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1Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain
and Brain-Inspired Science, Shandong University, Jinan, China, 2Shandong Key Laboratory of Brain
Function Remodeling, Jinan, China
Glioblastoma (GBM) patients exhibit high mortality and recurrence rates

despite multimodal therapy. Small nucleolar RNA host genes (SNHGs) are a

group of long noncoding RNAs that perform a wide range of biological

functions. We aimed to reveal the role of SNHGs in GBM subtypes, cell

infiltration into the tumor microenvironment (TME), and stemness

characteristics. SNHG interaction patterns were determined based on 25

SNHGs and systematically correlated with GBM subtypes, TME and stemness

characteristics. The SNHG interaction score (SNHGscore) model was

generated to quantify SNHG interaction patterns. The high SNHGscore group

was characterized by a poor prognosis, the mesenchymal (MES) subtype, the

infiltration of suppressive immune cells and a differentiated phenotype. Further

analysis indicated that high SNHGscore was associated with a weaker response

to anti-PD-1/L1 immunotherapy. Tumor cells with high SNHG scores were

more sensitive to drugs targeting the EGFR and ERK-MAPK signaling pathways.

Finally, we assessed SNHG interaction patterns in multiple cancers to verify

their universality. This is a novel and comprehensive study that provides

targeted therapeutic strategies based on SNHG interactions. Our work

highlights the crosstalk and potential clinical utility of SNHG interactions in

cancer therapy.
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Introduction

Glioblastoma (GBM) is the most malignant glioma in the

human brain. Despite the most aggressive treatments, including

surgery, radiotherapy, chemotherapy and immunotherapy, the

average survival time is only approximately 14 months. A large

proportion of patients will still relapse after surgery, and

recurrent tumors have a higher degree of malignancy and

greater resistance to radiotherapy and chemotherapy (1, 2).

Traditionally, tumor progression has been considered a

process involving only genetic and epigenetic changes in

tumor cells. However, a large number of studies have shown

that GBM tumor subtype and the microenvironment in which

tumor cells grow and survive play a crucial role in tumor

development (3, 4).

According to gene expression markers, GBMs can be divided

into three main subtypes: proneural (PN), classical (CL) and

mesenchymal (MES). Each subtype has characteristic highly

expressed markers, such as SOX2 and OLIG2 of the PN type

and CD44 and YKL40 of the MES type (3). In addition, MES

GBM patients show a worse prognosis and greater radiation

resistance than PN GBM patients (5, 6). MES GBM patients are

more prone to recurrence, radiation resistance, and hypoxic

necrosis (6–8). The tumor microenvironment (TME) is an

integral part of tumor tissue and includes the hypoxic

environment, stromal cells, macrophages, and various

secretory factors (9). Through direct or indirect interactions

with TME components, tumor cells cause changes in a variety of

biological behaviors, such as the induction of prsoliferation and

inhibition of apoptosis, angiogenesis, adaptation to hypoxia, and

induction of immune tolerance. With the deepening of

understanding of the complexity of the TME, increasing

evidence shows that the TME plays a significant role in tumor

progression, recurrence and treatment tolerance (10).

Additionally, TME was implicated in the transformation of PN

to the MES subtype and promote GBM progression (11).

Stemness, which is considered to indicate the potential of

cells to renew and differentiate, was originally used to define the

stem cells of normal mature organisms (12). Researchers now

believe that there are cells that have stem cell-like characteristics

in various tumors; thus, these cells can self-renew and

abnormally differentiate into cells of different phenotypes,

called cancer stem cells (CSCs) (13). CSC are considered to be

the key factors for tumor occurrence, expansion, resistance,

recurrence and metastasis and are one of the determinants of

intratumoral heterogeneity (14–16). They interact with the TME

to promote malignant progression (16, 17). Similarly, there are

CSCs in GBM called glioma stem cells (GSCs) (18). GSCs also

have a corresponding subtype corresponding to the GBM

subtype, which reflects the different malignant behaviors of

GSCs. Targeting GSCs has been shown to be a treatment

option to improve patient survival (19).
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Long noncoding RNAs are a class of noncoding RNAs with a

length of more than 200 nucleotides, and an increasing number

of studies have confirmed that they play a crucial role in tumor

progression and therapeutic resistance (20, 21). Small nucleolar

RNAs (snoRNAs), which are approximately 60-300 nucleotides

in length, mainly exist in nucleoli and function as guide RNAs

for the processing of transcripts (22). As the host genes of

snoRNAs, long noncoding small nucleolar host genes

(SNHGs) are involved in the development of various cancers,

and their role is independent of snoRNAs; SNHGs are mainly

involved in tumorigenesis, apoptosis, tolerance to radiotherapy

and chemotherapy, and survival (23, 24). Previous studies have

shown that SNHG1, SNHG3, SNHG4, SNHG6, SNHG7,

SNHG12, SNHG14, SNHG16, SNHG17, SNHG20 and SNHG22

promote tumor growth as oncogenes, while GAS5 and SNHG9

act as tumor suppressor genes. In addition, SNHG5, DANCR,

and SNHG15 play dual roles and thus have attracted the

attention of many scholars (25–28). However, due to technical

limitations and the fact that the occurrence and development of

tumors is characterized by the interaction of numerous tumor-

related factors in complex ways, the above studies are limited to

one or two SNHGs and cell types. At present, the relationship

between SNHG family genes and GBM subtype, TME and

stemness features is not clear. Therefore, a comprehensive

understanding of how SNHGs regulates these three

characteristics will help us deepen our knowledge of the

occurrence and treatment of GBM.

In this study, genomic information for GBM patients from

The Cancer Genome Atlas (TCGA) was integrated to

comprehensively evaluate SNHG interactions. Additionally, we

screened SNHG18 to verify its effect on the self-renewal ability

and subtypes of GSCs. We revealed two distinct patterns of

SNHG interactions, and surprisingly, the subtype characteristics

underlying these two patterns were highly consistent with the

PN and MES subtype, suggesting that SNHG interactions play a

significant role in shaping GBM subtypes. In addition, these two

patterns were implicated in immune cell infiltration and stem

cell features. Additionally, we established a scoring system to

quantify the SNHG interaction model of individual patients,

further verified the role of the SNHG interaction model in the

response to anti-PD-1/L1 immunotherapy, radiotherapy,

chemotherapy, and screened AZD3759 to verify its therapeutic

effect on GSC.
Materials and methods

Data collection and analysis

Gene expression profiling data and clinical information for

patients providing GBM and normal tissues were downloaded

from the TCGA database (https://cancergenome.nih.gov/).
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Several GBM cohorts were enrolled in this study: the Chinese

Glioma Genome Atlas (CGGA) cohort (https://www.cgga.org.

cn/), Rembrandt cohort, Gravendeel cohort, Frejie cohort, and

Murat cohort. Two cohorts of immunotherapy-treated patients

were eventually included in this study: patients with advanced

uremic tumors treated with atezolizumab (IMvigor210 cohort)

and patients with metastatic melanoma treated with

pembrolizumab (GSE78220 cohort). The expression data and

detailed clinical traits for these cohorts were obtained from the

http://research-pub.Gene.com/imvigor210corebiologies and

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.

gov/geo/), respectively. The drug sensitivity data of diverse cell

lines were downloaded from the Genomics of Drug Sensitivity in

Cancer (GDSC, www.cancerRxgene.org) dataset. Corresponding

cell line expression data were obtained from the Cancer Cell Line

Encyclopedia (CCLE, https://portals.broadinstitute.org/ccle/)

dataset. Pan-cancer RNA sequencing data, somatic mutation

data and clinical information were downloaded from the UCSC

Xena data portal (https://xena.ucsc.edu/).
Machine learning downscaling

Twenty-five SNHGs were used as candidates entered into the

least absolute shrinkage and selection operator (LASSO)

regression model. Some candidate SNHGs were completely

ignored in the evaluation of the output. For the remaining five

SNHGs, logistic regression analysis, classification tree analysis

and random forest algorithms were applied to determine the

weights of each gene.
Cell lines and reagents

All patient-derived GSC cell lines and neural progenitor cells

(NPCs) were kindly donated by Dr. Krishna P.L. Bhat (The

University of Texas, M.D. Anderson Cancer Center, Houston,

TX). GSC11, GSC8–11, GSC20, GSC267, GSC28 were

established and widely applied in previous studies (6, 29, 30);

their subtypes had already been identified according to the

metagene score for PN or MES subtypes based on Philips and

Verhaak gene set, respectively (3, 5). All cell lines were cultured

in medium prepared from DMEM/F12 (10565018; Gibco, USA),

2% B-27 no serum supplement (17,504,044; Gibco, USA), 20 ng/

mL human recombinant EGF (236-EG; R&D Systems, USA),

and 20 ng/mL human recombinant bFGF (233-FB; R&D

Systems) using a 37°C, 5% CO2 environment. Accutase

solution (A6964; Sigma–Aldrich, USA)-digested tumor spheres

were used for passaging. All cell lines used in the experiments

were free of mycoplasma contamination. Poly-L-ornithine

solution (P4957; Sigma–Aldrich) and laminin (L4544; Sigma–

Aldrich) were used to coat the plates to make the cells adhere to

the wall for the experiment.
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Cell transfection and dosing

Small interfering RNAs (siRNAs) (Genepharma, Shanghai,

China), Short hairpin RNAs (shRNAs) (Genepharma, Shanghai,

China) and a Lipofectamine 3000 kit (Invitrogen, Carlsbad, CA,

USA) were used to transfect GSCs for loss-of-function

experiments. The siRNA sequences are detailed in Table S8. The

shRNA plasmids were selected and inserted into the pLVX-IRES-

Puro vector for stable knockdown, with empty plasmid used as a

control. The shRNA sequences were constructed according to

siRNA. AZD3759 (synonyms: zorifertinib, C22H23ClFN5O3) was

purchased from MCE (https://www.medchemexpress.cn/),

dissolved in DMSO and diluted in DMEM/FBS to a final drug

concentration of 50 mM for in vitro experiments.
RNA extraction and quantitative real-
time PCR

TRIzol (Invitrogen, USA) was used to extract total RNA

according to the manufacturer’s protocol. Reverse transcription

was performed using a high-capacity cDNA reverse

transcription kit (Toyobo, FSQ-101, Shanghai, China)

according to the manufacturer’s protocol. qRT–PCR was

performed using the Mx-3000P quantitative PCR system

(Applied Biosystems, Foster City, USA). Relative expression

levels were calculated using the 2-DDCT method. The sequences

of the primers are listed in Table S8.
Neurosphere formation assay

GSCs were seeded in 6-well plates at 1000 cells per well.

After 1 to 2 weeks of incubation in GSC culture medium, images

were obtained by microscopy, and sphere diameters were

measured using ImageJ for quantitative analysis.
Extreme limiting dilution assay

GSCs were seeded into 96-well plates with a density gradient

of 1, 2, 4, 8, 16, 32, 64 and 128 cells per well in 10 replicates. The

number of wells with successfully formed tumor spheres was

counted 7-14 days after implantation. The data were analyzed

using ELDA software (http://bioinf.wehi.edu.au/software/elda/).
Immunofluorescence assay and
antibodies

Cells were fixed with 4% paraformaldehyde for 30 min and

treated with 0.3% Triton X100 in PBS for 7 min. Then, the cells

were blocked with 5% BSA for 60 min. Then, the cells were
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incubated with primary antibody overnight at 4°C and washed

three times with PBS. Cells were incubated with DAPI for

30 min. The images were observed using a LeicaSP8 confocal

microscope (Leica Microsystems, Wetzlar, Germany). The

following primary antibodies were used: g-H2AX (9718; Cell

Signaling Technology; 1:400), CD44 (3570; Cell Signaling

Technology; 1:400), and SOX2 (3579; Cell Signaling

Technology; 1:400).
Comet assay

Cells were diluted in PBS at a density of 3*10 (6) cells/ml.

Cell suspensions were mixed with low-melting point agarose

(Sigma) and transferred to precoated slides. Cells were lysed in

alkaline lysis solution for 24 h at 4°C. Slides were washed with

alkaline electrophoresis buffer and electrophoresed at 25 V for

30 min. After washing in dH2O, the nuclei were treated with

70% alcohol for 5 min, stained with SYBR Green dye for 20 min,

and washed again. The representative images were captured

leveraging a fluorescence microscopy.
Xenograft model and treatments

We constructed GSC267 cells labeled with luciferase

(GSC267-luciferase) via lentiviral transfection. All animal

experiments were performed with approval from the

guidelines of the Institutional Animal Care and Use

Committee of Qilu Hospital of Shandong University. Four-

week-old male BALB/c nude mice (SLAC Laboratory Animal

Center; Shanghai, China) were bred under specific pathogen-free

conditions at 24°C on a 12-h day-night cycle, preparing for the

establishment of an intracranial GSC in situ growth model. We

randomly divided the animals housed under similar conditions

into control and experimental groups. 5 × 10 (5) GSC267-

luciferase cells were injected intracranially into the mice.

When irradiation was necessary in animal studies, tumor-

bearing mice were given four doses of IR (2.5 Gy each) within

8 to 12 days after implantation. In the dosing group, PBS or an

equal volume of AZD3759 (15 mg/kg) was injected daily in the

tail vein 7 days after GSC implantation. The tumor progression

in vivo was measured by bioluminescence after intraperitoneal

injection of 150 mg/kg luciferin; the signal was detected, and

images were taken with an IVIS Lumina series III ex vivo

imaging system (PerkinElmer, USA).
RNA sequencing of human tumor tissue

We obtained tumor samples from 12 patients who were

treated for glioma at Qilu Hospital, Shandong University. Total

RNA from tissues was isolated by using TRIzol Reagent
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(Invitrogen) according to the manufacturer’s instructions. The

detailed information of RNA quantification and qualification,

library preparation, quality control etc. were described in the

Supplementary Materials and Methods.
Unsupervised clustering of SNHGs

Expression data for 25 SNHGs were extracted from the

TCGA database. The ConsensusClusterPlus package was used

to perform unsupervised clustering analysis. GBM patients were

classified into different clusters for further analysis, and a

consensus clustering algorithm was used to determine the

exact number of clusters.
Gene set variation analysis

The gene sets “c2.cp.kegg.v7.4” and “c5.go.bp.v7.4” were

acquired from the Molecular Signatures Database (MSigDB)

v7.4 (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). The

“GSVA” R package was applied to conduct GSVA. A P value

le s s than 0 .05 ind ica ted tha t the d i ff e rence was

statistically significant.
Calculation of stemness indices

We trained the stemness index model on embryonic

expression data obtained from the Progenitor Cell Biology

Consortium (PCBC, https://progenitorcells.org/frontpage)

dataset. Then, we applied the calculation model to GBM

patients to qualify the stemness indices according to a one-

class logistic regression (OCLR) algorithm.
Estimation of TME cell infiltration

Single-sample gene set enrichment analysis (ssGSEA) was

used to assess the relative immune cell infiltration according to

28 immune-related gene signatures obtained from the dataset of

Bindea et al. The CIBERSORT algorithm was used to quantify

the level of infiltration of 22 different immune cells among pan-

cancer analysis.
Identification of differentially expressed
genes

DEGs among two SNHG clusters were identified based on

the limma package in R software. The p value< 0.05 were

considered significant criteria.
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Generation of the SNHG scoring system

First, we performed univariate Cox regression analysis to

calculate the prognostic value of each DEG (Table S3). The

DEGs with a p value< 0.05 were extracted to construct the

SNHG signature. Then, principal component analysis (PCA)

was performed to construct an SNHG score model. Both PC1

and PC2 were extracted to generate a scoring system. The

formula was as follows:

SNHscore =o( − PC1i − PC2i)

where i represents the expression of SNHG cluster-related genes.
Association analysis of the SNHG score
and drug sensitivity

We obtained the transcription profile data as well as drug

information (the AUC value and targeted pathways of drugs in

diverse cell lines) from the CCLE and GDSC databases,

respectively. Then, Spearman correlation analysis of the SNHG

score and AUC value was performed to identify the potential

drugs related to the SNHG score.
Statistical analysis

R 4.01 (https://www.R-project.org) was used to analyze and

visualize all statistical data. One-way ANOVA and Kruskal–

Wallis tests were used to make comparisons of differences

between three or more groups. To analyze the correlation of

patient survival and SNHG score, we classified patients into low

and high SNHG score groups according to the cutoff point

determined by the survminer R package. The Kaplan–Meier

method was used to generate survival curves, and the log-rank

test was applied to perform significance tests. A receiver

operating characteristic (ROC) curve was utilized to evaluate

the specialty and sensitivity of the SNHG score. The pROC R

package was used to qualify the area under the curve (AUC)

value. All statistical P values are two-sided, and P<0.05 was

considered to indicate a statistically significant difference.
Results

Landscape of the clinical features of
SNHGs in GBM

A total of 25 SNHGs were finally identified in this study.

Figure 1A summarizes the common nuclear and cytoplasmic

effects of SNHGs in tumor cells and the landscape of this study.
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Figure S1A illustrates the overall flow of this study. We first used

Spearman correlation analysis to calculate the correlation of 25

SNHGs in GBM (Figure 1B and Table S1). We observed that the

expression levels of SNHG family members were mostly

positively correlated. The expression of most SNHGs was

higher in GBM tissues in comparison with normal tissues,

whereas SNHG14, SNHG28 and MEG8 exhibited higher

expression in normal tissues than in GBM tissues (Figure 1C).

Additionally, SNHG5, SNHG11, SNHG12, SNHG14, SNHG18,

SNHG26, and SNHG28 showed higher expression in the MES

subtype than in the PN subtype (Figure 1D). In terms of IDH

mutations, SNHG11, SNHG18, SNHG28, and SNHG26 were

highly expressed in IDH wild-type samples (Figure 1E).

SNHG15, SNHG18, SNHG26, and SNHG28 showed higher

correlat ions with unmethylated MGMT expression

(Figure 1F). In the same way, a total of 17 SNHGs were

analyzed for IDH status and GBM subtype in the CCGA

database. MEG8, SNHG11 and SNHG18 were more expressed

in GBM patients with IDH wild type than in patients with IDH

mutation (Figure S2A). The expression of GAS5, SNHG1,

SNHG3, SNHG12, SNHG15, SNHG16 and SNHG18 was

significantly upregulated in MES subtype GBM patients

(Figure S2B). The above analysis showed that SNHGs are

mainly cancer-related, and most of them are significantly

differentially expressed in the MES and PN subtypes,

suggesting that the imbalance in the expression of SNHGs

plays a significant role in the occurrence, progression and

subtype determination of GBM.
Screening and validation of SNHG18
in GSCs

To verify the importance of SNHGs in GBM at the

experimental level, we identified the five best candidate

SNHGs using the LASSO algorithm (Figure 2A). Next, we

further analyzed the role of five SNHGs in PN and MES

subtypes by applying logistic regression and classification tree

and random forest algorithms. Finally, we selected SNHG18 as a

representative gene based on the above analysis (Figures 2B–D).

First, we performed q-PCR to assess the basal expression of

SNHG18. As shown in Figure S3B, the expression of SNHG18 in

MES GSCs was significantly higher than that in PN GSCs and

NPCs. We further performed neurosphere formation assay and

ELDA after knockdown of SNHG18 (Figure S3C). We observed

that knockdown of SNHG18 in GSCs resulted in a significant

inhibition of tumorsphere expansion (Figure 2E) and reduced

sphere formation ability (Figure 2F). Subsequently, we

performed IF to evaluate the effect of SNHG18 on GBM

subtypes (Figure 2G). Knockdown of SNHG18 resulted in a

significant decrease in the MES marker CD44 and increase in the

PN marker SOX2. Finally, knockdown of SNHG18 significantly

reduced the tumorigenicity of GSCs and prolonged the survival
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of mice in vivo (Figures S3D, E). Collectively, we reveal that the

representative gene SNHG18 plays an important role in the

tumorigenesis and subtype determination of GBM and GSCs.
Interaction patterns of 25 SNHGs

A univariate Cox regression model revealed the prognostic

values of 25 SNHGs in TCGA and 17 SNHGs in CGGA for GBM

patients (Figures S1C, S2C, S3A). The comprehensive landscape

of SNHG interactions, gene connections and their prognostic

significance for GBM patients was depicted using a network

(Figure S1B). Then we classified patients with qualitatively

different SNHG interaction patterns based on the expression
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of 25 SNHGs, and two distinct interaction patterns were

eventually identified. We termed these patterns SNHGclusterA

and SNHGclusterB (Figure 3A, Figures S4A, B). Prognostic

analysis for the two SNHG clusters revealed a marked survival

advantage for patients with the SNHGclusterB interaction

pattern (Figure 3B). To explore the biological behavior

between SNHG interaction clusters, we performed GSVA. In

comparison with SNHGclusterB, SNHGclusterA was enriched

in cancer-related pathways such as ERBB, mTOR and MAPK;

immune-related pathways such as TOLL-like and NOD-like

pathways etc. using KEGG signatures (Figure 3C).

SNHGclusterA was enriched in the MAPK and ERBB

pathways and implicated in various features of invasion and

migration such as cell migration, cell matrix adhesion etc. using
B

C D

E F

A

FIGURE 1

Landscape of Clinical features of SHNGs in GBM. (A) Article research ideas and several main mechanisms of SNHG in cancer cells. (B) The
correlations between the 25 SNHGs were calculated in GBM using the Spearman correlation analysis. (*P<0.05). (C) The expression of 25 SNHGs
between normal and GBM tissues in TCGA. (D) The expression of 25 SNHGs between TCGA GBM subtypes. (E) The expression of 25 SNHGs
between IDH mutant and IDH wild subtypes in TCGA. (F) The expression of 25 SNHGs between methylated modification and unmethylated
modification. All data are presented as the means ± SD, ns, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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GO signatures (Figure 3D). We then summarized the tumor

somatic mutation rates of the two clusters and observed that

SNHGclusterA had a higher PETN mutation with a 32%

mutation rate, while SNHGclusterB had a higher TP53

mutation rate than A (Figure 3E).
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Correlation of SNHG pattern with GBM
subtype, TME and stemness

We further explored SNHGclusterA and SNHGclusterB in

terms of subtype, stemness index and immune features based on
B

C D

E F

G

A

FIGURE 2

The role of SNHG18 among the SNHG family in GSCs. (A) LASSO coefficient profiles of 25 SNHGs and the optimal penalization coefficient (l) via
10-fold cross validation based on partial likelihood deviance. (B) Multiple logistic regression analysis of the remaining five SNHGs selected by
LASSO. (C) A classification tree was built to optimize the GBM subtype stratification. (D) Random-forest algorithm was utilized to screen for the
most important SNHG correlated with GBM subtype. ntree: number of decision trees. (E) Cell spheres formation assay of GSC20 as well as
GSC267 transfected with si-SHNG18, or si-Ctrl and column plot represented the relative spheres diameter (scale bar=50 mm). (F) Limiting
dilution assay for GSC20 as well as GSC267 transfected with si-SHNG18 or si-Ctrl. (G) IF assay exhibited the level of CD44 and SOX2 in GSC20
and GSC267 transfected with si-SHNG18 or si-Ctrl (scale bar=15 mm). All data are presented as the means ± SD, ns, P > 0.05, *P < 0.05, **P <
0.01, ***P < 0.001.
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FIGURE 3

Patterns of SNHGs interaction and relative biological features. (A) Heatmap showed expression of 25 SNHGs and clusters in the TCGA GBM
samples. (B) Survival analyses for high SNHGclusterA and SNHGclusterB patients using Kaplan-Meier (KM) curves (P = 0.038, Log-rank test).
(C, D) GSVA analysis exhibited the enrichment level of diverse biological pathways for different SNHG interaction patterns. c Utilize KEGG
genesets; d Utilize GO genesets. (E) The waterfall plot presented the mutations in the top 30 genes among SNHGclusterA and SNHGclusterB.
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the available experimental results and pathway analysis.

SNHGclusterA had a higher proportion of CL subtype and

MES subtype samples, while SNHGclusterB had a higher

proportion of PN subtype samples (Figure 4A). GSEA also

corroborated this finding: SNHGclusterA was significantly

enriched for the MES subtype, whereas SNHGclusterB was

enriched for the PN subtype (Figure 4D). Correlation analysis

of the expression of PN/MES markers showed that

SNHGclusterA exhibited higher expression of MES-type

markers (Figure S4C). We calculated two indices of stemness,

epigenetic features (mDNAsi) and gene expression (mRNAsi)
Frontiers in Immunology 09
based on the OCLR algorithm. EREG-mRNAsi (which reflects

epigenetic regulation-related aspects of the mRNAsi) and EREG-

mDNAsi (which reflects regulation-related aspects of the

mDNAsi) parameters were also employed for comprehensive

analysis (12). SNHGclusterB exhibited the dedifferentiation

phenotype, while SNHGclusterA exhibited the differentiation

phenotype (Figure 4B). For immune cells infiltration analysis,

SNHGclusterA contained more suppressive immune features

and had higher Treg infiltration, indicating that SNHGclusterA

tended to be immunosuppressive subtype (Figure 4C).

Additionally, we also assessed the correlation of each SNHG
B C
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A

FIGURE 4

Analysis of SNHG interaction pattern and generation of SNHGscore. (A) The proportion of two interaction patterns in the three GBM subtypes.
(B) Differences in stemness indices between the SNHGclusterA and SNHGclusterB. (C) The abundance of each immune signature in two SNHG
interaction patterns. (D) GSEA reveals that SNHGclusterA is enriched in MES subtype and SNHGclusterB is enriched in PN subtype. (E) Alluvial
diagram showing the changes of SNHG interaction patterns, GBM subtype, Geneclusters and SNHG scores. (F) Survival analyses for high
SNHGscore and low SNHGscore GBM patients (P = 0.00022, Log-rank test). (G) Differences in SNHG scores among three GBM subtypes. (H)
Differences in stemness indices between the high SNHGscore and low SNHGscore groups. (I) The abundance of each immune signature in the
high SNHGscore and low SNHGscore groups. (J) IF staining was performed on GBM tissue sections of patients based on tissue sequencing
(scale bar=15 mm). (K) The expression of MES/PN markers in high SNHGscore and low SNHGscore groups. All data are presented as the means
± SD, ns, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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with immune features and the stemness index. In general, the

SNHG family was negatively correlated with immunity and

positively correlated with stemness (Figures S4E, F).
Generation and functional annotation of
SNHG-related gene sets

To further investigate the potential biological behavior of the

two SNHG interaction patterns, we determined 168 SNHG-

associated DEGs and performed unsupervised clustering

analysis. We classified patients into three different genomic

subtypes, which were named Gene.clusterA-C (Figure S4D,

Figure S5A). Figure S5F lists the correlation of Gene.clusterA-

C with the expression of each SNHG. Prognostic analysis

showed that Gene.clusterB had the best prognosis, while

Gene.clusterC exhibited the worst prognosis (Figure S5B).

Similarly, we performed subtype, stemness index and immune

cells infiltration analysis for each of these three genomic

subtypes. Gene.clusterB exhibited the lowest percentage of the

MES subtype, while Gene.clusterC exhibited the highest

percentage of MES samples (Figure S5C). Correlation analysis

of GBM subtype markers showed that Gene.clusterA and C had

higher expression of MES-type markers, while Gene.clusterB

had higher expression of PN-type markers (Figure S5G). From

the stemness indices, Gene.clusterB had the strongest

dedifferentiation phenotype and that Gene.clusterA and

Gene.clusterC were biased toward the differentiated phenotype

(Figure S5D). There was some similarity in immune feature

trends and prognosis trends, as Gene.clusterC exhibited stronger

immune activation features than Gene.clusterA and

Gene.clusterB, and there was an even representation of

immunostimulatory features and immunosuppressive features

(Figure S5E).
Construction and evaluation of SNHG
scoring system

To assess individual SNHG interaction patterns, we

constructed a scoring system, which we named SNHGscore,

based on interaction pattern-related genes. Individual patient

attribute changes were visualized with an alluvial diagram

(Figure 4E). The relationship between SNHGscore and the

expression of each SNHG related genes is shown in Figure

S6A. A high SNHGscore was related to a poor prognosis, and

a low SNHGscore was related to a favorable prognosis

(Figure 4F). To evaluate the predictive efficiency of the

SNHGscore, we performed time-ROC analysis. The predictive

accuracy values of the SNHGscore for OS were 0.633, 0.699,

0.701, and 0.768 at 0.5, 1, 2, and 3 years, respectively (Figure

S6D). The calibration curves for 0.5-, 1-, 2-, and 3-year OS

predictions were approximate to ideal performance (Figure S6E).
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To quantify the risk of individual GBM patients, we produced a

personalized score nomogram (Figure S6F). Time-ROC and

calibration curve analyses were applied to evaluate the

sensitivity and accuracy of the nomogram score, respectively

(Figures S6G, H). Additionally, the SNHGscore distribution

between two SNHGclusters and three gene.clusters were

presented (Figures S6B, C). The MES subtype corresponded to

a higher SNHGscore and the PN subtype corresponded to a

lower SNHGscore (Figure 4G). The stemness indices showed

that a low SNHGscore tended to correspond to the

dedifferentiated state and a high SNHGscore tended to

correspond to the differentiated state (Figure 4H). Immune

feature analysis showed that a high SNHGscore represented

h i gh immune infi l t r a t i on a c compan i ed by h i gh

immunosuppression (Figure 4I). To further verify the utility of

the SNHGscore system, we applied various public databases for

iterative validation. The analysis based on the CGGA database

was consistent with the previous analysis of the TCGA database

(Figures S7D–F). We also observed that untreated patients with

a high SNHGscore had a poor prognosis, while those with low

SNHGscore and treated with chemotherapy or radiotherapy had

a better prognosis (Figures S7A–C). Validation with the

Rembrandt, Gravendeel, Frejie and Murat cohorts showed that

a high SNHGscore was associated with a poor prognosis, while a

low SNHGscore was associated with a favorable prognosis

(Figure S7G).

We further assessed the RNA-sequencing data of tumor

tissues from GBM patients in the Department of Neurosurgery,

Qilu Hospital, Shandong University to calculate each patient’s

SNHGscore (Figure S7H); The results showed that tumor tissues

from patients with a high SNHGscore had lower SOX2

expression and higher CD44 expression, corresponding to the

MES subtype. In contrast, tissue sections from patients with a

low SNHGscore exhibited opposite results (Figure 4J). The

correlation analysis between SNHGscore and the expression of

PN/MES markers showed that a high SNHGscore corresponded

to high expression of MES markers, while a low SNHGscore

corresponded to high expression of PN markers (Figure 4K).
The role of SNHG interaction patterns in
anti-PD-1/L1 immunotherapy and
chemotherapeutic drug selection

We assessed the role of SNHGscore in the anti-PD-L1

cohort IMvigor210 and anti-PD-1 cohort GSE78220. Survival

analysis showed that patients with low SNHG scores could

benefit more from immunotherapy, showing a better prognosis

(Figures 5A, G). Patients with low SNHG scores were more likely

to respond favorably to anti-PD-1/L1 immunotherapy than

patients with high SNHG scores (Figures 5B, H). Tumor

neoantigen burden, closely linked to immunotherapeutic

efficacy, was also assessed. Patients with low SNHGscore had
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higher neoantigen burden expression, suggesting a possible

better efficacy against anti-PD-1/L1 immunotherapy

(Figure 5C). Indeed, we found that patients with a

combination of a low SNHG score and a high neoantigen

burden showed a strong survival advantage (Figure 5D). The

SNHGscore was significantly positively correlated with PD-L1

expression on immune cells (ICs), with IC0, IC1 and IC2+

corresponding to progressively higher SNHG scores (Figure 5E).

Among tumor cells (TCs), the TC2+ group had a higher

SNHGscore than the TC0 and TC1 groups (Figure 5F).
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Next, we explored whether the SNHGscore system could be

used as a predictor of antitumor drug sensitivity to guide clinical

drug usage. A total of 49 drugs were identified by Spearman

correlation analysis of SNHG scores with drug sensitivity (Figure

S7J), (31). We also analyzed the signaling pathways of the genes

targeted by these drugs (Figure 5I). The results showed that

sensitizing drugs associated with a high SNHGscore mainly

target the EGFR and ERK-MAPK signaling pathways. In

contrast, the sensitizing drugs associated with low SNHG

scores mainly target mitosis or cell cycle pathways.
B C D
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I

A

FIGURE 5

The relationship between SNHGscore and immunotherapy response and drug sensitivity. (A) Survival analyses for high and low SNHGscore
patients in anti-PD-L1 immunotherapy cohort (P = 0.033). (B) Proportion of patients in the high or low SNHGscore group who responded to
PD-L1 blockade immunotherapy. (C) Differences in neoantigen burden expression between high and low SNHGscore groups. (p = 0.003). (D)
Survival analyses for patients receiving anti-PD-L1 immunotherapy stratified by both SNHGscore and neoantigen burden (P< 0.0001). (E, F)
Differences in SNHGscore among three IC levels (E) and three TC levels (F), respectively. (G) Survival analysis for high and low SNHGscore
patient groups in the anti-PD1 immunotherapy cohort (GSE78220 cohort; P = 0.0017). (H) Proportion of patients in the high or low SNHGscore
group who responded to PD-1 blockade immunotherapy. (I) Drug-targeted signaling pathways that are resistant or sensitive to SNHGscore.
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The MES GSC was more sensitive to
AZD3759

Based on the sequencing data of GSC cell lines at MD

Anderson Cancer Center, we applied the SNHGscore system

to score GSC cell lines and found that MES-type GSCs had high

SNHG scores, while PN-type GSCs had low SNHG scores

(Figure S7I). Subsequently, among the drugs analyzed above

that were effective for cells with high SNHGscore, we selected the

one that could cross the blood–brain barrier: AZD3759

(Synonyms: Zorifertinib), an EGFR inhibitor with excellent

CNS permeability. AZD3759 is often used to study the

treatment of brain metastases from lung cancer (32). The

MES-type GSC 267 and PN-type GSC 8-11 were leveraged for

experimental verification. The results of the comet assay and g-
H2AX IF staining showed that GSC 8 -11 was highly sensitive to

radiotherapy and insensitive to AZD3759. In contrast, GSC267

cells were resistant to radiotherapy but sensitive to AZD3759

(Figures 6A, B). The combination of radiotherapy with

AZD3759 significantly enhanced DNA damage in GSC 267

compared with that with radiotherapy alone (Figures 6C, D).

This suggests that AZD3759 could enhance the sensitivity of

GSC 267 to radiotherapy. Additionally, we applied the xenograft

model to validate the conclusions drawn from the above

fundings in vivo. Compared with radiation therapy or

AZD3759 used alone, the combination of radiotherapy and

AZD3759 significantly reduced tumor growth and prolonged

the survival of the mice (Figures 6E, F and Figure S6I). We

assumed that AZD3759 may affect the subtype of GSCs (in other

words, initiating PMT) and lead to radiotherapy sensitization

(11, 19). In summary, the SNHGscore system may be able to

provide clinical guidance for GBM treatment selection.
Predictive role of the SNHGscore system
among pan-cancer

We applied the SNHGscore system to other tumors to

explore the role of the SNHGscore system among pan-cancer

(Table S5, S6). First, we analyzed the predictive capacity of the

SNHGscore for the immunotherapy response across cancers

(Figure 7A). The radar chart showed that 17 of 33 cancers

showed a significant correlation between the SNHGscore and

TMB. MSI was significantly associated with SNHGscore in nine

tumors. Correlation analysis of CD274 and the SNHGscore

showed significant relationships for up to 26 tumors, with 25

of them showing positive correlations. Analysis of stromal scores

showed a strong positive correlation between the stromal score

and SNHGscore for all 33 tumors. There were 29 cancers with

immune scores that were strongly and positively correlated with

the SNHGscore. The above results demonstrate the ability of our

scoring system to accurately predict the response to

immunotherapy. Next, we correlated the fractions of 22
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immune cell types with the SNHGscore in each cancer

(Figure 7B). We found that the fraction of immunosuppression-

related immune cells was significantly associated with SNHGscore

in most tumors. Of the 33 tumor types, all except ovarian serous

cystadenocarcinoma (OV) showed a correlation of the stemness

index with the SNHGscore. Nineteen cancers showed a negative

correlation of the stemness index with SNHGscore, indicating that

the trend in most tumors was consistent with that in our GBM

study (Figure 7C). Finally, we analyzed the prognostic ability of

the SNHGscore among pan-cancer (Figure 7D, Figure S8). The

results showed that OS, disease-specific survival (DSS), disease-

free survival (DFS) and progression-free survival (PFS) were

positively correlated with SNHGscore in the vast majority of

cancers (Table S7). Overall, the SNHGscore system performs

similarly in predicting the prognosis and clinical features of

patients with GBM and those with other tumors.
Discussion

There is increasing evidence that SNHG plays an integral

role in tumor development by interacting with various types of

proteins and RNAs (28). Although there is a single study of

SNHGs in the field of GBM, there is still a lack of research on the

role of SNHGs in the subtype, immunological, and stemness

features of GBM (33, 34). Exploring the role of different SNHG

interaction patterns in GBM will help deepen our understanding

of the mechanisms of GBM progression and guide more effective

therapeutic strategies.

In this study, we first explored the relevance of the SNHG

family in several malignant behaviors of GBM and found that

SNHGs are closely related to the GBM subtype. We then

screened SNHG18 from 25 SNHGs as an entry point to

validate its role in GSCs, showing that SNHG18 can affect the

subtype and stemness of GSCs. From our assessment of 25

SNHGs, we demonstrated two SNHG interaction patterns:

SNHGclusterA favors the MES subtype and differentiated

phenotype, while SNHGclusterB favors the PN subtype and

dedifferentiated phenotype. In terms of immune features,

SNHGclus terA is s t rong ly s t rong corre la ted wi th

immunosuppressive cells such as Tregs, suggesting that

patients in SNHGclusterA exhibit an immunosuppression

phenotype (35, 36).

Furthermore, in our study, mRNA transcriptome differences

between different SNHG interaction patterns were shown to be

significantly correlated with biological pathways associated with

SNHG and GBM features. These differentially expressed genes

are considered SNHG-related signature genes. Similar to the

clustering results of the SNHG interaction pattern, three

genomic isoforms based on SNHG signature genes were

identified and were also significantly associated with subtype,

immune features, and stemness features of GBM. We developed

a scoring system (SNHGscore) to assess the SNHG interaction
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patterns of individual GBM patients. SNHG interactions

characterized by the MES subtype, differentiated phenotype,

and immune infiltration with immunosuppression had a

higher SNHGscore corresponding to a poorer prognosis. In

contrast, a low SNHG score was associated with the opposite

features and corresponded to a better prognosis. We assessed

multiple databases, as well as our own patient-derived
Frontiers in Immunology 13
sequencing data and tissue section staining results, to

demonstrate the accuracy of the SNHGscore. With the

emergence of immune checkpoint blockade therapy, an

increasing number of researchers are focusing on its use in the

treatment of glioma (37, 38). The SNHGscore can be used to

predict the sensitivity of patients to immunotherapy. MES-

subtype glioma is generally resistant to treatments other than
B
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FIGURE 6

The MES GSC was more sensitive to AZD3759. (A) The comet assay showed the level of DNA damage in GSC267, and GSC8-11 treated with
Zorifertinib or IR, respectively (scale bar=25 mm). The column plot represented the relative tail length. (B) Representative images and
quantification of g-H2A.X staining in GSC267 and GSC8-11 treated with Zorifertinib or IR, respectively (scale bar=15 mm). (C, D) comet assay
(C) and IF assay(D) presented the DNA damage level in GSC267. (E) Bioluminescence imaging of tumor size of mice implanted with fluorescein-
labeled GSC267. (F) H&E-stained brain sections of mice (scale bar=1 mm). All data are presented as the means ± SD, ns, P>0.05, ***P<0.001.
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surgery (6, 39). We predicted dosing strategies for individuals

with different scores; subsequently, we used the same GSC cell

lines to experimentally validate the effects of AZD3759, which

was among the drugs predicted by SNHGscore that could cross
Frontiers in Immunology 14
the blood–brain barrier (32, 40). MES-subtype GSC cell lines

were sensitive to AZD3759, and its combination with

radiotherapy significantly enhanced the damage to GSC cells.

Finally, we attempted to apply the SNHGscore system to pan-
B

C

D

A

FIGURE 7

Performance of SNHGscore among pan-cancer. (A) Radar plot of the correlation between SNHGscore and TMB, MSI, CD274 expression,
stromal score as well as immune score. (B) Relationship between SNHGscore and immune cell infiltration levels in pan-cancer. (C) Correlation
between the SNHGscore and stemness indices among pan-cancer. (D) OS, DSS, DFS, and PFS analyses for the SNHGscore in pan-cancer
calculated by univariate Cox regression algorithm. All data are presented as the means ± SD, ns, P>0.05, *P<0.05, **P<0.01, ***P<0.001.
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cancer. Encouragingly, the SNHGscore does have a guiding role

across cancers in terms of predicting immune and stemness

features, the immunotherapy response and survival.
Conclusions

In conclusion, our study confirmed the extensive regulatory

mechanism of the SNHG family in GBM. Comprehensive

evaluation of SNHG interaction patterns in individual tumors

will help us to deepen our understanding of GBM subtype,

immunity, and stemness. Additionally, it will guide more

effective immunotherapy and radiotherapy-chemotherapy

combination strategies to treat GBM.
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