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Abstract: This paper studies holey graphene with various neck widths (the smallest distance between
two neighbor holes). For the considered structures, the energy gap, the Fermi level, the density of
electronic states, and the distribution of the local density of electronic states (LDOS) were found.
The electroconductive properties of holey graphene with round holes were calculated depending on
the neck width. It was found that, depending on the neck width, holey graphene demonstrated a
semiconductor type of conductivity with an energy gap varying in the range of 0.01–0.37 eV. It was
also shown that by changing the neck width, it is possible to control the electrical conductivity of
holey graphene. The anisotropy of holey graphene electrical conductivity was observed depending
on the direction of the current transfer.

Keywords: electrical conductivity; electrical conductivity anisotropy; holey graphene; graphene;
computer simulation

1. Introduction

A new unique structural derivative of graphene, “holey graphene” (HG), also called
“graphene nanomesh” or “hole-matrixed graphene”, is finding more and more applica-
tions [1–7]. The unique physical and chemical properties of HG are provided by the edge
atoms near nanoholes. This area can be easily functionalized by different chemical groups
that expand HG’s range of applications since functionalized graphene materials are more
promising for new polymer composite design, and for biological applications. The pres-
ence of holes in graphene changes the properties of this 2D material and opens wide the
prospects for application in nanoelectronics. HG is an easy-to-manufacture nanostructure
with a band gap that can be tuned. HG-based field-effect transistors can support currents
almost 100 times greater than individual devices based on graphene nanoribbons [8]. HG
is also promising as a basic element for supercapacitors and batteries since its reticulation
allows lithium ions to freely penetrate into the electrode [9–11]. Of course, the mesh struc-
ture determines this material as high-performance membranes that can be used for gas
separation [12] and water purifiers [13–15].

The main parameters of HG are periodicity (the distance between the centers of
neighbor holes) and neck width (the smallest distance between neighbor holes).

There are HG with round, triangular, and rectangular holes [16–20]. Most often, in
a real experiment, HG with round holes are synthesized. The DFT study of energy gap
dependency on the neck width showed that HG with round holes had the bigger energy
gap compared to HG with triangular and rectangular holes [16]. Winter et al. found that
HG with round holes had high mechanical stability and could cover intact areas up to
2500 mm2 [21]. It was revealed that HG with round holes had isotropic elastic properties in
contrast to HG with elliptical holes [22]. Another advantage of HG with round holes is the
possibility to grow nanotubes of different chirality on its surface [23,24]. Earlier, authors
of this study showed that that the growth of single-walled carbon nanotubes (6,6) and
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(9,9) in HG round-shaped holes with a size of approximately 0.8–1.2 nm was energetically
favorable [25,26].

The aim of this work was to study the dependency of the electrical conductivity in
the HG with round holes on the neck width. In the zigzag direction, the neck width was
increased from 0.74 nm to 5.18 nm, while in the armchair direction the neck width was
increased from 0.99 nm to 5.25 nm.

2. Materials and Methods

In this paper, we considered an atomistic model of HG with round holes of 1.2 nm in
diameter. Figure 1a shows its supercell and the minimum possible steps for increasing the
neck width: ∆WX = 0.24 nm for the zigzag direction and ∆WY = 0.42 nm for the armchair
direction. The length of the supercell in the X direction (zigzag edge) was 2.46 nm and in
the Y direction (armchair edge) 2.55 nm. These are the smallest dimensions at which the
supercell is energetically stable. Atoms № 72 and № 108 were the edge atoms near the hole.
Figure 1b shows the initial minimum neck widths along the zigzag (WX) and along the
armchair directions (WY). The study was performed in two stages. At the first stage, the
neck width WX was changed from 0.74 nm to 5.18 nm with the minimum possible step
∆WX, while the neck width WY remained unchanged and equaled 0.99 nm. At the second
stage, the neck width WY was changed from 0.99 to 5.25 nm with the minimum possible
step ∆WY, while the neck width WX remained constant and equaled 0.74 nm.
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The function of electrical conductivity, G, was calculated by the Green–Keldysh
nonequilibrium function method [27] with application of the Landauer–Butticker formal-
ism, which allowed us to study the quantum transport of electrons while taking into account
the elastic scattering of electrons in inhomogeneities [28]. The electrical conductivity is
written as

G = 2e2/h
∫ ∞

−∞
T(E)FT(E − EF)dE, (1)

where T(E) is the electron transmission function, EF is the Fermi energy of contacts con-
nected to the considered object, e is the electron charge, h is Planck’s constant, e2⁄h is the
quantum of conductivity (the value of conductivity for a single channel), and FT is the
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function that determines the value of the temperature broadening. The multiplier “2” takes
into account the spin. The electron transmission function is defined as follows:

T(E) = Tr
(

GS(E)GA
C(E)GD(E)GR

C(E)
)

, (2)

where GA
C(E) and GR

C(E) are the advanced and the retarded Green matrices describing
the contact with the electrodes, respectively; GS(E) and GD(E) are the level broadening
matrices for the source and drain, respectively. The transmission function, T(E), and
the electrical conductivity, G, were calculated by the Kvazar–Mizar 1.0 software package
(Saratov State University, Saratov, Russia) [29,30].

The energy, E, of the multi-electron system was determined by the self-consistent
charge density functional tight-binding (SCC DFTB) method [31]. The SCC DFTB method
solves a system of one-electron Kohn–Sham equations [32] written in the following form:

HKSΨi = εiΨi, (3)

where Ψi is the wave function of i-th electron, εi is the energy of i-th electron, and HKS is
the Hamiltonian.

At the stage of the system’s total energy calculation, the tight binding approximation,
which is included into the DFT model using perturbation theory, is applied. Within the
SCC DFTB method, the expression for the total energy of the system is written as follows:

ETOT = EOCC + ESCC + EREP, (4)

where EOCC is the energy of occupied electron states, ESCC is the energy of the electron
interactions, and EREP is the energy of interaction between particle pairs due to repul-
sive forces.

The SCC DFTB method takes into account the effect of electron density fluctuations
on the total energy of the system. The distribution of atomic charges is determined from
the population analysis according to the Mulliken scheme [33–35]. Accounting for the
self-consistent charge distribution makes it possible to significantly improve the accuracy
of calculations for polyatomic systems containing covalent and ionic bonds. The choice
of the SCC DFTB method for calculating the total energy of a multi-electron system was
due to the polyatomic nature of the considered supercells containing 1000 or more atoms.
As is known, it is very resource-intensive to study polyatomic cells using DFT, so the SCC
DFTB method is preferred. The system’s total energy E was calculated by the DFTB+ 20.2
software package (University of Bremen, Bremen, Germany) [36,37].

The search for the equilibrium configuration of the considered supercells was per-
formed in the form of a double optimization, which involved minimizing the total energy
of the system over the lengths of the translation vectors LX, LY, and over all coordinates of
the supercell atoms within the SCC-DFTB method. All calculations were performed at the
temperature of 300 K.

3. Results

Initially, for different values of the HG necks, we calculated electron characteristics
such as the energy gap (Egap), the Fermi level (EF), and the density of electronic states
(DOS). Figure 2a,b shows the HG DOS graphs for three different values of the neck width
with its gradual increase in the zigzag and armchair directions, respectively. With a gradual
increase in the neck width in the zigzag direction (WX), the width of the energy gap
experienced a jump-like change in the range from 0.03 to 0.37 eV (Figure 2a). At the same
time, for the values WX = 0.74 × N nm (N = 1 ÷ 7), the energy gap remained unchanged and
equal to 0.03 eV. The width of the energy gap reached the highest value at the neck width
of 1.24 nm. For all cases of gradual increases in the neck width along the armchair direction
(WY), the width of the energy gap varied within 0.02 ± 0.01 eV, as shown in Figure 2b. For
both directions of increase in the neck width, the Fermi level varied within −4.71 ± 0.02 eV.
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Thus, on the basis of the DOS analysis, it was concluded that HG demonstrated anisotropy
of electronic properties.
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In order to understand the nature of the anisotropic appearance, the distribution of
the local density of states (LDOS) over the supercell atoms and the LDOS distribution in
the region of energies close to the Fermi level were calculated. We assumed that the edge
atoms in the hole would have increased LDOS values, having a significant effect on the
LDOS distribution of all the supercell atoms and, consequently, on the electronic properties
of HG. Figure 3 shows the maps of the LDOS distribution, calculated at the Fermi level, for
different values of the neck width with its gradual increase along the zigzag (Figure 3a)
and armchair (Figure 3b) directions. The color palette displays the LDOS values in LDOS
units of a pure graphene atom (3.1*10−4 absolute units at the Fermi level). As expected,
the atoms at the edges of the hole had a maximum LDOS value (red). Atoms with LDOS
values in the intervals of 0.7–2 relative units (Figure 3a) and 2–17 relative units (Figure 3b)
formed green paths between neighboring HG holes along the armchair direction (1 relative
unit = 3.1*10−4 absolute units at the Fermi level for pure graphene). Along the zigzag
direction, both in the cases of the WX and WY, growth atoms with LDOS values of less than
0.2 relative units (blue) were predominantly located. Such distribution of the LDOS values
across the atoms in both directions is the reason for the anisotropy of the HG electronic
properties. The LDOS values on the atoms at the edges of the hole and on the atoms of the
green track in the case of increasing the neck width along the zigzag direction were several
times less than the LDOS values on similar atoms during increasing the neck width along
the armchair direction. Figure 4 shows the LDOS graphs for two separate atoms, № 72
and № 108, located at the edges of the HG hole. Atom № 72 was located at the edge of the
armchair type, and atom № 108 was located at the edge of the zigzag type. In Figure 4a,b
it is seen that in the case of the increase in the neck width along the zigzag direction,
the LDOS profiles for both atoms repeated the DOS profiles of HG near the Fermi level,
demonstrating a jump-like change in the width of the energy gap. Similarly, Figure 4c,d
shows that in the case of the increase in the neck width along the armchair direction, the
LDOS distributions for atoms № 72 and № 108 were similar to the DOS distributions with
an increase in the WY, and the width of the energy gap changed monotonically. However,
for both cases of WY and WX increasing, the LDOS profiles for atoms № 72 were two to
three times larger than for atom № 108.
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Next, the transmission functions T(E) were calculated. These were necessary to deter-
mine the electrical conductivity (G). The profile of transmission functions was determined
by the profile of the DOS plot. It was logical to assume that the presence of the energy gap
in the DOS profile would lead to the appearance of a zero interval in the transmission func-
tion, and that the established pattern of change in the energy gap width with an increase in
the neck width would also appear for the transmission function T(E). The obtained results
are shown in Figure 5. Figure 5a,b shows graphs of the transmission function with the
increasing of WX in the case of current transfer along the zigzag (a) and armchair directions
(b). Figure 5c,d shows the T(E) graph with an increasing of WY. It follows from Figure 5
that in the armchair direction (Figure 5b,d), the electrical conductivity of HG near the
Fermi level was higher than in the zigzag direction (Figure 5a,c), since in the armchair
direction the transmission function T(E) reached 1, and in the zigzag direction its value
didnot exceed 0.6. It can be assumed that the reason for the difference in the behavior of
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the T(E) function is the localization of electrons, which leads to a significant increase in the
local density of electronic states at the edges of the holes and, as a result, to a redistribution
of the electron density over all the atoms of the structure.
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The values of the specific electrical conductivity calculated on the basis of T(E) are
shown in Figure 6. The analysis of the presented plots showed that during an increase
in the neck width along the zigzag direction, there was a jump-like change in the specific
conductivity in the case of current transfer both along the zigzag and armchair directions
(Figure 6a). At the same time, every third value of the specific electrical conductivity for
current transfer along the armchair direction was almost three to four times greater than
every third value of the specific electrical conductivity for current transfer along the zigzag
direction. The greatest specific electrical conductivity of HG was reached in the case of



Nanomaterials 2021, 11, 1074 8 of 10

current transfer along the armchair direction during an increase in the neck width along
the armchair direction (Figure 6b). In the case of current transfer along the zigzag direction,
the specific conductivity of HG was several times less.
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4. Conclusions

In the result of mathematical modeling, new knowledge was obtained about the effect
of the width neck on the electronic properties of holey graphene with round holes of
approximately 1.2 nm in diameter. On the basis of the DOS distributions analysis, it was
concluded that, depending on the neck width, HG demonstrated a semiconductor type of
conductivity with an energy gap varying in the range of 0.01–0.37 eV.

It was also shown that by changing the neck width, it is possible to control the values
of the HG electrical conductivity. It was discovered that the anisotropy of the electrical
conductivity depends on the direction of current transfer. The highest specific electrical
conductivity of HG was reached in the case of current transfer along the armchair direction
during an increase in the neck width along the armchair direction.

Thus, according to the simulation results, it is predicted that holey graphene can
become the basis for the element base of semiconductor devices.
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