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Abstract: Aging is associated with gradual degeneration, in mass and function, of the neuromus-
cular system. This process, referred to as “sarcopenia”, is considered a disease by itself, and it has
been linked to a number of other serious maladies such as type II diabetes, osteoporosis, arthritis,
cardiovascular disease, and even dementia. While the molecular causes of sarcopenia remain to
be fully elucidated, recent findings have implicated the neuromuscular junction (NM]J) as being
an important locus in the development and progression of that malady. This synapse, which con-
nects motor neurons to the muscle fibers that they innervate, has been found to degenerate with
age, contributing both to senescent-related declines in muscle mass and function. The NMJ also
shows plasticity in response to a number of neuromuscular diseases such as amyotrophic lateral
sclerosis (ALS) and Lambert-Eaton myasthenic syndrome (LEMS). Here, the structural and functional
degradation of the NM]J associated with aging and disease is described, along with the measures that
might be taken to effectively mitigate, if not fully prevent, that degeneration.
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1. Introduction

Demographic data from throughout the world indicate that a growing segment of
the population in western countries is considered aged with no signs of abatement of this
trend in the future [1]. This trend is associated with increased healthcare costs in those
nations as aging is known to incur a greater incidence of illnesses, injuries, and various
ailments. Indeed, in the United States, although the aged (>65 years) account for only 15%
of the total population, they are responsible for 34% of total healthcare expenditures [2].
All physiological systems of the body are negatively affected by aging, but aging of the
neuromuscular system is of particular concern. In part, this is explained by the fact that
skeletal muscle makes up such a large portion of the body’s mass, i.e., 40% in men and
33% in women. Moreover, maintenance of proper function of the neuromuscular system
is essential as voluntary contractile force is required not only for recreational activities
such as dance and sports but also activities that are necessary for survival, i.e., eating,
breathing, and evading danger. At the very core of the vertebrate neuromuscular system
is the neuromuscular junction (NMJ), which is the vital synapse joining the excitatory
messages of the motor nervous system with the contractile function of skeletal muscle [3-5].
Research has clearly demonstrated that aging causes gradual dysfunction of the vertebrate
neuromuscular system, including the loss of contractile strength and power. This age-
related decline in neuromuscular mass and function is referred to as “sarcopenia” [6],
which first manifests at about 50 years of age, while its rate of degeneration noticeably
accelerates beyond the age of 60 years [7,8]. In recent years, the NMJ has increasingly
been linked to the onset and progression of sarcopenia [9-11]. Although it is unlikely
that aging of the NM]J alone is the causative factor of sarcopenia, it is just as unlikely
that it has no effect on age-related loss of neuromuscular function. The NM]J has not
only been suggested to play a role in the onset of sarcopenia but also other age-related
diseases such as amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig disease.
This is a fatal neurodegenerative disease that is usually detected in the eighth decade of
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life and is conventionally believed to originate in the motor neurons of the central nervous
system (CNS) before proceeding to the skeletal muscle in an anterograde manner. However,
more recently, it has been suggested that this disease may first manifest itself at the NM]J
and propagate in a retrograde manner along the motor neurons” axons in a “dying back”
direction [12-17]. What is clearly known, however, is that the NM]J is affected by ALS,
resulting in weakening and wasting of the skeletal muscle [12-14].

Lambert-Eaton myasthenic syndrome (LEMS) is another disease usually afflicting the
aged, in this case by impairing the NM]’s ability to properly function by preventing its re-
lease of the neurotransmitter acetylcholine (ACh). However, unlike ALS, this autoimmune
disorder is not life-threatening, even though it causes significant muscle weakness [18,19].
The important role that the NM]J plays in maintaining proper neuromuscular function is
illustrated by the above and other afflictions including myasthenia gravis, which causes
deterioration of muscles of the face and limbs, along with the muscular dystrophies, which
are a group of conditions causing muscle wasting and weakness [20-22].

Traditionally, the structure of the vertebrate NM]J has been described as a two-component
model, i.e., the presynaptic nerve terminal of a motor neuron, and the postsynaptic endplate,
which is a specialized region of the myofiber innervated by that motor neuron [23-25]. More
recently, however, the NMJ has increasingly come to be thought of as a three-component
synapse, wherein the additional constituent is the peri-synaptic Schwann cell, which
is a glial cell that wraps around the nerve terminal ending and dips into the synaptic
cleft [26-28] (Figure 1). This under-appreciated supportive cell plays a critical role in ensur-
ing synaptic efficiency, by allowing electrical impulses carried by the presynaptic motor
neuron to be effectively delivered to the postsynaptic myofiber, resulting in contractile
activity. These specialized glial cells are also regulators of remodeling of the NM], both the
subtle, steady version that occurs throughout life—where the NM]J displays observable
plasticity—as well as the more pronounced remodeling that is associated with various
stimuli such as exercise, disuse, natural growth and development and aging [29-31].
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Figure 1. Positioning of the peri-synaptic Schwann cell at the neuromuscular junction.

This tripartite synapse is unique in many ways, and because of its relatively simple
arrangement and easy access, is often used as a model to study the synaptic function [23,26].



Cells 2022, 11, 1150

30f19

As examples of its specific features, the NM]J has a single presynaptic cell, i.e., the motor
neuron, and a single postsynaptic cell, the myofiber. Moreover, only a single neurotransmit-
ter is secreted, i.e., ACh, and under normal conditions, enough of that excitatory chemical
agent is released into the synapse to elicit a postsynaptic response, or depolarization, to
bring about a muscle twitch. In other synapses, the amount of neurotransmitter released in
response to a single action potential is typically of sub-threshold intensity, failing to trigger
a postsynaptic response.

Yet, at the NM]J, the amount of neurotransmitter released in response to a single presy-
naptic impulse is several-fold greater than is necessary to trigger a postsynaptic response.
This excess amount of ACh released is referred to as the “safety factor” of neuromuscular
transmission and does not occur at other synapses of the body. In viewing the NMJ’s
role within the function of the larger neuromuscular system, it should be emphasized
that although each myofiber responds to a single presynaptic motor nerve terminal, each
motor neuron innervates a number of myofibers. Indeed, the functional component of the
neuromuscular system is the “motor unit”, which comprises a single motor neuron and all
the myofibers it innervates. Depending on the size of the motor neuron, and particularly
the gauge of its axon, the number of myofibers comprising that motor unit may be as little
as merely a few, as in the case of a thin axon, ranging to as many as hundreds for a thick
axon. As can be easily imagined, the ultimate force produced by a contracting muscle
largely depends on the number and size of the motor units activated. Since they are all
innervated by the same motor neuron, the contractile and metabolic properties of those
myofibers are shared by all of them, and they are categorized accordingly, i.e., all type I or II,
all fast-glycolytic, fast-oxidative glycolytic, slow-oxidative, etc. Furthermore, recruitment
of these various motor units during a voluntary contraction does not occur in a random
fashion, but rather, can be easily predicted based on the “size principle” of motor unit
recruitment. The “size principle” was first described by E. Henneman in 1957 [32], and
was confirmed with greater detail in a series of classic studies conducted by R.E. Burke in
1967 [33]. Specifically, this principle states that smaller motor units—smaller in the number
of myofibers, as well as the size of those myofibers—are recruited first, thus developing no
more force than is necessary to complete the task at hand. Should more force be required,
larger motor units are then progressively activated until the necessary contractile force is
achieved. Since smaller motor units are characterized by greater aerobic metabolic capacity,
i.e., increased mitochondrial content and capillarization, production of lactate and fatiguing
metabolites is minimized until larger, glycolytic motor units are called into play. As one
might expect, if myofibers are designed with different metabolic profiles that match them
to the tasks they are assigned to complete, so too are NMJs designed to achieve their tasks.

2. Design of NMJs and Motor Units

The function of the NMJ begins with the motor neuron, the cell body (soma) of
which resides in the central nervous system, where it initiates an electrical impulse, or
action potential, which travels down the axon in an anterograde fashion to the skeletal
myofibers that the neuron innervates. At the terminal end of the axon, myelination is
no longer expressed around the axon, and instead, it branches out to a number of nerve
terminal endings, which express voltage-gated calcium channels. On the arrival of the
action potential at the nerve terminal ending, these voltage-gated channels are opened,
resulting in a sharp, sudden influx of calcium into the terminal’s cytomatrix. This newly
arrived calcium is sensed by the protein “synaptotagmin”, which is embedded in the
membranes of presynaptic ACh containing vesicles [34,35]. By interacting with a series
of SNARE proteins located both on the vesicular and terminal ending membranes, the
binding of calcium with synaptotagmin releases vesicles from their “docked” positions at
presynaptic “active zones”, which are positioned in direct apposition from postsynaptic
ACh receptors distributed on the postsynaptic endplate [36-38]. The newly released
vesicles then fuse with the terminal ending’s membrane, resulting in exocytosis of the
ACh residing in the vesicles into the synaptic cleft separating the pre- and postsynaptic
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cells. From there, the neurotransmitter crosses the cleft via random diffusion and binds
with ligand-gated, postsynaptic ACh receptors of the endplate region of the myofiber’s
sarcolemma. Since ACh travels solely according to passive diffusion, the terminal of the
neuron is only ~50 nm from the postsynaptic endplate, and the vesicles are released from
sites in the nerve terminal that are in direct “apposition” or juxtaposed to postsynaptic
receptors. This positioning maximizes the probability of diffusing ACh binding to those
receptors and evoking a postsynaptic electrical response [24]. These two morphological
details, i.e., limited width of the synaptic cleft, and apposition of ACh release sites from
binding sites, are also vital characteristics of the NM]J, allowing it to serve as an efficient
synapse. Importantly, also found in the synaptic cleft is the enzyme acetylcholinesterase
(AChE), the functions of which are to destroy ACh bound to the postsynaptic receptors
and remove debris resulting from that action. This permits control of the continuation or
cessation of neuromuscular transmission.

At the postsynaptic side of the NM] is the endplate, which is a specialized, swollen
region of the myofiber’s sarcolemma that accounts for only one-tenth of one percent (0.1%)
of the entire surface of the sarcolemma. Etched into the thickened region of the endplate
are the “junctional folds” of the membrane. On the crests of these infoldings are a great
number of ACh receptors—the folded nature of the membrane permits many receptors
to be expressed at the endplate, contributing to the transmission safety factor we earlier
alluded to—while in the depth of these junctional folds are voltage-gated sodium channels
(Figure 2).
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Figure 2. Illustration of the pre- and postsynaptic features of the NM]J; red circles indicate the
presence of ligand-gated acetylcholine receptors at the crests of postsynaptic junctional folds, and
voltage-gated sodium channels in the depths of those folds.

Details of the process of neuromuscular transmission show that on the binding of
ACh receptors by its neurotransmitter, a conformational shift occurs at the receptor, al-
lowing ion flux into the myofiber’s cytosol—the receptor is both a binding site and an ion
channel—inducing “endplate potential” (EPP). This depolarization is a graded response
as the channels are ligand- and not voltage-gated, so that the strength of the depolariza-
tion is proportional to the amount of ACh bound to its receptors, rather than being an
“all or none” event, as observed in voltage-gated channels. This EPP is confined to the



Cells 2022, 11, 1150

50f19

area of the endplate region, but it diffuses into the depths of the junctional fold where
voltage-gated sodium channels are located. Due to the “safety factor” of the EPP, as de-
scribed earlier, a single EPP will normally be of more than sufficient intensity to open
the voltage-gated sodium channels located on the sarcolemma—including the depths of
junctional folds—thus evoking an action potential. This all-or-none impulse then spreads
throughout the rest of the sarcolemma, delving into the T-tubules, where it will excite the
“dihydropyridine (DHP) receptors”, which act as voltage sensors that will then stimulate
“ryanodine receptors” located on the membrane of the myofiber’s sarcoplasmic reticulum.
In response, the channel that is part of the ryanodine receptor opens, allowing an efflux of
that internally stored calcium, to increase the levels of cytosolic calcium within the myofiber.
This newly-released calcium will bind to troponin, leading to actomyosin cross-bridge
formation and muscle contraction. This contractile activity continues as long as there is
effective neuromuscular transmission at the NMJ. Typically, it ends, as mentioned earlier,
when AChE cleaves neurotransmitters bound to endplate ACh receptors without replacing
these through continued release of ACh from the motor neuron. This entire process has
been well described elsewhere [39,40].

3. Effects of Aging on the NM]J

Earlier in this report, the negative consequences of certain diseases on the NM] were
described. These afflictions are generally observed in older individuals. This, of course,
begs the question of whether aging itself alters the NMJ’s structure and function. Although
it is often difficult to separate the effects of aging from age-related diseases, there is ample
evidence that even in the absence of disease, aging conveys deleterious effects on the
NMJ. This validates the idea that the NM]J undergoes constant remodeling throughout the
lifespan, and that such activity is significantly increased in those of advanced age [41-43].
We will now turn our focus to the morphological adaptations of the NM] to aging.

3.1. Morphological Adaptations

There is a considerable body of evidence that senescence is associated with significant
remodeling of the NM]J (recently reviewed by Pratt et al., 2021; Dobrowolny et al., 2021;
Iyer et al., 2021). For example, aging has been found to bring about enhanced presynaptic
nerve terminal branching, both as revealed by an increase in the total length of nerve
terminal branches [43-45], and the number of terminal branches present at the NM]J [44—46].
Moreover, the complexity of this branching—with essentially, the total branch length as a
factor of the branch number (please see figure legend for details)—has been found to be
greater among aged nerve terminals than young ones [47-50]. It has been suggested that this
indicates greater remodeling of the motor neuron in an attempt to improve communication
between pre- and postsynaptic components of the NM], as such communication is pared
down with aging [9,51].

In addition to the expansion of the nerve terminal network, aging has also been shown
to decrease the total number of presynaptic, neurotransmitter-containing vesicles held
by those terminal branches [52-54]. This is accompanied by reduced expression of the
active zones where Ach-containing vesicles are docked, awaiting their release with the
influx of calcium into the terminal [55]. This change in active zone number is precipitated
by the selective degeneration of proteins that comprise the active zone, such as Bassoon,
Piccolo, and voltage-gated calcium channels [55,56]. It is likely that the reduced presence
of these active zone proteins is a consequence of the impaired axonal transport noted
among aged NM]Js [57,58]. This impaired axonal transport would hinder the replacement
of those recently deteriorated proteins, which were initially generated in the neuron’s soma
and subsequently transported to the locations where they were needed at the terminal
endings. Similarly, it is reasonable to suggest that the reduction in vesicular-stored ACh
at aged NMJs also comes about due to this interrupted axonal transport, and that this
would account for the diminution of pre- to postsynaptic communication detected among
senescent NMJs. Despite the significant increase in the total length and complexity of aged
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nerve-terminal branching patterns, the fidelity of the juxtaposition, or coupling (Figure 3)
of pre- to postsynaptic binding sites, is maintained throughout the lifespan, seemingly
as an attempt to maintain communication despite gross morphological alterations [59].
This ability to maintain pre- to postsynaptic coupling may be attributed, at least in part, to
calcium channels that physically tether the postsynaptic endplate to the presynaptic active
zones of the nerve terminal [60]. That said, there are data indicating that aging is associated
with a lesser degree of pre- to postsynaptic coupling [46,61]. These inconsistencies in results
may well be explained by how coupling was assessed, i.e., vesicle with receptors, branches
with endplate area, etc. Moreover, despite alterations to the length and complexity of
nerve-terminal branching, the number of ACh-containing vesicles per given length of
branch is unaffected by aging [62,63].

20 um

Figure 3. Micrograph showing close coupling of presynaptic vesicles and terminal branches with
postsynaptic receptors. Presynaptic terminal branches are stained green, presynaptic vesicles are
stained blue and postsynaptic receptors are stained red. Note the greater complexity of nerve terminal
branching in aged NM]J.

The effects of aging are also evident in the postsynaptic component of the NM]J.
In general, it is fair to say that aging is associated with an expansion of postsynaptic
features. More specifically, aged NM]Js display larger total endplate areas, along with
greater dispersion of ACh receptors within those endplates [46,61,64—66]. This dispersion
is also referred to as “fragmentation” of the endplate [67,68]. At the same time as this
fragmentation occurs, there is a decrease in the number of ACh receptors in aged NMJs,
which may be the result of more shallow junctional folds at the endplate (Figure 4), thus
reducing the surface area that postsynaptic receptors may be distributed within [69-71].
Aging is also associated with a reduction in the content of healthy mitochondria below
the surface of the endplate [54,72,73]. These fewer and damaged mitochondria are known
to release reactive oxygen species (ROS), which have a destructive effect on proteins and
nucleic acids [72-75].

As a further sign of the gradual denervation that occurs with aging, thus leading to
NM]J remodeling, it has been reported that aged myofibers express greater amounts of the
neural cell adhesion molecule (NCAM) than younger fibers (Figure 5). This supports the
notion that remodeling of the NM] is a lifelong process that is enhanced, but not initiated,
by aging. The NCAM is a synaptogenic molecule expressed by denervated tissue as it
has chemotactic effects that draw nerve-terminal endings to sites where the NCAM is
expressed [76-78].
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Figure 4. Illustration of aged and young adult endplates. Note more shallow gutters in the aged
neuromuscular junction, with fewer receptors.
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Figure 5. NCAM expression of aged (22 mo) and young adult (8 mo) muscle fibers under either
control or unweighted (hindlimb suspended) conditions. Note that the NCAM expression is greatest
in aged, unweighted fibers. Source: Deschenes and Wilson (2003).
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It is important to note that although aging is generally believed to have an expansive
effect on the NM]J, there are data showing that in highly aged muscle tissue, there are
decreases in the dimensions of the NM]J, both at pre- and postsynaptic sites, bringing about
what is considered a dichotomous response to increasing age, i.e., expansion with early
stages of senescence, followed by an atrophying effect with advanced senescence [49,64,79].
These conflicting findings may be related to the fact that many studying the effects of aging
simply assume that all “aged” subjects are the same. Yet, it is far more likely that a modestly
aged subject will demonstrate different characteristics and responses to someone severely
aged. Indeed, in human studies, gerontologists have clarified three different subcategories
of the aged, from “youngest-old”: 65-74 years of age, to “middle-old”: 75-84 years of age
and “oldest-old”: >85 years of age [80]. This difference of what can be expected at different
stages of senescence should be borne in mind by all investigators studying the effects of
aging. To date, it has been consistently reported that with aging comes a decreased capacity
for terminal sprouting in peri-synaptic Schwann cells, as well as heightened sensitivity
to inflammation of those same cells, leading to the diminished regenerative capacity of
aging neurons [16,81]. Moreover, 80% of aged endplates are no longer in contact with
peri-synaptic Schwann cells, while only about 20% of aged NMJs are fully capped by
those glial cells as they are in young adult synapses [16,82]. Those peri-synaptic Schwann
cells that are seen at aged NM]Js typically exhibit unusually thin, disorganized terminal
branches/sprouts.

Interestingly, much like the muscle fibers on which they reside, the effects of aging
on NM]Js may be fiber-type specific. For example, Rosenheimer and Smith (1985) found
that aging was linked to a decrease in the total and average lengths of presynaptic nerve-
terminal branches, as well as less branch sprouting potential in the primarily fast-twitch
EDL muscle, while no such remodeling was detected in aged, mainly slow-twitch soleus
muscles. Another study featuring a different perspective examined the effect of the fiber
type within a single mixed-fiber-type muscle, i.e., the diaphragm muscle. The results
indicated that type IIX and IIB myofibers of the diaphragm displayed greater numbers
of nerve terminal branches with greater lengths. In contrast, the NM]Js of type I and IIA
fibers failed to display any apparent age-related changes in nerve-terminal branching or
sprouting [46].

In another examination into the effects of the myofiber type on aging among NMJs,
Deschenes et al. (2011) reported the effects of aging on NM]Js from different fiber types
on locomotor muscles. They showed that in the mainly slow-twitch soleus muscle, aging
was linked with a greater nerve-terminal branch length, whereas fast-twitch fibers in that
same muscle were associated with shorter branches and a reduced postsynaptic endplate
area. Overall, these results suggest that aging-induced remodeling of the NM]J is fiber
type-specific. Typical age-related morphological adaptations of the NM]J are presented in
Table 1.

3.2. Physiological Adaptations
3.2.1. Presynaptic

In addition to anatomical remodeling, aging triggers adaptations to the physiological
function of the NM]J. For example, aged NMJs have been found to demonstrate an increase
in the amount of ACh released from nerve terminals on their stimulation [50,83,84]. This
suggests that more vesicles are released with the arrival of an action potential at presynaptic
nerve-terminal endings, or that the quantal size—the amount of ACh stored per vesicle—is
amplified with aging. Since the EPP, an indirect measure of quantal size, has been reported
to be greater among aged NM]Js, at least some of the gain in quantal content, or the amount
of neurotransmitter released on stimulation, must be attributed to an increased quantal
size or greater ACh per vesicle [14,50,85]. This increased quantal size is evident in data
revealing that the total amount of ACh at nerve terminal endings is less among aged, than
it is among young, adult NMJs [86-88]. Instead of having greater amounts of ACh to
release, the likelihood of releasing a neurotransmitter on stimulation is more pronounced
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among aged NM]Js [87,89]. This increased probability of vesicle release on stimulation is
linked to the fact that with aging comes increased dysfunction of nerve-terminal calcium
channels, allowing both a greater than normal influx of calcium on stimulation, as well as
magnified non-stimulated leakage of calcium into the region of the vesicle anchoring active
zones [90-92]. In effect, aging is associated with greater calcium influx into nerve terminal
endings, both with stimulating and non-stimulating conditions, and by extension, a greater
amount of ACh release, both during stimulation and at rest. In brief, aging results in a
greater quantal content (amount of ACh released with a single impulse) and quantal size
(amount of ACh stored in a single vesicle). This amplified release of ACh on stimulation,
however, is also responsible for a greater rate of “run down” or decline in the amplitude
of postsynaptic potential during a train of stimuli, leading to a faster rate of failure to
stimulate adequate postsynaptic potential to elicit muscle contractile activity [93]. In short,
then, the more pronounced release of ACh on stimulation early during a consecutive series
of stimuli leads to a faster rate of neuromuscular fatigue, along with failure to execute
the desired task. It is also of interest that recent findings indicate that not only is aging a
factor in the onset of neuromuscular fatigue in continuously stimulated NM]Js but it also
interferes with post-activity recovery of neuromuscular function [94].

Table 1. Morphological Adaptations of the NM]J to Aging.

Presynaptic Authors
Increased complexity of nerve terminal branchin Khosa et al., 2019; Andonian and Fahim,
creased complexity of nerve termina ching 1989; Fahim, 1997

Deschenes et al., 2020; Prakash and
Sieck, 1998; Deschene et al., 2010

Robbins and Fahim, 1985; Deschenes
et al., 2020; Deschenes et al., 2016

Increased nerve terminal branch number

Increased total nerve terminal branch length

Increased planar area of nerve terminal branch length ~ Fahim, 1997; Prakash and Sieck, 1998

Deschenes et al., 2011; Deschenes
et al.,, 2010

Deschenes et al., 2015; Taetzch and
Valdez, 2018

Increased area of vesicle clusters

Decreased total number of vesicles

Decreased number and concentration of active zones Nishimune et al., 2016

Postsynaptic Authors

Abandoned incidence of abandoned endplate gutters Rosenheimer and Smith, 1985; Bao etal,

2020
Increased fragmentation of receptors Willadt et al,, 2016; Deschenes et al.,
8 p 2015; Hunter, 2016
Decreased length of endplate Vaughn et al., 2019; Arnold et al., 2014
Prakash and Sieck, 1998; Fahim and
Decreased total area of endplate Robbins, 1982

Jang and Van Remmen, 2011; Elkerdany

Decreased perimeter length around endplate and Fahim, 1993

Increased expression of NCAM Deschenes and Wilson, 2003

Another meaningful consequence of aging at the NM]J is a reduction in the safety factor
during neuromuscular stimulation. Recall that the “safety factor” refers to the several-fold
greater than needed amount of ACh released on stimulation, to elicit a postsynaptic muscle
twitch. It is the increased nerve-terminal branching combined with the decreased number
of presynaptic ACh vesicles that accounts for this—decreased safety factor—deleterious
adaptation, which, in turn, contributes to the earlier onset of neuromuscular fatigue seen
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among the aged [89,95]. This evidence gives credence to the biological tenet that changes
in form and function are inextricably linked.

3.2.2. Postsynaptic

Despite the popularity among biologists of this adage of form and function being
tightly linked, there are new findings suggesting that perhaps this bond between form
and function is not as powerful as previously suggested. Recently, it has been reported
that the fragmentation of the postsynaptic endplate—considered to be a hallmark of the
aging NMJ—is not necessarily indicative of disrupted neuromuscular transmission. In
data newly reported by Dr. Clarke Slater’s laboratory, it was found that the endplates
of aged diaphragm muscles did, in fact, demonstrate increased fragmentation relative
to those of young adult mice [48,67]. Yet, despite this exaggerated fragmentation, when
these diaphragm muscles were assessed for neuromuscular transmission, no age-related
differences were detected. That notwithstanding, an even more recent review of this topic
asserts that disruption in the structure of the NMJ in aged muscles is indeed coupled with
significant disturbances in their function [14,48,85].

Increasingly, mitochondrial abnormalities are viewed as having a causative effect
for impairments of NM]J function. Both the presynaptic nerve-terminal ending and the
postsynaptic endplate region are richly endowed with mitochondria [72,96,97], providing
vast amounts of the ATP that is required for effective neuromuscular transmission. At the
presynaptic nerve terminal, ACh is produced by choline acetyltransferase (ChAT) joining
the acetyl group from acetyl co A, released by mitochondria, to choline released by the
actions of AChE at the synapse (Figure 6). Thus, if mitochondrial synthesis of ATP is
hindered, so will be the production of ACh, and by extension, the efficacy of neuromuscular
transmission at the NM]J. These facts become particularly meaningful in the aging NM]J
where ChAT is less plentiful and the membranes of resident mitochondria become fragile
and subject to rupture. Such actions have the double effect of hindering ACh synthesis and
enhancing the production of protein-damaging free radicals, or ROS. This relationship is
yet another example of how changes in the form alter the function in biological settings.

Postsynaptic neuron

lonotropic postsynaptic receptor

Metabotropic postsynapfic receptor

.

Glial cell

¢ 9.

wawramferase

Diffusidn Vesicular
transporter

Acetic acid

Figure 6. Synthesis of ACh by choline acetyltransferase at the presynaptic terminal.
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Another indication of the importance of mitochondria in maintaining the NM]’s struc-
ture and function is the impact of PGC-1x on the myoneural synapse. PGC-1«x acts as a
co-factor in mitochondrial transcriptional activities and thus helps assure normal mitochon-
drial metabolic activities and protection against ROS release. A recent investigation has
found that adding PGC-1« to aged muscle reduces the ROS levels and restores a normal
NM]J structure and function, obviating the effects of aging [98,99]. In addition to damage to
mitochondrial membranes, other mechanistic factors contribute to age-related degeneration
of the NMJ. For example, aging is accompanied by increased systemic inflammation, some-
times referred to as “inflammaging” [100]. Accordingly, there are elevated concentrations of
inflammatory agents such as tumor necrosis factor-1 (TNF-1) and interleukin-6 (IL-6), which
in part elicit degenerative actions on NM]Js and the muscle tissue they innervate [100,101].
In a contrary manner, insulin-like growth factor-1 (IGF-1) is an anabolic agent primarily
produced and released by skeletal muscle, which progressively declines with aging. It
appears that the natural decline of this peptide contributes to the effects of aging on the
NM]J, as restoring normal, youthful levels of IGF-1 re-establishes the structure and function
of aging NMJs [35].

Another consideration for explaining age-related disruption to the function and form
of the NM] is altered expression of the postsynaptic protein laminin. This protein, in effect,
serves as the foundation on which the postsynaptic endplate is assembled. In particular,
it has been posited that laminin-o4 is vital to the alignment of postsynaptic receptors in
direct apposition to presynaptic vesicles, thus maintaining proper pre- to postsynaptic
coupling, and by extension, neurotransmission [102,103]. Much as with other proteins of
the NM]J, aging results in a significant decline in laminin-o4, so it is not surprising that
affected NM]Js suffer structural and functional disruptions, including decrements in muscle
strength [104,105]. Recent work has confirmed the importance of the proper expression of
synaptic laminin [106]. In that study, aged mice with damaged NMJs were administered
exogenous laminin-o4 to restore normal, youthful levels, and in doing so, similarly restore
the NM]J structure, function, and even muscular strength [104]. Clearly, methods enabling
proper pre- to postsynaptic coupling must be addressed in clinical procedures aimed at
maintaining or improving the neuromuscular function among the aged.

Perhaps the most surprising player in the age-related degeneration of the NM]J is
the very neurotransmitter that is used to power neuromuscular transmission. Although
it is well understood that ACh functions as an excitatory neurotransmitter that enables
neuromuscular transmission and muscular contraction, less appreciated is the fact that the
same ACh exerts a degrading effect on postsynaptic endplates, thus disrupting normal
neuromuscular transmission [71,107,108]. Accounting for the fact that typical nerve-to-
muscle transmission, featuring the release of ACh onto the postsynaptic endplate, does
not cause disruption of the working NMJ, is evidence that during such neuromuscular
activity, the protein agrin is also released by nerve terminals onto the endplate, neutralizing
the destructive effects of ACh [71,109]. In effect, the positive effects of agrin balance the
negative effects of ACh at the NMJ.

Yet, with aging, this balancing capacity becomes impaired. Recall that aging is associ-
ated with an increased quantal content, or ACh release, on stimulation, which then yields a
greater degenerative effect relative to the synaptic stabilizing effect of agrin [109,110]. In
addition to a greater amount of ACh being released per impulse in aged NM]Js, it has been
determined that less agrin is released by those same NMJs. In concert, these two age-related
adaptations provoke a gradual degradation of the NM]J. Confirming the roles played by
ACh and agrin in giving rise to the aged NM]J is evidence that mice genetically engineered
to secrete less ACh on stimulation also display fewer, less pronounced signs of aging,
both in morphology and neuromuscular transmission [71]. Although these findings are
both informative and exciting, much more work is needed to fully reveal the mechanisms
involved in NM]J disturbances noted among aged muscle tissue. Common physiological
alterations of the NM]J to aging are found in Table 2.
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Table 2. Physiological Adaptations of the NM]J to Aging.

Presynaptic Alterations Authors

Increased quantal content
Increased quantal size

Fahim, 1997; Alshuaib and Fahim, 1990; Mahoney et al., 2014
Fahim, 1997; Jones et al., 2016

Increased spontaneous release of ACh Smith, 1984; Smith and Weiler, 1987
Decreased calcium clearance from nerve terminal Smith, 1987

Postsynaptic Authors
Increased endplate potential amplitude Iyer, 2021; Smith, 1987
Reduced safety factor of endplate potential Giovannini et al., 2002; Liu et al., 2019
Increased synaptic depression during train of stimuli Feng and Dai, 1990
Increased incidence of neurotransmission failure Fahim, 1997; Smith and Weiler, 1987

3.3. Countering Aging-Related NMJ Adaptations

It has been recognized for a number of years that a slow, steady process of remodeling
of the NM]J occurs throughout life [111,112]. This typically features nerve-terminal branch
withdrawal from specific sites within the postsynaptic endplate, only to re-probe and
re-innervate that same myofiber at a different location of the same endplate [42,49,113]. In
general, such subtle and slow remodeling of the NMJ imparts no functional alterations at
that synapse [114]. With aging, however, this process of NM] remodeling occurs at a more
rapid rate and with a more pronounced severity. resulting in first partial, and then total, den-
ervation of the affected myofiber, ultimately leading to its death, i.e., “sarcopenia” [115,116].
Some but not all of these newly abandoned, or denervated, myofibers will be re-innervated
by neighboring motor neurons, although the requisite terminal sprouting is limited with
aging [117,118].

A host of serious maladies are associated with sarcopenia—which itself is considered a
disease—including diabetes, arthritis, and even some forms of cancer [101,119]. Clearly, the
ability to control myofiber denervation, and thus sarcopenia, has serious health implications.
To date, however, only two interventions have been reported to effectively manage age-
related NM]J destruction: exercise and calorie restriction [120,121]. While dietary restriction
has been shown to be effective in offsetting age-related NM]J deterioration, it requires a
severe (40%) reduction in the daily calorie intake [122]. Such dietary restriction, while
effective, is not a practical tool to combat NM]J destruction and sarcopenia in humans.
However, there is a strong body of evidence that regular exercise training of even a moderate
intensity effectively slows, if not fully prevents, age-related NMJ damage [123,124].

More recent, in-depth research delving into the mechanisms by which exercise and
a restricted calorie intake attenuate the negative effects of aging on the NM] has been
informative [121,122]. For example, it has been determined that a limited dietary intake
in rats results in a lower percentage of endplates found to be fragmented, with a smaller
fraction of all endplates fully denervated, a smaller number of NM]Js exhibiting nerve
terminal sprouting, and even a decreased incidence of axonal atrophy. By comparison,
exercise training was found to provide the same type of synapse protective effect as calorie
restriction, but to a less pronounced degree. It was also revealed that with exercise training,
only those muscles actively recruited during training sessions displayed anti-aging effects
at the NMJ. This is unlike calorie restriction, where all muscles of the body experienced
beneficial effects at the NM]J. It should also be noted that the beneficial effects to the NM]J of
areduced calorie intake acted principally by slowing the progress of natural neuronal decay
and not by preventing or reversing the impact of aging. More specifically, calorie restriction
imparts its positive effects on the NM]J by mitigating age-related death, or apoptosis, of
motor neurons, i.e., the synaptic rescuing effects of calorie restriction are secondary to
the sparing of aged motor neurons. Conversely, the advantageous outcomes of exercise
on aging NMJs can actually reverse senescence-related damage to the NM]J function and
structure. So, while both are effective, data suggest that a restricted calorie intake and
exercise training elicit their NM]J sparing effects using different physiological mechanisms.
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Recall that remodeling of the NMJ during aging displays two distinct phases. That is,
in earlier stages of senescence, aging is characterized by expansion of the pre- and postsy-
naptic elements of the NMJ, with increased and more elaborate nerve-terminal branching
patterns, along with an increased area of the postsynaptic endplate, accompanied by greater
dispersion of Ach-containing and -binding, respectively, vesicles and receptors [41,56,121].

However, in later stages of aging, i.e., >25 months in murine muscle, a reduction,
and not an expansion, of the NM]J is evident [49,64,79]. This is observed in both pre- and
postsynaptic features of the NM]J. Although exercise is also effective in countering the
effects of extreme aging at the NMJ, as there is a different baseline morphology than in
moderately aged NMJs, adaptations to exercise training are different. Specifically, people
who are very old display an NM]J size that is similar to, if not smaller than, that found in
young, adult muscle. Accordingly, in these more modestly sized synapses, exercise training
works to enhance the dimensions of presynaptic nerve-terminal branching and vesicle
content, while simultaneously increasing the size of the postsynaptic endplates and the
number of ACh receptors bound to those endplates [125,126]. Despite overall restructuring
of the NM]J with exercise training among the aged, pre- to postsynaptic coupling remains
intact [45,53].

In sum, in younger muscle, exercise training—whether it is endurance training, or
resistance training, i.e., weightlifting—increases pre- and postsynaptic dimensions of the
NM]J, without impacting the density of vesicle or receptor expression. Yet, evidence suggests
that endurance training elicits a greater hypertrophic response, i.e., ~30% vs. ~15%, which is
presumably related to the long-term continuous neuromuscular activity that characterizes
endurance but not resistance training.

As much as an increase in neuromuscular activity can affect aged NM]Js, so can a
reduction in such activity. This reduced activity can present as immobilization, such as
when wearing a cast following a bone fracture, or muscle unloading, such as having to
participate in ambulatory activities while using crutches, or even being confined to bed
rest. These are all considered forms of subtotal disuse, while total disuse is imparted by the
use of neurotoxins, or manually crushing or severing a nerve leading into a muscle.

Any of these forms of disuse elicits a decline in muscle strength that is commonly
accompanied by a decreased neural drive to contract, as assessed by electromyography
(EMG) [127,128]. In studies featuring human participants and with superimposed electrical-
stimulation procedures, it appears that the decreased neural drive stems from disuse-
induced reductions in the neural drive of the central nervous system, and not from a
neuromuscular block at the NM]J [129,130]. When examining the morphology of the NM]Js
in rodents subjected to muscle unloading, it was demonstrated that disuse interventions of
two weeks do not alter the NMJ’s morphology or function in young adult or aged NMJs,
although significant myofiber atrophy is apparent [63,131].

These findings clearly suggest that NM]s are more resistant to the deleterious effects
of disuse than myofibers are, and that this is true in young adult and aged neuromuscular
systems. However, an effect of aging on the consequences of disuse manifests when
the duration of disuse is increased. More specifically, when young adult and aged rats
underwent four weeks of unloading, aged but not young adult NMJs displayed typical
signs of degeneration [132]. This was in addition to the signs of synaptic damage already
evident in rats of the same age but living in control conditions. In effect, disuse worsened
the negative adaptations already apparent in aged NM]Js. In a similar vein, the disuse also
amplified the myofiber atrophy noted among aged rats as a result of sarcopenia. Clearly,
disuse imposed on aged neuromuscular systems provokes more severe maladaptation than
in young adult ones, which suggests that we must do whatever is possible to minimize
the chances of neuromuscular disuse among those that are senescent. This is particularly
true given the slow rates of post-disuse neuromuscular recovery observed among the
aged [94,132].
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4. Conclusions

The evidence clearly suggests that aging negatively affects both the structure and
function of the NMJ. This age-related remodeling of the NM]’s morphology and physiology
is rooted in the lifelong pattern of denervation and re-innervation of the motor endplate
of the myoneural synapse. In younger synapses, these two processes—denervation and
re-innervation—balance each other so that no significant disturbance in the NM]J’s form
or function is evident. However, with aging, this balance becomes skewed such that
denervation events exceed those of re-innervation, leading to the NMJ’s degeneration.
Indeed, the importance of maintaining a proper balance between denervation and re-
innervation at the NMJ was recently emphasized [133] by data demonstrating that those
myofibers expressing synapses no longer capable of striking a proper balance are destined
to die via denervation-induced sarcopenia, thus increasing the risk of incurring one of
many health conditions such as diabetes or cancer. If the impact of aging on the NM]J is
not by itself serious enough, aging also exacerbates the detrimental effects of disuse both
on the NMJ and the myofiber it innervates, and may even dampen the positive effects
typically induced by exercise on the neuromuscular system. Obviously, significant health
benefits would be gained by effectively ameliorating the negative effects of aging on the
NM]J. To date, however, only exercise training and calorie restriction have proven successful
in those efforts.
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