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Interest in relationship between diet and ageing is growing. Research has shown that dietary calorie restriction and some
antioxidants extend lifespan in various ageing models. On the one hand, oxygen is essential to aerobic organisms because it is a
final electron acceptor in mitochondria. On the other hand, oxygen is harmful because it can continuously generate reactive oxygen
species (ROS), which are believed to be the factors causing ageing of an organism. To remove these ROS in cells, aerobic organisms
possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPx), and glutathione reductase (GR). In addition, dietary antioxidants including ascorbic acid, vitamin
A, vitamin C, a-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the
lifespan of organisms. In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice
anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies. The purpose of
this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as

underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model.

1. Introduction

Our understanding on aging is still quite limited. As a com-
plex biological process, aging involves a variety of factors. On
the one hand, the variation of average lifespan from different
regions is believed to be due to the differences in not only
genes but also environmental conditions and eating habits.
On the other hand, most organisms actually die from age-
related diseases rather than aging itself. In modern society,
aging-related neurodegenerative diseases have been a rising
lethal threat to human beings. WHO has promoted the
concept of “healthy lifespan,” aiming to increase the ratio of
healthy to total lifespan.

The first documented study on aging was conducted in
1532 by Muhammad in his book “Ainul Hayat” Almost 5 cen-
turies have passed, and the mechanism and cause of aging are
still not clear. In order to increase both average and maximum
lifespans as well as to decrease the occurrence of age-related
diseases, the mechanism behind aging needs to be explored at

molecular level. Recently, extensive research has attempted to
identify mechanisms underlying the links between diets and
health. This review will summarize the biological theories of
ageing and review the research on role of dietary antioxidants
in delaying the aging.

2. Aging Theories

2.1. Stochastic Theories of Aging (STA). STA proposes that
aging is the result of inevitable small random changes that
accumulate with time and the failure of repairing stochastic
damages in cells. The precursor of this concept is the wear
and tear theory, initially proposed by August Weismann,
who believed that the aging was due to constantly exposed
to wounds, infections, and injuries and also from time to
time, consuming excessive fat, sugar, and receiving undue
UV lights or outsourced stresses. The accumulated damages
would cause minor damages to cells and tissues, contributing
to the age-related decline of organ functional efficiency. It
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has been revealed that animals that are raised in protected
environment and do not suffer from those minor exoge-
nous insults, still age. Later on, the theory is modified by
incorporating the failure of repair hypothesis. For example,
somatic mutation postulates that aging is due to alterations
of chromosome number or formations of lesions in existing
chromosomes, caused by accumulation of stochastic genetic
mutations. Evidence gathered by Hart and Setlow [1] helps to
develop the theory of DNA damage and repair. It is claimed
that DNA damage contributes to aging process because there
is a positive correlation between DNA repair capacity and
lifespan. However, nowadays STA is no longer regarded to be
the sole potential candidates for the explanation of aging. As
a promising modified successor, free radical theory has been
becoming one of the most widely accepted aging mechanism
hypotheses.

2.2. Free Radical Theory of Ageing (FRTA). FRTA was first
proposed by Harman [2], stating that aging is due to
accumulation of oxidative damages to tissues and organs
caused by free radicals. It has been considered as one of
the major theories providing a testable biological mechanism
for aging process. Free radicals are any substances with
unpaired electrons and readily react with healthy molecules
in a destructive way. They can be produced in large quantities
in cells by different mechanisms, such as exposure to oxygen,
radiation, or environmental toxins, for example, pesticide and
herbicide. The three major stages of free radical reactions are
initiation, propagation, and termination. No matter how it is
initiated, once formed, the free radicals can propagate itself
indefinitely in the presence of oxygen until those radicals
reach a high concentration to react with each other and
produce a nonradical species [3].

Reactive Oxygen Species (ROS), the most abundant free
radicals in cells, cover a wider range. Generally speaking, any
highly reactive molecules containing oxygen can be classified
into this category. ROS are unavoidable products during
normal intracellular metabolism. They actually play essential
roles in cell differentiation, proliferation, and host defense
response [4]. However, their bad reputations are definitely
overwhelming. Various cell components are believed to be
damaged by oxygen-derived free radicals, of which lipid per-
oxidation, DNA damage, and protein oxidation are probably
the most critical.

ROS can cause the lipid oxidation in cells. Polyunsatu-
rated fatty acids, the main component of cell membranes,
are vulnerable to free radical attack because they contain
such multiple double bonds, which possess extremely reactive
hydrogen atoms. As a result, the structure is susceptible to be
attacked by free radicals, especially hydroxyl radicals, which
will lead to the destruction of cell membrane permeability,
and eventually the cellular dysfunction [5].

ROS can also damage the DNA. The ROS-induced DNA
damage mainly includes strand break, cross-linking, base
hydroxylation, and base excision. The induction of those
DNA damages will result in mutagenesis and consequently
transformation, especially if combined with a deficient apop-
totic pathway [6, 7].
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FIGURE 1: Main enzymatic antioxidant defense system in vivo and
their reactions on scavenging free radicals and hydrogen oxide.
SOD, superoxide dismutase; CAT, catalase; GPx, glutathione perox-
idase; and GR, glutathione reductase.
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ROS can also lead to the oxidation of proteins in vivo. The
proteins in cells are also believed to be the main targets of
free radicals. Aromatic amino acids, cysteine, and disulphide
bonds are susceptible to the attack of free radicals, which
will lead to protein denaturation and enzyme inactivation
[5]. Furthermore, the reactive protein derivatives generated
might act as intermediates to induce propagation of oxidative
damages to other cell components [8].

Two main antioxidant systems, namely, enzymatic
antioxidants and nonenzymatic ones, act systematically to
scavenge the free radicals [9]. The enzymatic antioxidant
system consists of superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase (GPx), and glutathione
reductase (GR) (Figure 1). This system is the main defense
system against ROS in vivo. There are two major types
of SOD. One is CuZnSOD (SODI), which mainly exist
in cytoplasm, with copper and zinc being present in the
active site. The other one is MnSOD (SOD2), locating in
mitochondrial matrix, with manganese being present in
the active site. They can catalyze the reaction to decompose
superoxide anion radicals into H,O,, which will then be
converted to water and oxygen by CAT or GPx. CAT is one
of the most efficient redox enzymes, with iron being present
in its active site, mainly found in peroxisome [10]. It can
catalyze the conversion of H,0, into water and oxygen.
Otherwise, H,O, would be converted to hydroxyl radical,
one of the most active and harmful radicals to living cells.
GPx is a selenium-containing enzyme, protecting cells and
tissues from oxidative damage by removing H,O, with
the oxidization of glutathione. On the other hand, GR
can convert the oxidized glutathione to its reduced form.
However, the contribution of GPx in insects including fruit
flies is relatively low [11].

The nonenzymatic antioxidants system serves as the sec-
ond defense system against the free radicals. Nonenzymatic
antioxidants can not only provide direct protection against
oxidative damages but also more importantly enhance the
function of endogenous enzymatic antioxidants by synergis-
tically scavenging the reactive free radicals [12]. Vitamins C
and E are the most renowned antioxidants in this category.
However, recent study revealed that under certain circum-
stances, they might function as prooxidants [13]. In addition
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to vitamins, there are many small molecules which serve
as nonenzymatic antioxidants, such as phenolic, flavonoids,
and carotenoids naturally present in foods. They can be
obtained from daily diets, belonging to a group of food-
derived phytochemicals called nutraceuticals [14, 15].

2.3. Mitochondrial Decline Theory of Aging (MDTA). MDTA
has for so long been proposed to explain the aging process [16,
17]. Mitochondrial respiratory capacity declines with aging.
Cytochrome c oxidase (CcO), the terminal oxidoreductase of
mitochondrial electron transport chain (ETC), is consistently
reported to decline in both aged invertebrates and vertebrates
[18, 19]. Especially, its subunits III and VIb are significantly
reduced in aging flies [20]. It has been reported that CcO defi-
ciency would result in reduction of total ETC activity due to
the increased production of either superoxide anion radicals
or hydrogen peroxide in mitochondria. Therefore, there are
solid connections between MDTA and FRTA. Theoretically
speaking, enhancing antioxidant defense system will not only
lead to reduced amount of free radicals but also ameliorate the
functional decline of mitochondria.

2.4. Decline Theory of Ubiquitin Proteasomal System (UPS).
Protein misfolding and aggregation are essential factors,
contributing significantly to aging process and especially
to the formation and development of neurodegenerative
diseases, such as Parkinson’s disease (PD) and Alzheimer’s
disease (AD) [21]. They can be cleared mainly by UPS [22, 23].
It is reported that age-related decline is associated with the
lower activity of the 26S proteasome. Thus, maintenance of
the 26S proteasome activity with age is vital for promoting
longevity. The 26S proteasome is a complex of the 20S core
chamber attached to two 19S caps on each end. The 20S
proteasome itself cannot degrade multiubiquitinated proteins
since the pores leading into the catalytic chamber are closed.
The opening of the gates is triggered by the 19S attached to
the ends of the 20S core chamber [24, 25].

Rpnll is one lid component of the multiple subunits
making up the 19S, which can be divided into two subcom-
plexes, that is, the base and lid. It is reported that knock
down of Rpnll will reduce 26S proteasome activity, leading
to increased age-related accumulation of ubiquitinated pro-
teins and shorter lifespan. On the contrary, overexpressing
Rpnll can reduce age-related accumulation of ubiquitinated
proteins and thus extends lifespan [26].

2.5. Genetic Theory of Ageing. The genetic theory of ageing
states that longevity is largely determined by the genes.
As one of the most complicated biological processes, aging
involves factors covering a wide range from genetic to
environmental ones. Single gene mutation has been proved
to be one of the most useful techniques to understand aging
mechanisms at molecular level. Previous studies in C. elegans,
Drosophila, and rodents have revealed dozens of genes, whose
mutation would lead to extended lifespan. Those selected
genes are named as longevity determined genes [27, 28]
(Table 1).

TABLE 1: Selected longevity determined genes recently recognized in
fruit flies, for which allelic variation is associated with extension in
longevity.

Gene names Molecular mechanism

A P-element insertion at Mth increases lifespan by

Mith 35% [31]

P-element insertion at Indy shows extended mean
Indy .

lifespan [35]

) Heterozygous for chico shows an increase in median

Chico .

lifespan [36]

Inhibition of TOR pathway leads to 24-26% lifespan
dTOR .

extension [37]
Sirtuins Gene upregulation of sirtuins increases the lifespan

(38]

In Drosophila, single P-element insertion mutation lines
can be easily generated [29] and the newly inserted locus
could be identified by flanking sequence of the inserted trans-
poson [30]. Lin et al. [31] reported that a P-element insertion
was identified with an extra 35% longer lifespan, compared
to wild type flies (Table 1). At the same time, they found that
these methuselah (Mth) mutant flies showed higher resistance
to various stresses, such as high temperature, starvation, and
paraquat [31]. Mth protein belongs to class B of G pro-
tein-coupled receptors (GPCRs), a protein family with
their iconic, large ligand-binding N-terminal extracellular
domains, playing a key role in intracellular signal transduc-
tion [32, 33]. To date, the specific function of Mth is still
unknown. It has been demonstrated that flies expressing a
Mth antagonist peptide live significantly longer [34]. Humans
have homologous gene to Mth (APGI), which could be a
promising candidate for development of antiageing drugs
[32].

Many other genes may be involved in the process of aging.
In this connection, it has been shown that decreased expres-
sion of Indy gene in fly and worm extends longevity [35].
Indy gene encodes a transporter of Krebs cycle intermediates
with the highest rate of uptake for citrate. It is known that
cytosolic citrate has a role in energy regulation by affecting
fatty acid synthesis and glycolysis [35]. It has been also
found that chico gene, encoding an insulin receptor substrate
that functions in an insulin/insulin-like growth factor (IGF)
signaling pathway, has a role in aging as mutation of chico
extends fruit fly median lifespan by up to 48% in homozygotes
and 36% in heterozygotes [36]. Some evidence suggests
that the fat body in Drosophila acts as a nutrient sensor,
which uses TOR signaling to generate a humoral signal that
modulates insulin signaling and growth in peripheral tissues.
Modulation on its activity of gene in the TOR pathway leads
to a longer lifespan [37]. Recent work suggests that sirtuins,
encoding a conserved family of nicotinamide adenine dinu-
cleotide (NAD+)-dependent protein deacetylases, have been
also shown to regulate lifespan in many model organisms
including yeast and mice by modulating ROS levels notably
during a calorie restriction [38].



3. Drosophila and Other Models in
Aging Research

It is critical to conduct a study on proper models in order to
elucidate the aging mechanisms more thoroughly. Studies on
humans are most straightforward. However, the duration of
human aging is a limiting factor since researchers themselves
also, at the same time, go through the same process. Mean-
while, ethical issues also block many research experiments
on human beings. Therefore, it turns to laboratory model
systems and then tries to extrapolate laboratory data to
clinical value. The selection of models is diverse and under
debate [39, 40]. In general, the mainstream model systems to
conduct the aging study include cells, yeast (Saccharomyces
cerevisiae), roundworms (Caenorhabditis elegans), fruit flies
(Drosophila melanogaster), mice (Mus musculus), and rats
(Rattus norvegicus).

Human cells are one of the major model systems in study-
ing aging mechanisms. Researchers can easily focus on
human biology when carrying out experiments on human
cells. Nevertheless, in vitro data might not be always consis-
tent with in vivo one. Meanwhile, the most widely employed
parameters for cellular models on aging study are cell prolifer-
ation and stress resistance. However, the correlation of those
factors with organismal aging is still under serious debate
(41, 42].

Nonmammalian model systems, such as yeast, round-
worms, and fruit flies, share a large number of key biological
pathways with humans [43], though their physiology and
phenotypes are way from alike with mammals. Meanwhile,
aging researches are always based on statistical analysis and
comparison at the population level. Nonmammalians models
are comparatively easier and cheaper to manipulate in large
numbers. On the other hand, aging is a complex biological
process, involving too many factors at the same time. Nev-
ertheless, it is reasonable and practical to conduct assays on
relatively simpler systems first to observe more direct and
immediate response after certain treatment. Actually, many
genes and signal pathways modulating ageing process have
already been identified in yeast [44], worms [45], and fruit
flies [46], which serve as basis for further understanding
human aging mechanisms.

As to the mammal systems, such as mice and rats, their
physiology and daily activities are more parallel to humans,
compared to those nonmammalian models. At the same
time, as the mainstream animals employed in laboratory for
decades, the related experiment protocols are quite mature
and stable. However, there is still no solid evidence indicating
that those rodents age for the same causes and mechanisms
as humans [39]. Therefore, if a particular age-related mech-
anism is investigated, simpler and easier nonmammalian
models might be more preferred choice.

Last but not least, nonhuman primates are recently
regarded as a potential alternative for human aging studies
[47]. It is claimed that Rhesus monkeys (Macaca mulatta)
share about 90% of their genome with human beings [48]. In
addition, age-related changes in neurological structure and
function of monkeys also share great similarity with those
of humans [49, 50]. Nevertheless, the actual employment
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of this nonprimate model in aging study is still quite rare
for the following reasons. First of all, those primates have
comparatively long lifespan, which is a practical problem for
laboratory manipulation. Secondly, the costs to conduct
experiments on those animals are relatively high [47].
Thirdly, a serious issue is the moral concern by animal rights
groups.

Drosophila model has been widely used for biological
researches, especially in the field of genetics and develop-
mental biology. In light of the study on genetics of longevity
in fruit flies, specific genes regulating lifespan have been
revealed during the past decades, which involved in stress
response, antioxidant system, insulin signaling pathway, and
TOR pathway. It is reported that SOD or CAT mutant flies
(partially knock out either SOD or CAT genes) will lead to
much shorter lifespans along with a greater sensitivity to
oxidative stress [51, 52]. On the contrary, transgenic flies with
additional copies of CAT and SOD show median lifespan
increase ranging from 6% to 33%, overexpression of SOD
increases mean lifespan up to 40% [53-55].

Studies on the relation between diet supplements and
lifespan of fruit flies have been continuously producing
inspiring results. Experiments conducted by Bonilla et al. [56,
57] demonstrated that melatonin in diet could significantly
increase the lifetime and the resistance to paraquat challenge
in Drosophila. Similarly, resveratrol had been proved to be
effective in lifespan extension in fruit flies by Bauer et al. [58]
and Wood et al. [59]. We had demonstrated that green tea
and broccoli could extend the median lifespan of fruit flies
(60, 61].

Serving as an efficient model in aging research for
decades, fruit flies possess unique advantages over other
organism models. First, fruit flies and humans share many
conserved physiological pathways, such as superoxide metab-
olism, insulin-like signaling, many of which have been
proposed as vital elements for ageing regulation [43]. Second,
more than 70% of known disease-causing genes in humans
are conserved in fruit flies and 50% of fly protein sequences
have mammalian homologs [62, 63]. Third, the technique
of genetic manipulation in Drosophila is now quite mature.
There are a wide variety of transgenic flies available, which
simplify the exploration for the targets [64]. Meanwhile, fly
strains with longer life span are reported to have no reduction
in metabolic rate [65]. Fourth, Drosophila have complex
nervous system with a relatively weak blood-brain barrier,
which makes it a suitable model system for screening and
evaluation of effects of drugs and functional compounds on
neurodegenerative diseases [66, 67]. Fifth, fruit flies are com-
paratively easier and cheaper to maintain in large numbers,
which is essential for a cohort study. The short life cycle, tiny
body size, high fecundity, and known sequence of full genome
make it an ideal model for aging research at population level
[68]. In addition, the effects of diet supplements on aging of
fruit flies have been investigated, providing promising results
in the last 20 years, which not only construct practical bench
methods to do related analysis, but also package powerful
statistical protocols to systematically estimate and assess the
effects of certain supplement compounds on aging [69]. By
and large, D. melanogaster model is more than simple and
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valid to be employed in the study of universal aging mech-
anisms.

4. Energy Restriction (ER)
Prolongs the Lifespan

ER is to reduce moderately nutrient availability without
malnutrition. ER has been shown to extend the lifespan of
diverse organisms including rodents, yeast, Drosophila, and
C. elegans [40, 70-72]. The mechanisms of the lifespan-
prolonging activity of ER in Drosophila were widely inves-
tigated at molecular levels. Up to date, the most recognized
mechanisms for ER are related to its effect on the metabolic
rate, the nutrient sensing insulin/IGF-1like pathway, the TOR
pathway, apoptotic pathway, sirtuin pathway, and olfactory
and gustatory system [73]. In addition, ER has been proposed
to be associated with lesser damage of cellular macro-
molecules such as DNA [74], proteins [75], and lipids [76].

We have studied the gene expression of SODI1, SOD2,
CAT, Rpnl], and Mth in fruit flies fed one of the three diets,
namely, energy restriction diet (ER, 0.39 kcal/mL diet), stan-
dard energy diet (SE, 0.78 kcal/mL diet), and high energy diet
(HE, 2.35 kcal/mL diet). Results showed that ER increased the
mean lifespan by 16% compared with the control flies. It was
demonstrated that ER group had a greater activity and gene
expression of SOD1 and SOD2 than other two groups of flies.
The elevated expression of Rpnll induced by ER was observed
at some time points, suggesting that the interaction of ER with
Rpnll may also mediate the lifespan-prolonging activity of
ER. However, ER had no effect on the gene expression of CAT
and Mth. The lifespan prolonging activity of ER was at least
partially mediated by its effect on gene expression of SOD
and possible Rpnll but unlikely on the gene expression of
CAT and Mth. It is also possible that the lifespan prolonging
activity of ER is not due to its effect on a single gene rather
than on a cluster of genes involved in oxidative stress, IIS
pathway, apoptotic pathway, programmed autophagy, and the
olfactory system.

5. Antiageing Nutraceuticals and
Functional Foods

The term “nutraceutical” is actually a combined form of
“nutrition” and “pharmaceutical” The generally accepted
definition is “a food or part of a food which provides health
benefits, including the prevention and/or treatment of a
disease” Most nutraceuticals are dietary supplements. Studies
both in vitro and in vivo reveal that consumption of nutraceu-
ticals, especially the ones with high antioxidant capacity, has
an inverse relationship with cardiovascular diseases, various
cancers, and diabetes. However, their antiageing activity is yet
to be proven. On the basis of FRTA, it is postulated that any
substance with a great antioxidant capacity can be a potential
candidate for delaying the aging.

5.1. Tea Catechins and Theaflavins. Tea, next to water, is
the second most popular beverage consumed by humans in
the world. Black tea is more widely consumed in Western
countries while green tea is preferred in the Eastern world.

Black tea extracts mainly contain catechins and theaflavins
(Figure 2). Evidences from clinical trials suggest that con-
sumption of tea has various health benefits. Leenen et al.
[77] demonstrated that drinking either green tea or black
tea would lead a significant increase in plasma antioxidant
potential by ferric-reducing antioxidant power (FRAP) assay.
Furthermore, it has been reported in different population
studies that consumption of green tea or black tea could
significantly reduce DNA oxidation and lipid peroxidation
[78,79].

As to the antiaging activity of tea, previous studies con-
ducted in this laboratory revealed that green catechins and
black theaflavins could extend mean lifespan of Drosophila by
10-16%. This was accompanied by greater expression of the
endogenous antioxidant enzymes SOD and CAT [60, 61, 80]
(Table 2). Studies on C. elegans also showed similar results,
indicating that treatment of epigallocatechin gallate (EGCG),
an active ingredient in tea, would lead to a significant longer
lifetime [81, 82]. In mice, consuming tea polyphenol, starting
from 13 month till death, could increase the average lifespan
by more than 6% [83].

5.2. Apple Polyphenols. A proverb says “one apple a day keeps
doctors away” Apple has been recognized as a healthy fruit
in many cultures. It contains a large number of phytochem-
icals, mainly polyphenols with strong antioxidant activities,
including chlorogenic acid, phloretin, proanthocyanidin B2,
epicatechin, catechin, and rutin (Figure 2).

Consumption of apple has been inversely associated with
the risk of cardiovascular disease, hypercholesterolaemia, and
various cancers. The Women’s Health Study, involving almost
40,000 women with a 6.9-year follow-up, examined the
correlation between flavonoids and cardiovascular disease,
finding an inverse correlation between cardiovascular disease
and consumption of apples [84]. The Iowa Women Study on
nearly 35,000 women revealed that apple consumption was
inversely related to the death caused by coronary heart dis-
eases in postmenopausal women [85]. Furthermore, several
clinical studies have linked apple consumption with a lower
risk of cancers, especially lung cancer. It was found that eating
apples would reduce the risk of lung cancer, with being more
effective in women than in men [86, 87].

Experiments on animals showed similar results and
revealed some potential mechanisms of the beneficial effects
of apple. It was reported that, in cholesterol-fed rats, there was
a significant reduction of plasma and liver cholesterol level
along with increased amount of high density lipoproteins
(HDL) [88]. Another study conducted by Leontowicz et al.
[89] has demonstrated that apples have much better choles-
terol lowering effects than pears and peaches, suggesting
that, having similar amount of fiber content, apples’ superior
activity might be due to its larger quantity of phenolic
components. Apple has been proved effective in inhibiting
low-density lipoprotein (LDL) oxidation while the greatest
inhibitory effect comes from apple peels [90]. In addition,
apple can greatly inhibit the growth and proliferation of
liver and colon cancer cells [91, 92]. Moreover, apple juice
concentrate has been demonstrated to be effective in neuro-
protection in both genetically compromised and normal aged
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FIGURE 2: Chemical structures of (1) green tea catechins, (2) black tea theaflavins, (3-7) polyphenols in apple, (8, 9) blueberry anthocyanins,

(10, 11) soybean isoflavones, and (9, 12) black rice anthocyanins.

TaBLE 2: Effect of selected nutraceuticals or functional foods on ageing and the possible underlying mechanisms.

Mean lifespan

Phytochemical antioxidants Dose . Molecular mechanism Reference
extension
Upregulate SODI, SOD2, Cat, and Rpnll genes.
10 L 9 96
Apple polyphenols mg/m 10% Downregulate MTH gene 1%6]
Blueberry anthocyanin extract 5 mg/mL 10% Upregulate SODI, SOD2, Cat, and Rpnll. Downregulate (97]
MTH gene
Black rice anthocyanin extract 30 mg/mL 14% Upregulate SODI, SOD2, Cat, and RpnllI genes. 98]
Downregulate MTH gene
Green tea catechin extract 10 mg/mL 16% Upregulate CuZnSOD, MnSOD, and Cat genes [60, 61]
Black tea theaflavins 5mg/mL 10% Increase CAT activity. Upregulate SODI and Cat genes [80]
Sesamin 2mg/mL 12% Upregulate SOD1, SOD2, and Rpnll genes. [99]
. Downregulate the expression of several aging-related
100 uM 9 100
Curcumin # 19% genes, including TOR, InR, Hep, sun, and mth [100]
Marine microalga DHA-rich mg/mL 10% Upregulate SODI and SOD2 genes. Downregulate MTH [101]
extract gene
Reduce the transcript level of phosphoenolpyruvate
carboxykinase (PEPCK), iron regulatory protein 1B
Nectarine extract 4% 14-22% (Irp-1B), 4E-BP. Influence the redox status and reduce [102]
oxidative damage indirectly through modulate the JNK
signaling pathway.
mice [93-95]. However, antiageing activity of apple and the =~ 5.3. Blueberry Extracts. Blueberries, containing large

underlying mechanisms remain elusive.

We have studied the effect of apple polyphenols (AP)
on the lifespan of fruit flies and its interaction with gene
expressions of SOD, CAT, Mth, Rpnll, CcO subunits III, and
VIb [96]. Results showed that AP could extend the mean
lifespan by 10% in fruit flies. This was accompanied by upreg-
ulation of gene SOD1, SOD2, and CAT while downregulation
of Mth in the aged fruit flies. Chronic paraquat exposure
could shorten the maximum lifespan from 68 to 31 days and
reduce the climbing ability by 60%, while supplementation
of AP into diet could partially reverse the paraquat-induced
mortality and decline in climbing ability. AP could upregulate
Rpnll while it appeared to have no significant effect on gene
expression of ubiquitinated protein, CcO subunits IIT and
VIb. It was therefore concluded that the antiaging activity of
AP was, at least in part, mediated by its interaction with genes
SOD, CAT, Mth, and Rpnll [96].

amounts of polyphenols, possess a greater antioxidant
capacity than most other fruits and vegetables [103, Figure 2].
It has been reported that consumption of natural compounds
in blueberries can retard the age-related physiological and
functional deficits [104]. Krikorian et al. [105] have evaluated
the health benefits of blueberry supplementation, revealing
that daily consumption of wild blueberry juice for 12 weeks
would improve memory function in older adults with early
memory decline. However, larger sample size and more
consistent clinical data are lacking to draw a conclusion.
Studies in vitro and in vivo on experimental animal
models also provide solid and inspiring results. Galli et al.
[106] claimed that blueberry supplemented diet could reverse
age-related decline in hippocampal heat shock protein (HSP)
in rats. Similarly, blueberries are also suggested effective in
enhancing cognitive and motor behavior as well as atten-
uating cognitive declines in object recognition memory in



aged rats [107]. Furthermore, age-related deficits in NMDAR-
dependent long-term potentiation, a cellular substrate for
learning and memory, are also reported to be ameliorated by
blueberry enriched diet [108].

We have investigated the lifespan-prolonging activity of
blueberry extracts in fruit flies and explored its underly-
ing mechanism. Results revealed that blueberry extracts at
5 mg/mL in diet could significantly extend the mean lifespan
of fruit flies by 10% [97]. Result was in agreement with
that of Wilson et al. [109], who demonstrated that blueberry
extract, mainly the fraction enriched in proanthocyanidin
compounds, in diet could increase lifespan and slow ageing
related declines in C. elegans. In our study, it was found
that the mean lifespan extension was accompanied by
upregulating gene expression of SOD, CAT, and Rpnll and
downregulating Mth gene [97]. Intensive H,O, and paraquat
challenge tests showed that lifespan was only extended in
Oregon-R wild type flies but not in SOD™® (deficiencyin
SOD) or Cat™ (deficiency in Cat) mutant strains, indicating
that the prolongevity activity of blueberry was mediated by
its enhancement on endogenous antioxidant system. Chronic
paraquat exposure shortened the maximum survival time
from 73 to 35 days and decreased the climbing ability by
60% while blueberry extracts at 5mg/mL in diet could sig-
nificantly increase the survival rate and partially restore the
climbing ability with upregulating SOD, CAT, and Rpnll. It is
clear that blueberry extract could affect the gene expression of
Mth, Rpnll, and endogenous antioxidant enzymes SOD and
CAT, thus leading to the mean lifespan extension (Table 2).

5.4. Soybean Isoflavones. Soybeans are considered as a great
source of complete protein, which contains all the essential
amino acids in sufficient amounts for human use [110].
They can serve as a good alternative to animal proteins for
vegetarians. Daidzein and genistein, the main isoflavones in
soybeans, possess the antioxidant activity.

The notion that consumption of soy protein could offer
health benefits has been popular during the past decades.
Soy protein in diet has been inversely associated with hyper-
cholesterolaemia, bone loss, and various cancers. According
to Food and Drug Administration (FDA), “25 grams of soy
protein a day, as part of a diet low in saturated fat and choles-
terol, may reduce the risk of heart disease.” The meta-analysis
conducted by Anderson et al. [111,112] demonstrates that con-
sumption of soy protein can decrease serum total cholesterol,
LDL cholesterol, and triacylglycerol concentrations. Mean-
while, it is claimed that the decreasing effect is at least partially
related to subjects’ initial cholesterol concentrations and
isoflavones might account for at least 60% of the cholesterol-
lowering effects of soy protein [111]. More than 50 trials since
then, investigating health benefits of isoflavones, have been
conducted [113, 114]. It has been further demonstrated that
LDL reduction induced by soy protein without isoflavones
is mild, indicating that isoflavones might be the main active
compounds, contributing to the cholesterol-lowering effects
[115, 116]. Besides that, evidences from clinical studies reveal
that consumption of soy foods, especially isoflavones, leads
to higher femoral/lumbar spine bone mineral density in
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postmenopausal women [117]. It is also reported that in Asian
countries where soy foods are more prevalent, the incidence
of breast and endometrial cancer is relatively low. Actually
plasma genistein in Japanese can reach 4 uM while the one
can be as low as 40 nM in people consuming a typical western
diet [118, 119]. Moreover, the case-control studies carried out
by Shu et al. [120] and Wu et al. [121] have proved that high
amount of soy intake are associated with low risk for breast
cancer. However, epidemiological findings on its anticancer
activity are not as consistent as the ones on its cholesterol-
lowering effect.

Though the underlying mechanisms for the efficacy of
soybean isoflavones are still not fully understood, studies on
cells, isolated arteries, and animals provide insightful clues. It
is stated that isoflavones are able to activate endothelial nitric
oxide synthase, exerting vasodilatory effect [118]. Moreover,
studies on isoflavones’ effects on vascular smooth muscle cells
(VSMC) reveal that isoflavones can inhibit cell proliferation
and DNA synthesis [122]. Generally speaking, it is believed
that actions of isoflavones largely overlap with those of estro-
gens, especially for its influence on cardiovascular diseases
[123].

We have investigated the soybean isoflavones extract on
the mean lifespan and expression levels of genes SOD, CAT,
and Mth in fruit flies. Results demonstrated that soybean
isoflavones extract in diet could significantly increase mean
life span of fruit flies with upregulation of endogenous
antioxidants SODI1, SOD2, and CAT on both mRNA and
protein level in selected time points with no effect on MTH
(unpublished data). Result was in agreement with that of
Borras et al. [124], who showed that antioxidant activity of
genistein was mediated via the upregulation of antioxidant
gene expression, such as increased mRNA levels of MnSOD
and activation of NF«B, suggesting that supplementation of
isoflavones may be beneficial in decreasing oxidative stress,
thus contributing to lifespan extension. However, Altun et
al. [125] recently found that genistein would decrease the
maximum lifespan of female D. melanogaster.

5.5. Black Rice Anthocyanins. Black rice is an excellent source
of dietary antioxidants. It is widely consumed in China.
Supplementation of black rice confers some health benefits
including anticancer, anti-inflammation, antidiabetes, and
anti-Alzheimer’s disease. Composition analysis shows that
black rice is rich in fiber, vitamin E, and polyphenols.
The antioxidant activity of black rice is mainly ascribed
to the high content of anthocyanins, two majors of which
are cyanidin-3-O-glucoside and peonidin-3-glucoside [126],
with cyanidin-3-O-glucoside accounting for more than 80%
of total anthocyanins [127, Figure 2]. Wang et al. [128]
compared the antioxidant capacities of 14 anthocyanins using
the automated oxygen radical absorbance capacity (ORAC)
assay, and the result showed that cyanidin-3-O-glucoside has
the highest ORAC activity, which was 3.5 times stronger than
Trolox (vitamin E analogue). The further indepth insight into
the antioxidative mechanism of black rice demonstrated that
anthocyanins were inhibitors of xanthine oxidase, one of the
generators of superoxide anion radicals [129].
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We have investigated the lifespan-prolonging activity of
black rice anthocyanins extracts and its effect on gene expres-
sions of SOD1, SOD2, CAT, Mth, and Rpnll [98]. Results
demonstrated that black rice anthocyanins at 30 mg/dL could
prolong the mean lifespan of fruit lies by 14% accompanied
with upregulation of mRNA SODI, SOD2, CAT, and Rpnll
and with downregulation of Mth. In addition, black rice
anthocyanins at 30 mg/dL increased the survival time of
Alzheimer transgenic line A$42 33769 with chronic exposure
to paraquat. Huang et al. [130] found that black rice possessed
antiaging, antihypoxia and, antifatigue effects in subacute
ageing model mice.

6. Conclusion

Many natural antioxidants, nutraceuticals, and functional
foods have been identified as free radical or active oxygen
scavengers. Functional foods and nutraceuticals which pos-
sess the antioxidant activity may play an important role in
delaying the aging (Table 2). Development and research on
these functional foods and nutraceuticals are of interest to
both public and scientific community. To better understand
their antiaging activity, it is essential to identify the active
ingredients and underlying mechanisms. On the basis of
limited research, it appears that dietary antioxidants have
the antiageing activity at least in fruit fly model, most
likely by enhancing endogenous enzymatic defense capacity
via upregulation of SOD and catalase and suppression on
formation of free radicals.
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