (who are still mar-
ried at the end of Ij−1), tij = min{τj, ti}, dij is an interval-specific censoring indicator (dij =
1 if event occurs in Ij and dij = 0 otherwise), Zj = (Z1, . . . ,Znj) and tj = (t1j, . . . , tnj,j) are,
respectively, the vectors of education profiles at marriage date and exposure times of men
at risk in Ij.

As we can note from Equation (4) the likelihood functions in each interval are direct
functions of the number of events (dij) and the exposure times (tij).

Thus misclassification of the events and/or exposure times into wrong marriage inter-
vals or, most importantly, into wrong levels of the covariate – as is the case with our
anticipatory education – will lead to incorrect estimates of the parameters. This, in turn,
can potentially ruin the purpose of the analysis.

Further, a plot of life-table estimates of the hazards of divorce for the three educa-
tional levels (see the supplemental material) shows that the hazards cross each other across
marriage duration – thereby violating the proportional hazards assumption.

Below, we propose amethod that both relaxes the proportional hazards assumption and
adjusts for the anticipatory nature of the educational level.
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3.2. Joint likelihood for themarriage duration and the latent educational level

To adjust for the anticipatory education level, we express the joint likelihood of marriage
duration, T, and the latent education level achieved by marriage date, Z, for respondent i
as

fj
(
tij,Zi|θ j, xi

) = fj
(
tij|θ j,Zi

)
p (Zi|xi) . (5)

Here, f (tij|θ j,Zi) is the conditional likelihood function (4), and p(Zi|xi)models the latent
education level achieved by the date of marriage given the highest education level reported
at the survey time.

To model Z, we define the probability that the level of education of respondent i at his
marriage date was l given that he reported an education level xi = k at the survey time,
as a function of the time si = txi − tmi between the date of marriage tmi and the date of
completion of the reported highest educational level txi :

p (Zi = l|xi = k) = ψkl (si) , i = 1 · · · , n; and l, k = 1, 2, 3. (6)

We model Z by tracing backward in time the paths of education level progress taking into
account that education is a non-decreasing process. This means, given the highest educa-
tion level x = k reported at the survey time, the plausible education level that could have
been attained by marriage time is l ≤ k. Thus p(Zi = l|xi = k) can be expressed in terms
of the transition probability matrix

Ψ (si) =
⎡⎣ 1 0 0
ψ21 (si) ψ22 (si) 0
ψ31 (si) ψ32 (si) ψ33 (si)

⎤⎦ , (7)

for k = 1, 2, 3 (rows) and l = 1, 2, 3 (columns). Note that the probabilities sum to 1 in each
row and that the primary education-level (x = 1) is an absorbing state because, based on
evidence from the data, all individuals who reported to have primary-level education at
the survey time have completed it before they married.

For a given row in Equation (7), Z follows a categorical distribution

p (Zi|xi = k) =
k∏

l=1

[ψkl (si)]zil , (8)

where zil are indicators of the education levels (zil = 1 if Zi = l and zil = 0 otherwise).

3.3. Estimation of the transition probabilities

We assume that x and Z are realizations from a continuous Markov chain {X̃(t̃) : t̃ ∈
(tb, ts]}, where tb and ts are, respectively, the birth date and the survey date, and X̃(t̃) is
defined on an outcome space of three states, � = {1, 2, 3}, representing the three levels of
education. Thismeans x = X̃(tx) andZ = X̃(tm)where, as defined before, tx and tm denote
the date at which the reported highest education level was attained and the date of mar-
riage, respectively. Because x, tx and tm are observed, we only need to focus on the paths
of the chain X̃(t̃) in the time frame [tm, tx] to make inference about Z.
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Since tm ≤ tx (for the anticipatory cases), and by definition Z = X̃(tm), it follows that Z
can be obtained from reversing all paths of the chain X̃(t̃) passing by the state x = X̃(tx)
at time tx. This induces a reversed Markov chain {X̃(s̃) : s̃ ∈ [tm, tx]} with initial state x =
X̃(tx) and final state Z = X̃(tm) which is the most plausible educational level achieved by
the date of marriage. Note that the time frame [tm, tx] can be translated to [0, tx − tm],
which allows to express the reversed Markov chain as {X̃(s) : s ∈ (0, tx − tm]} implying
that x = X̃(0) and Z = X̃(tx − tm).

Assuming it is not possible to skip an education level, transitions in {X̃(s) : s ∈ (0, tx −
tm]} can only occur between two consecutive states in a decreasing way as shown in the
diagram below .

The process can begin either in X̃(0) = 2 or X̃(0) = 3 and it is assumed that during an
infinitesimal small time	s, reversed transitions from the state X̃(s) = 3 to the state X̃(s +
	s) = 2 occur at a rate of μ2, while those from X̃(s) = 2 to X̃(s +	s) = 1 (the absorbing
state) occur at a rate of μ1. Here, the rate is defined as the number of men completing
the educational level in question per unit time. Therefore, both μ1 and μ2 are defined on
[0,+∞).

The Markovian assumption implies that the probability of being in the state l ∈ � at a
time s +	s depends only on the current state at time s, which can be expressed as

pl (s +	s) =
3∑

k=1

pk (s) pkl (s, s +	s) , (9)

where pl(·) is the probability of being in the state l ∈ � at a specified time, and pkl(s, s +
	s) is the transition probability from the state k to the state l during an infinitesimal small
time	s.

In matrix notation, the expression in Equation (9) can be written as

P (s +	s) = P (s)P (s, s +	s) , (10)

where P(s, s +	s) is a 3 × 3 matrix of transition probabilities pkl(s, s +	s), and
P(·) = [p1(.) p2(·) p3(·)] is a vector of themarginal probabilities of the states at a specified
time.

In order to complete the adjusted model, we need to define the transition probabili-
ties pkl(s, s +	s). We define them considering two facts: (1) transitions can only occur
between consecutive states and (2) the states are not instantaneous, which means that
before a transition occurs the process stays in the current state for some time.

These probabilities can be modelled, following Gross et al. [11], as

pkl (s, s +	s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, k = 1, l = 1
μ1	s, k = 2, l = 1
1 − μ1	s, k = 2, l = 2
μ2	s, k = 3, l = 2
1 − μ2	s, k = 3, l = 3
0, elsewhere

. (11)
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These can then be used to estimate the conditional probabilities defined in Equation (7)
as follows (see the supplemental material for derivation and more details on how these
transition probabilities are estimated).

ψ21 = 1 − exp {−μ1s} ,
ψ22 = exp {−μ1s} ,
ψ31 = μ1

μ2 − μ1
exp {−μ2s} − μ2

μ2 − μ1
exp {−μ1s} + 1,

ψ32 = μ2

μ2 − μ1

[
exp {−μ1s} − exp {−μ2s}

]
,

ψ33 = exp {−μ2s} .

(12)

Thus, our final adjusted model is the joint likelihood,

fj
(
tj,Zj|θ j, x

) =
3∏

k=1

k∏
l=1

nj∏
i=1
λ
dij
ij exp

(−λijtij)ψxikzil
kl , (13)

where ln λij = θ jzi,ψkl are the estimates in Equation (12) using si = txi − tmi , and xik = 1
if the reported highest education level is k ∈ {1, 2, 3} and xik = 0, otherwise. In the adjusted
model, Z can either be the reported highest level or a lower level depending on the value
of s. For instance, if a respondent reported post-secondary education at survey but we see
that this was attained 2 years after marriage (s = 2), then his educational level at marriage
date would be either post-secondary or secondary. The probability of primary, in this case,
would be nearly zero as it requires more than 2 years to complete both secondary and
post-secondary levels.

The adjusted model in Equation (13) can be seen as a generalization of the reduced
and anticipatory models since they can be obtained as special cases by setting ψkl = 1 in
Equation (13).

3.4. The prior distribution

To complete specification of the adjustedmodel, we specify prior distributions for the effect
parameter paths θ1:J and the transition rates μ.

To insure smoothness in the regression parameters across different intervals Ij, we
assume a prior of the form

p
(
θ1:J

) = p (θ1)
J∏

j=2
p
(
θ j|θ j−1

)
, (14)

where p(θ j|θ j−1) is the Gaussian random walk,

θ j = θ j−1 + εj, εj ∼ N
(
0,Vj

)
, (15)

andVj is the variance that controls the evolution of the effect parameters through the inter-
vals. Often, Vj is considered constant throughout the intervals Ij and a prior is set on it
[7,12,21,23]. It is also possible to estimate Vj by using the discount procedure in [24]. We
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follow such procedure in this paper where we assume Vj is proportional to the covariance
matrix, Cj−1, of the posterior of the parameter θ j−1 in the preceding interval Ij−1:

Vj =
(
1 − α

α

)
Cj−1,

where 0 < α < 1 is the discounting factor regulating the amount of information trans-
ferred from the previous to the current interval. As α → 0, then Vj → ∞, leading the
prior (15) to become non-informative; hence no communication among intervals. On the
other hand, as α → 1, then Vj → 0, which leads to a static evolution of the effect parame-
ters. Here, we set α = 0.45, following [20], to allow the effect parameters evolve smoothly
and adapt to any local change that may occur in the hazard function. Further, we set the
initial distribution p(θ1) to a non-informative normal distribution N(0, 100 × I3), where
I3 is a three-dimensional unit matrix, to express lack of information in the first interval.

Finally, given thatμ is defined on the positive real line, we propose independent gamma
priors for the transition rates μ = (μ1,μ2):

μ ∼ Gamma (a1, b1)× Gamma (a2, b2) (16)

where a1, a2, b1 and b2 are positive real numbers which we set to: a1 = a2 = b1 = b2 =
0.001. In thisway,we assume that a priori the rates are nearly zero and let the data dictate the
optimal rates. Implicitly, the prior (16) suggests that we start a priori with the anticipatory
model as μ1 and μ2 are close to zero and Z is close to the highest reported educational
level.

3.5. The posterior distribution

The joint posterior distribution for the parameters in the adjusted model can be expressed
as

p
(
θ1:J ,Z1:n,μ|t1:n, s1:n, x1:n

) = p
(
θ1:J |t1:n,Z1:n

)
p (Z1:n|s1:n, x1:n,μ) p

(
θ1:J

)
p (μ) , (17)

where θ1:J = (θ1, . . . , θ J), t1:n = (t1, . . . , tn) denotes the observed marriage duration,
Z1:n = (Z1, . . . ,Zn) and x1:n = (x1, . . . , xn) represent, respectively, the educational level at
marriage time and the reported highest educational level for all n individuals. The param-
eter θ1:J is high-dimensional (where the dimension grows with J); therefore, estimating it
jointly may be computationally inefficient.

One possibility to address this issue is to estimate the marginal posterior of θ j, com-
monly referred to as the filtering distribution, recursively through time as follows:

p
(
θ j|t1:j,Z1:j

) ∝ fj
(
tj|Zj, θ j

)
p
(
θ j|t1:j−1,Z1:j−1

)
, (18)

where t1:j−1 = (t1, . . . , tj−1), Z1:j−1 = (Z1, . . . ,Zj−1), Zj, tj are, respectively, vectors of
educational levels and exposure times of individual who are at risk in Ij, and

p
(
θ j|t1:j−1,Z1:j−1

) =
∫

p
(
θ j|θ j−1

)
p
(
θ j−1|t1:j−1,Z1:j−1

)
dθ j−1. (19)
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The conditional posterior of the rate parameter, μ, can be expressed as

p (μ|Z1:n, s1:n, x1:n) =
3∏

k=1

k∏
l=1

n∏
i=1

[ψkl (si)]xikzil p (μ) , (20)

where p(μ) is the joint prior of μ, and ψkl are the transition probabilities defined in
Equation (7) and estimated in Equation (12).

Lastly, the conditional posterior of the latent parameter Z can be expressed as

p
(
Zi = l|ti, , si, μ, θ1:J , xi = k

) ∝
J∏

j=1
fj
(
tij|Zi, θ j

)
ψkl,

k = 1, . . . , 3, l = 1, . . . , k, i = 1, . . . , n. (21)

3.6. Inference

Since the reduced and anticipatorymodels are nestedwithin the adjustedmodel, we discuss
only the method of sampling from the adjusted model. The same procedure applies to the
former models but with some non-applicable steps skipped.

To sample from the joint posterior distribution of the adjusted model, we apply a Gibbs
sampler that follows three steps at each iterationm = 1, 2, . . .

(1) Sample μm|Z1,...,n, s1,...,n, x1,...,n
(2) Sample Zm

i |ti, μm, θ1:J , xi
(3) Sample θm1:J |t1,...,n, μm, Zm

1,...,n, x1,...,n

Starting from an initial path of the effect parameters θ01:J and an initial education level
Z0, we sample the vector of the rates μm from its conditional posterior distribution
given in Equation (20). Then, for each individual, we sample an education level Zm from
the categorical distribution in Equation (8) with probability proportional to the expres-
sion in Equation (21). Finally, we sample a path θm1:J from the conditional posterior in
Equation (18).

The first and last steps cannot be implemented directly because the expressions in Equa-
tions (18) and (20) are not tractable. We replace the first step by a Metropolis–Hastings
kernel. Thus, at themth iteration,μm is proposed from a proposal distribution g(μ|μm−1)

and it is accepted with probability proportional to

min

(
1,

p (μm|z, x) g (μm−1|μm)
p
(
μm−1|z, x) g (μm|μm−1

)) . (22)

Since the rates are defined on the positive real line, we propose μ1 and μ2 independently
from the gamma distribution. To select the parameter values in the proposal distribution,
we use the observed mean and variance of s for each educational level (in the anticipatory
cases) as guidance.

According to (12), the distribution of s is implicitly an exponential distribution, which
implies that the mean of s is inversely related to the rate μ. The parameters in the pro-
posal distribution are, therefore, obtained by matching the observed mean and variance of
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s computed from the data with the corresponding moments of an inverse-gamma distri-
bution. The observed mean and variance are 4.28 and 11.55 respectively, for the secondary
level, and 4.19 and 7.12, for post-secondary level. Hence, the proposal distribution g is set
to independent Gamma(4, 11) and Gamma(5, 15) for μ1 and μ2, respectively.

The final step requires evaluating the integral (19) which, for our model, is intractable.
In addition, the autocorrelations of the effect parameters induced by the randomwalk prior
process (15)may hinder the convergence of the sampler. To overcome these issues, Andrieu
et al. [1] suggest using a conditional sequential Monte Carlo kernel (commonly known
as particle filter) to approximate the conditional posterior in Equation (18). Particle fil-
ters approximate p(θ j|t1:j,Z1:j) empirically by a discrete distribution defined on a finite set
of points {θ (h)j }Hh=1, referred to as particles, with probability masses {w(h)j }Hh=1 commonly
known as importance weights.With this weighted sample of particles, the integral (19) can
be approximated as

p(θ j|t1:j−1,Z1:j−1) ≈
H∑
h=1

p(θ j|θhj−1)w
h
j−1.

Particle filter algorithms provide a framework of computing the importance weights
recursively as new data from intervals Ij are observed, and they enable efficient and com-
putationally fast inference in dynamic models. A comparison of the particle filter and the
Markov Chain Monte Carlo (MCMC) algorithms applied to survival dynamic models is
provided in [20].

The conditional sequential Monte Carlo kernel of Andrieu et al. [1] runs the particle
filterwith the condition that one reference path θ

ref
1:j is a priori set deterministically and after

a complete run of the particle filter, one path θm1:J is selected from the sample of particles
{θ (h)1:J }Hh=1. However, setting the reference path deterministically may lead to a slow mixing
of the sampler because particle filters are prone to degeneracy in the importance weights.
This problem occurs when a few particles have significantly high importance weights but
the rest have importance weights close to zero.

To overcome this problem, Lindsten et al. [19] suggest randomizing the reference path
through an extra resampling step referred to as ancestor sampling. The ancestor sam-
pling procedure allows fast mixing of the sampler and does not require many particles
in the underlying particle filter step [19]. We, therefore, follow the particle Gibbs with
ancestor sampling (PGAS) of Lindsten et al. [19] and apply the particle filter algorithm
ofMunezero [20]. This algorithmwas designed specifically for survival data and proven to
be computationally fast and efficient. In our illustrative example, we achieved fast conver-
gence by setting the number of particles H to 150. See supplemental material for details on
convergence diagnostics and posterior predictive checks.

4. Analysis of effect of education on divorce risk

4.1. Preliminary analyses using Cox proportional hazards (PH)model

To begin with, we fitted a standard Cox proportional hazards (PH) model [3] of the form

λ (t) = λ0 (t) exp (βx) , (23)
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Table 2. Relative risks of divorce by educational level (from Cox PHmodel).

Education All (n=1312) Non-Anticip. (n=1067) Anticip. (n=245)

Primary 0.897 (p=0.502) 1.050 (p=0.074) -
Secondary 1 1 1
Post-secon. 1.194 (p=0.314) 1.596 (p=0.068) 0.693 (p=0.160)

to the entire data as well as separately to non-anticipatory and anticipatory cases (those
on the left and right of the main diagonal in Figure 1, respectively), with results shown
in Table 2. Thus using those with secondary level as a baseline (reference) category, we
note, for the entire sample, that those with primary level education have about 10% lower
risk while those with post-secondary level have about 20% higher risk of divorce. In other
words, divorce risk increases as educational level increases though the p-values indicate
that the results are not significant at significance levels of about 5%.

For those who completed their reported educational level before marriage (the non-
anticipatory cases to the left of the diagonal in Figure 1) the corresponding excess risks
of divorce are 5% for those with primary level education and about 60% for those with
post-secondary education. Further, the results are not significant at significance levels of
about 5%.

In contrast, the results for the anticipatory cases are in the opposite direction – those
with post-secondary education have about 30% lower risk of divorce than those with sec-
ondary education. Again, the corresponding p-value shows the difference is not statistically
significant at significance levels of about 5%.

These preliminary results give an early warning that educational gradients in divorce
risks differ between the anticipatory and non-anticipatory cases which, in turn, prompts
to our proposed adjusted model.

4.2. Results from the adjustedmodel and comparisonwith previous findings

Our proposed model requires defining the J intervals partitioning the marriage duration.
Common practice sets the interval limits at each event time [6]. However, doing this would
result in J = 151 intervals which requires huge computational efforts. To alleviate this,
Munezero [20] proposes setting the intervals at event times in such a way that all intervals
contain the samenumber of events. Inference about the optimal number of events per inter-
val, E, can be done using any predictive information criteria. Following [20], we use the
Watanabe–Akaike information criterion,WAIC (see [8] for the definition and details about
WAIC). We obtain the following WAIC values: 2209.28, 2205.49, 2206.47 and 2208.15,
respectively, for E = 5, E = 10, E = 15 and E = 20. These WAIC values suggest to use
E = 10 which leads to a partition of time into J = 15 intervals.

In Figure 2, we present the estimated probabilities of transition for different educa-
tional levels. It turns out that a respondent (among anticipatory cases) who reported
post-secondary educational level is most likely to have had secondary level at his mar-
riage date, if he spent at least 2–4 years of studies after marriage. However, if he spent at
least 4 years studying, it is more likely that he had completed two educational levels; that is
he had primary level at his marriage date. For those who reported secondary educational
level, the probability that they had primary educational level at theirmarriage date becomes
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Figure 2. Estimated conditional probabilities of educational levels at marriage time for given educa-
tional levels at survey time

considerably high after 2.5 years of study aftermarriage. The estimatedmean times to com-
plete secondary and post-secondary education are 1

μ̂1
= 3.56 years and 1

μ̂2
= 2.43 years,

respectively.
From the estimated transition rates, we can also compute μ̂2

μ1+μ2
= 0.40 and μ̂1

μ1+μ2
=

0.60 which are estimates of the proportions (among the anticipatory cases) with secondary
and post-secondary level educations, respectively. These figures can be compared with the
corresponding entries in Table 1 (94/245 = 0.38 and 151/245 = 0.62, respectively). We
use these quantities in our posterior predictive checks, see the supplemental material.

Figure 3 shows relative risks of divorce for those with primary level education (rela-
tive to those with secondary level education) by marriage durations and across the three
models (reduced model, anticipatory model and adjusted model). The corresponding rel-
ative risks for those with post-secondary education are shown in Figure 4. We note from
the figures that the relative risks are underestimated in the anticipatory model (red line)
compared to the reduced model and adjusted model (black and blue, respectively) in most
of the marriage durations. We also note that the degree of over estimation varies across
marriage durations and that after about 11 years in marriage the underestimation turns to
overestimation.

Figures 5–7 show relative risks of divorce for those with primary and post-secondary
education (relative to those with secondary education) in the Reduced Model, Anticipa-
tory Model and Adjusted Model, respectively. Comparing Figures 6 and 7 we note that
those with post-secondary education have higher risk of divorce than the baseline level for
most of the marriage durations in the adjusted model (Figure 7) but that such super-risk
is underestimated (in some intervals to the extent of being sub-risk) in the anticipatory
model (Figure 6). Even those with primary-level education seem to have higher risks of
divorce than the baseline over most of the marriage durations but, again, these are under-
estimated in the anticipatory model (Figure 6) compared to the adjusted model (Figure
7). Figure 5 shows that the educational gradient of divorce is much higher in the reduced
model (where the anticipatory cases are discarded) and this is consistent with what we
found in the preliminary analyses in Section 4.1.
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Figure 3. Relative risks of divorce for primary education relative to secondary education across the three
models.
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Figure 4. Relative risks of divorce for post-secondary education relative to secondary education across
the three models.
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Figure 5. Relative risks of divorce for primary and post-secondary education relative to secondary
education in the Reduced Model.
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Figure 6. Relative risks of divorce for primary and post-secondary education (relative to secondary
education) in the Anticipatory Model.
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Figure 7. Relative risks of divorce for primary and post-secondary education (relative to secondary
education) in the Adjusted Model.

Figure 8 presents the percentage under/over-estimation of relative risks of divorce in the
anticipatory model (compared to the adjusted model). We note here that the relative risks
of divorce for both educational levels (primary and post-secondary) are underestimated
in the anticipatory model for marriage durations until 10 years whereafter they turn to
overestimation.

In Table 3, we summarize our results and compare themwith those from previous stud-
ies – Ghilagaber and Koskinen (G & K [9]) and Ghilagaber and Larsson (G & L [10]).
Our present results shown in the last column are obtained by averaging the corresponding
relative risks over the J = 15 time intervals partitioning the marriage duration.

We note that our results in the adjusted model (last column third panel) are closer to
those of Ghilagaber and Koskinen [9] for those with primary level education. For those
with post-secondary education, our results are more close to those of Ghilagaber and
Larsson [10].

Note, however, that the three approaches are not comparable in all aspects and we will
focus on our own results in the discussion below. While the three studies analyse the
same data set, the two previous studies assume constant relative risks of divorce across
marriage duration while the present study allows relative risks to vary over marriage dura-
tion. Further, the previous studies consider a Markovian process evolving forward in time
(from birth) for times to complete the various educational levels. In the present study, we
model educational levels using a reversed (backward) Markov chain and allow the tran-
sition probabilities between educational levels to depend on the time spent on education
after marriage.
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Figure 8. Percentage under-estimation (or over-estimation) of relative risks of divorce in the anticipa-
tory model compared to the adjusted model.

Table 3. Estimated educational gradients of divorce-risks (and 95% confidence intervals in brackets) in
the reduced, anticipatory and adjusted models from three studies. Results in the third column refer to
those of Ghilagaber and Koskinen (2009), results in the fourth column refer to those of Ghilagaber and
Larsson (2019), while the results in the last column are our findings in the present study.

Model Education G & K [9] G & L [10] Present work

Reduced Primary 1.04 (0.74,1.51) 1.03 (0.72,1.49) 1.07 (0.45,2.48)
Model Second (ref ) 1 1 1

Post-Sec 1.65 (1.38,1.85) 1.62 (1.34,1.81) 1.16 (0.78,1.78)
Anticip. Primary 0.89 (0.65,1.23) 0.89 (0.64,1.20) 0.89 (0.42,1.91)
Model Second (ref ) 1 1 1

Post-Sec 1.21 (1.14,1.26) 1.19 (1.12,1.22) 1.17 (1.03,1.26)
Adjusted Primary 1.02 (0.77,1.41) 0.95 (0.69,1.28) 1.06 (0.47,2.43)
Model Second (ref ) 1 1 1

Post-Sec 1.09 (0.98,1.18) 1.28(1.17,1.33) 1.26 (0.59,3.59)
Estimated Primary 14.80 16.40 -
years to Secondary 6.5 3.65 3.56
complete Post-Sec 6.3 1.90 2.43

As measures of uncertainty and ‘indirect’ indicators of goodness-of-fit, we also present,
in Table 3, 95% confidence/credible intervals and estimated number of years to complete
the respective educational levels. Thus the expected number of years to complete pri-
mary level educational is 14.8 years (counted from birth) according to Ghilagaber and
Koskinen [9] and 14.4 years according to Ghilagaber and Larsson [10]. We don’t have a
corresponding estimate in the current study because, asmentioned before, the formulation
in the present study treats primary level education as absorbing state since all individuals
who reported to have primary-level education at the survey time have completed it before
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they married (and, hence, there is no anticipatory case among those with primary level
education).

5. Discussion

We addressed an important issue in inference with observational data where values of a
covariate refer to what is achieved by the survey time but the covariate is used as regressor
in models that relate it to behaviour that took place long before the survey. This causes
problem because the value of the current-date (anticipatory) covariate does not follow the
temporal order of events. We attempted to tackle the problem by proposing a dynamic
Bayesian approach allowing to model the event of interest and the anticipatory covariate
jointly, and the effect parameters to vary over time.

We illustrated our problem by modelling effects of educational level attained at survey
time on the risk of divorce among Swedish men. The results showed that ignoring the
anticipatory nature of the education variable led to the underestimation of educational
gradients on divorce for marriage durations until about 10 years. After 10 years, the effect
becomes overestimation of the relative risks. This may be associated with differential risks
in divorce between those who have completed their reported educational level short after
marriage and those who did so long after marriage and closer to the survey date.

The overall effect of ignoring the anticipatory nature of the education variable led to
spurious significance of the relative risk of divorce for those with post-secondary education
(relative to those with secondary education) and tomuch lower risk for those with primary
education without affecting its significance. We also demonstrate that the relative risks are
not constant over the marriage durations – something that is ignored while using standard
methods like the proportional hazards models.

There are some open questions that can be addressed in future investigations. For
instance, it is not clear whether the anticipatory nature of our education variable (the fact
that the unobserved educational level comes before the observed one) makes the problem
different from classical misclassification problems. We believe that our present study does
not suffer from differential measurement error because we were interested in the effect
of educational level attained by the time of marriage. A possible suggestion for future
investigation is, thus, to examine the prevalence, impact and adjustment of differential
measurement error where the likelihood of having anticipatory education (completing it
after divorce) is correlated with divorce risk. This can arise if, for instance, the experience
of divorce increases or decreases the propensity to continue education.
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