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Abstract

The nature of the neural codes for pitch and loudness, two basic auditory attributes, has been a key question in
neuroscience for over century. A currently widespread view is that sound intensity (subjectively, loudness) is encoded in
spike rates, whereas sound frequency (subjectively, pitch) is encoded in precise spike timing. Here, using information-
theoretic analyses, we show that the spike rates of a population of virtual neural units with frequency-tuning and spike-
count correlation characteristics similar to those measured in the primary auditory cortex of primates, contain sufficient
statistical information to account for the smallest frequency-discrimination thresholds measured in human listeners. The
same population, and the same spike-rate code, can also account for the intensity-discrimination thresholds of humans.
These results demonstrate the viability of a unified rate-based cortical population code for both sound frequency (pitch)
and sound intensity (loudness), and thus suggest a resolution to a long-standing puzzle in auditory neuroscience.
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Introduction

The nature of the neural code for perception is a fundamental

question in neuroscience [1–5]. In auditory neuroscience, the

search for the neural code for pitch—an essential perceptual

attribute of sound classes such as music and speech—has attracted

considerable interest [6–9]. Two main types of neural codes for

pitch have been offered: ‘‘timing’’ codes, which rely on fine spike-

timing information [10], and ‘‘rate’’ codes, which involve spike

rates computed over relatively long time windows—typically, a few

hundred milliseconds [11].

Timing codes can carry considerably more information than

rate codes [12], and the spike times of auditory-nerve fibers have

been found to contain more information than needed to account

for human listeners’ ability to discriminate very small changes in

frequency [11,13,14]. However, temporal coding degrades rapidly

beyond the auditory nerve, making spike timing a less viable code

at higher levels of neural processing. Indeed, in the primary

auditory cortex, single units cannot precisely follow frequencies

higher than a few hundred Hertz [15–17] – more than an order of

magnitude below the upper limit of accurate pitch perception in

humans [18–20]. Although studies in non-human animals found

no deficits in pure-tone intensity or frequency discrimination

following bilateral ablation of auditory cortex, substantial deficits

in pure-tone frequency (pitch) and intensity (loudness) discrimina-

tion have been observed in human patients with cortical lesions

[21,22], suggesting that the auditory cortex plays an important

role in those two perceptual abilities.

It seems likely, therefore, that any timing code for frequency in

the auditory nerve is transformed into a cortical rate-place code.

However, it is not known whether the information contained in

the spike counts of a population of cortical neurons is sufficient to

account for the very fine frequency-discrimination thresholds of

human listeners. A cortical rate-place code for frequency

discrimination faces two major obstacles: relatively broad receptive

fields [23], implying poor resolution of small frequency differences

by single units, and correlated spike counts [24,25], which can

severely limit the benefit of pooling information across multiple

units [26–29].

Here, we examine the properties of a population of virtual

neurons with frequency-tuning and spike-count correlation char-

acteristics similar to those measured in the primary auditory cortex

of primates. We determine that statistically optimal decoding of

the information contained in the spike rates of these neurons can

account quantitatively for the remarkable ability of trained human

listeners to discriminate sound frequency. In addition, we show

that the same cortical population code is also consistent with

psychophysical data concerning another fundamental auditory

ability: intensity discrimination. These results demonstrate the

viability of a cortical rate code for both frequency and intensity

discrimination, thus providing a possible resolution for a long-

standing puzzle in auditory neuroscience.

Results

Figure 1A shows frequency tuning curves (spike-rate versus

stimulus frequency) for an array of virtual frequency-selective

neurons with best frequencies (BFs) equally spaced on a

logarithmic scale spanning a 1-octave range centered on 1 kHz.

For illustration purposes, tuning curves are plotted for a small

subset of units (n = 6) and a limited BF range, but the results
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described below are based on a larger number of units (n = 1700)

and a wider BF range (2 octaves).

A key characteristic of neural tuning curves is their sharpness. A

common measure of sharpness is the ‘‘quality factor’’ (Q), which is

obtained by dividing the BF of the unit by a measure of tuning, in

this case the width of the tuning curve at half of the peak spiking

rate. The sharpness of the simulated units was adjusted to yield Q

values consistent with those measured in the primary auditory

cortex of primates, which have been found to equal 12 on average

for sharply tuned units, and 3.7 on average for non-sharply tuned

units [23]. Since sharp tuning is generally beneficial for frequency

discrimination, in the context of this study we were interested

primarily in discrimination performance based on the outputs of

sharply tuned units. Thus, unless indicated otherwise, Q was set to

12. The tuning curves illustrated in Figure 1A reflect this choice.

Figure 1B shows simulated spike counts for this population of

virtual neurons in response to a 1000 Hz, 50 dB SPL pure tone

with a duration of 1 s. The spike counts were modeled as

integer-valued random draws from a multivariate Gaussian

distribution in which the variance of the spike counts for a given

unit was equal to the unit’s mean spike count—as is the case for

Poisson-distributed spike counts. The covariance between the

spike rates of two different units was either set to zero, reflecting

an assumption of complete statistical independence between

units, or to the product of the geometric mean spike rate and the

spike-count correlation coefficient—consistent with the facts

that COV Ci,Cj

� �
~ri,j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Cið ÞV Cj

� �q
, and V Cið Þ~E Cið Þ for

all i, where COV(Ci, Cj), ri,j, V(Ci), V(Cj), E(Ci), and E(Cj) denote

the covariance, correlation, variances, and expected values of

the spike counts of units i and j, respectively. The latter

covariance structure is consistent with neurophysiological data,

which show decreasing spike-count correlations between pairs of

cortical units as the distance between the units increases, and

the overlap between their receptive fields decreases [24,25,30–

32]. In the context of this article, the phrase ‘‘spike-count

correlations’’ refers specifically to covariations in the spike

counts of different units across multiple presentations of the

same stimulus. Such correlations, also known as ‘‘noise

correlations,’’ should not be confused with correlations between

the spike counts of different units across different stimuli, which

are traditionally referred to as ‘‘signal correlations’’ [33].

The resulting covariance and correlation matrices are shown in

Figs. 1C and 1D, respectively. The correlation matrix was scaled

so that the spike-count correlation coefficient (or, equivalently, the

expected value of the correlation between the spike counts) of two

units, ri,j, where i and j indicate different units, was maximally

equal to r. Unless indicated otherwise, r was set to 0.25. This

value was chosen based on recent findings, which indicate that

such a value is not atypical for proximal cortical neurons [32],

especially for output layers [34]. Even though higher discrimina-

tion performance might be achieved based on the response of

cortical input layers [34], we reasoned that the properties of output

layers of the primary auditory cortex were more relevant than

those of other cortical layers for predicting the discrimination

performance for a read-out mechanism located beyond the

primary auditory cortex.

Figure 2A shows mean population responses evoked by two

sequentially presented pure tones with slightly different frequen-

cies: 1000 and 1001.68 Hz. The frequency difference, 1.68 Hz,

corresponds approximately to the mean frequency-discrimination

threshold (corresponding to a d9 of 1) at 1000 Hz [35]. Note that

the difference between the spike rates (r) evoked by the two tones

(Figure 2B, black curve) is quite small relative to the variability of

the spike counts (Figure 1B): across the entire population of

neurons (n = 1700), the largest single-unit signal-to-noise ratio

(SNR)—computed as the difference in spike rates evoked by the

two stimuli (Dr) divided by the square root of the spike rate evoked

by the first stimulus [5]—was equal to 0.12. An SNR of 0.12

corresponds approximately to only 53% correct in a two-interval

two-alternative forced-choice (2I2AFC) discrimination task [36],

where chance performance is 50% correct. This leads to the

question of how many units an optimal observer must pool spike-

count information from in order to obtain the same performance

as trained human listeners in this task, and with these stimuli, i.e.,

a d9 of 1, or 76% correct in a 2I2AFC experiment. For statistically

independent units with a constant spike-count covariance matrix,

d 0~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 SNR2
i

q
, where SNRi is the SNR (as defined above) for

unit i. Therefore, if all the units in the population had uncorrelated

spike counts and the same BF and tuning curve as the most

informative unit (i.e., the unit for which SNR was the highest),

combining spike-count information from ,70 units would be

sufficient to obtain a d9 of 1.

In the presence of spike-count correlations, and of a stimulus-

dependent covariance matrix, the relationship between overall

performance (d9) and the single-unit SNRs (SNRi) is more complex,

but d9 can still be evaluated based on the Fisher information (see

Methods) [37]. The Fisher information is inversely related to the

Cramér-Rao lower bound on the variance of an estimator, which

places a limit on the precision with which a quantity can be

estimated using any decoding scheme (linear or nonlinear) [38,39];

it is often used to quantify the best decoding performance that can

be achieved based on the information contained in the responses

of a population of neurons [27–29,37]. Using this approach, we

found that, for a population of units with tuning curves and spike-

count correlations as illustrated in Figure 1, a d9 of 1 was reached

when the number of units in the population (with BFs spread

evenly across the two-octave BF range), was set to 1700, which

corresponds to a density of 850 units/octave. With no spike-count

correlation (r= 0), a density of 300 units/octave was sufficient to

obtain a d9 of 1.0. Even if only 25% of units in primary auditory

cortex are sharply tuned [23], a density of 850 sharply tuned units

per octave implies an overall neuronal density of 3400 units per

Author Summary

A widely held view among auditory scientists is that the
neural code for sound intensity (or loudness) involves
temporally coarse spike-rate information, whereas the
code for sound frequency (or pitch) requires more fine-
grained and precise spike timing information. One
problem with this view is that neurons in auditory cortex
do not produce precisely time-locked responses to higher
frequencies within the pitch range, suggesting that a
transformation to a rate code must occur. However,
because cortical neurons exhibit relatively broad tuning
to frequency and correlated spike counts, it is unclear
whether a cortical population code based on spike rates
alone can support the remarkably precise pitch-discrimi-
nation ability of humans. Here we show that a relatively
small population of virtual neurons with frequency-tuning
and spike-count correlation characteristics consistent with
those of actual neurons in the primary auditory cortex of
primates, can account for both the smallest frequency- and
intensity-discrimination thresholds measured behaviorally
in humans. These results suggest a resolution to a long-
standing puzzle in auditory neuroscience.

Cortical Rate Code for Pitch Discrimination
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octave; this number is well within the range of physiologically

realistic neuronal densities for the output layer of primary auditory

cortex [40].

To gain insight into the effective contribution of each unit in the

population to the overall performance, we computed the product

of the square-root of the Fisher information for each unit and the

frequency difference between the two stimuli (1.68 Hz), and

plotted the resulting measure, d9/unit, as a function of BF. This

was done for r= 0.25 (Figure 2B, solid green curve) and for r= 0

(Figure 2B, dashed green curve). Units with BFs more than K

octave below, or above, the reference stimulus frequency (1 kHz)

contributed very little to the overall discrimination performance.

In fact, for r= 0.25, only 130 (,8% of the 1700) units had a d9/

unit larger than half of the d9/unit of the ‘‘best’’ (i.e., most

informative) unit. Almost all of these units had BFs located within

a frequency range of 2 semitones (12%, or 1/6th of an octave)

centered on the reference-stimulus frequency (1 kHz).

Our finding that a larger pool size is needed to reach the same

performance (d9 = 1) in the presence than in the absence of spike-

count correlations is consistent with previous findings [26]. A

simple explanation for the detrimental impact of spike-count

correlations on stimulus discrimination performance is that they

limit an observer’s ability to ‘‘average out’’ neural noise without

simultaneously canceling the signal. The ‘‘cost’’ of spike-count

correlations on discrimination performance is apparent in the

difference between the areas under the solid and dashed green

curves (Figure 2B)—the square root of the sum of the squared d9/

unit values across all units, which is equal to d9, was ,70% larger

for r= 0 than for r= 0.25. The ‘‘dip’’ at 1 kHz in the d9/unit

curves stems from the fact that, for units with a BF close to 1 kHz,

the difference between the spike rates evoked by the two stimuli

(Dr, black curve) was close to zero. The other dips, which are

apparent in the dashed green curve, reflect the combined influence

of the two factors that determine the Fisher information for each

unit, namely, the change in spike rate (Dr) and the change in the

spike-count covariance matrix (see Methods). Intuitively, d9/unit

values close to zero indicate units whose spike counts convey little

information beyond that already provided by other units, once

spike-count correlations are taken into account.

Figure 2C shows the mean population responses evoked by two

tones having the same frequency (1000 Hz), but a different

intensity (50 dB SPL versus 51.22 dB SPL). The intensity

difference between the two stimuli (1.22 dB) was selected to

represent the difference that corresponds to human discrimination

Figure 1. Example tuning curves, responses, and spike-count covariance matrix for the virtual cortical population. A. Example neural
tuning curves for neurons with different BFs in primary auditory cortex. B. Example population response. The stimulus was a pure tone with a
frequency of 1000 Hz, a level of 50 dB SPL, and a duration of 1 s. Solid curve: mean spike rates as a function of BF. Circles: simulated spike counts.
C. Spike-rate covariance matrix. Entries on the diagonal correspond to spike-count variances for individual units and are equal to the spike rates
shown in panel B. Off-diagonal entries correspond to covariances between the spike counts of different units, and are equal to the geometric mean of
the units’ spike rates times the spike-count correlation coefficient. D. Correlation matrix corresponding to the covariance matrix shown in panel C. See
Methods for details.
doi:10.1371/journal.pcbi.1003336.g001

Cortical Rate Code for Pitch Discrimination
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sensitivity d9 of 1, based on data in the psychoacoustic literature

[41]. We determined the change in spike rate needed to obtain a d9

of 1 using the same correlation coefficient (r= 0.25) and pool size

(n = 1700), which were found earlier to yield a d9 of 1 for the

frequency-discrimination task. We found that a change in spike

rate of slightly less than 1 spike/s (namely, 0.94 spikes/s) was

sufficient. A spike-rate change of 0.94 spikes/s for a 1.22 dB

change in sound intensity translates to a change of approximately

15 spikes/s for a 20-dB change in intensity. This value is consistent

with example rate-level functions for neurons in primary auditory

cortex in the literature, which typically show increases of 10 to 20

spike/s as the intensity of a tone at BF increases from 40 to 60 dB

SPL [42]. Thus, it is possible to account for performance in the

intensity-discrimination task using the same pool of sharply tuned

units as assumed for the frequency-discrimination task with the

same coarse rate-based neural code.

Note that the maximal change in spike rate (across all units)

corresponding to the discrimination threshold was larger (by a

factor of 2.5) for the intensity-discrimination task than for the

frequency-discrimination task—compare the heights of the black

curves in Figs. 2B and 2D. This outcome underscores the fact that

equally discriminable stimulus differences need not correspond to

equal differences in spike rates. It can be understood by

considering the impact of spike-count correlations on the

discrimination of frequency or intensity changes for a population

containing only two units. Figure 3 shows equal-probability

contours of probability distributions for spike counts (or single-

trial estimates of spike-rates) evoked by tones differing in frequency

(Figure 3A) or in intensity (Figure 3B), for two units, i and j. In this

example, unit i, whose spike rates are plotted on the x-axis, has a

BF below the reference stimulus frequency (1 kHz), while unit j,

whose spike rates are plotted on the y-axis, has a BF above that

frequency. When the frequency of the stimulus is increased, the

spike rate of unit i decreases while that of unit j increases

(Figure 3A). By contrast, when the intensity of the stimulus is

increased, the spike rates of both units increase simultaneously

(Figure 3B). Note that, for illustration purposes, the mean

magnitude of the stimulus-induced changes in spike rate is the

same for the two units and the two tasks. Under these

circumstances, positive spike-count correlations, which are reflect-

ed in elongated contours along the major diagonal, lead to a

smaller overlap between the two distributions for the frequency

change than for the intensity change. Since the error rate of the

optimal observer is directly related to the overlap between the

Figure 2. Population responses evoked by tones differing in frequency or intensity. A. Population responses evoked by two tones
differing slightly in frequency. Blue: mean spike rate as function of BF for a 1000 Hz, 50 dB SPL pure tone. Red: mean spike rate as function of BF for a
1001.68 Hz, 50 dB SPL pure tone. B. Spike-rate difference (Dr) and d9/unit as a function of BF. The spike-rate difference was obtained by subtracting
the mean spike rate evoked by the higher-frequency stimulus (red curve in panel A) from the spike rate evoked by the lower-frequency stimulus (blue
curve). d9/unit was computed as described in Experimental Procedures. C. Population responses evoked by two tones differing slightly in intensity.
Blue: mean spike rate as function of BF for a 1000 Hz, 50 dB SPL pure tone. Red: mean spike rate as function of BF for 1000 Hz, 51.22 dB SPL pure
tone. D. As for panel B, but for the population responses shown in panel C.
doi:10.1371/journal.pcbi.1003336.g002

Cortical Rate Code for Pitch Discrimination
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spike-count probability distributions, for this case, positive

correlations have a more dramatic impact on intensity-discrimi-

nation performance than on frequency-discrimination perfor-

mance.

Discussion

Historically, auditory researchers have found it difficult to

account for both frequency discrimination and intensity discrim-

ination within the same framework, or using the same neural code.

This is in part because the changes in spike rate—or the changes

in ‘‘excitation patterns’’ in psychoacoustical models— correspond-

ing to threshold are usually smaller for a frequency-discrimination

task than for an intensity-discrimination task [11,13,43,44]. This

has led to the view that intensity discrimination relies on spike-rate

information whereas frequency discrimination requires fine spike-

timing information—at least, for frequencies lower than about

8 kHz. One of the strongest arguments supporting this view

stemmed from comparisons of discrimination thresholds measured

in human listeners with predictions obtained using observer

models that operate on spike-count information only, or use fine

spike timing [13]. However, these models have traditionally been

based on neural responses at the level of the auditory nerve, which

contain a wealth of precise temporal information. The findings

described above suggest a different conclusion at the level of the

auditory cortex, where neurons are unable to accurately phase-

lock to frequencies higher than, at most, a few hundred Hertz. We

find that the spike rates of a realistically small population of units,

with frequency-tuning and response-correlation characteristics

similar to those observed in the primary auditory cortex of

primates, contain enough statistical information to account for the

smallest frequency-discrimination thresholds measured in human

listeners—slightly less than 0.2%, or ,2 Hz at 1 kHz.

Any viable rate-based population code for frequency (or pitch)

discrimination must overcome two major limitations. The first

limitation stems from the width of neural tuning curves: even the

most sharply tuned units in the primary auditory cortex of

primates have relatively wide receptive fields, with bandwidths

(measured at half the peak spike-rate) of approximately 8% of the

unit’s best frequency (BF) [23]. One consequence of such wide

receptive fields is that the change in spike rate produced by a small

(e.g., 0.2%) change in stimulus frequency is very small relative to the

neural noise, i.e., the random variability in spike counts. In principle,

the detectability of small spike-rate differences can be enhanced by

pooling information across many neural units. However, previous

work in theoretical neuroscience has indicated that the benefit of

pooling spike-count information across multiple units can be

drastically limited if the pooled spike counts are correlated [26–

29,37]. The spike counts of cortical neurons are correlated [24–

26,30,32–34]. Thus, it was unclear a priori whether a population code

based solely on spike-rate information in auditory cortex could

support the remarkably fine frequency-discrimination performance of

humans. The results described above offer a positive answer to this

question. They show that, contrary to popular belief, a cortical rate-

place code can provide sufficient information to account for human

behavior in the dimensions of both frequency and intensity, using

reasonable assumptions relating to unit density, unit tuning, and

inter-unit correlations.

As with any modeling study, the conclusions of this work

depend on the assumptions of the underlying model. In particular,

our estimates of the number of units needed to achieve a given

level of behavioral discrimination performance rely on the

assumption that downstream neurons use the information

contained in the spike counts of the population optimally in a

statistical (maximum-likelihood) sense. It remains to be determined

whether neural networks in the auditory cortex can achieve, or

even approach, this optimum. If they cannot, the estimated

numbers of neurons needed to explain the behavioral performance

of human listeners in the frequency- and intensity-discrimination

task would be under-estimates. Importantly, however, increasing

the assumed population size would not necessarily alter our main

conclusion, according to which the behavioral thresholds for these

two tasks can, at least in theory, be accounted for using the same

population and same type of (spike-rate) code. Another assumption

on which our conclusions may depend relates to the strength of

spike-count correlations and its relationship with other character-

istics, such as the BFs and frequency-tuning widths of the units.

Our choice of correlation structure for the virtual population was

Figure 3. Schematic illustration of the impact of correlations on spike-rate distributions for frequency and intensity discrimination.
A. Horizontal slices across spike-rate distributions evoked by two stimuli differing in frequency in two units with BFs below and above the reference-
stimulus frequency. The spike rate of the unit (i) with BF lower than the reference frequency is plotted along the x-axis; the spike rate of the unit (j)
with BF higher than the reference frequency is plotted along the y-axis. Blue: horizontal slice across the spike-rate distribution for the reference tone
(1000 Hz, 50 dB SPL); red: horizontal slice across the spike-rate distribution for the higher-frequency tone. B. Same as A, but for an intensity change.
doi:10.1371/journal.pcbi.1003336.g003

Cortical Rate Code for Pitch Discrimination
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based in part on neurophysiological data [24,25], and in part on

theoretical and simplicity considerations. Lastly, the conclusions of

this study are subject to the limitations of Fisher information as a

measure of optimum decoding performance for neural populations

[e.g., 45].

Our finding that a cortical population code operating solely on

spike-count information can account for frequency-discrimination

performance in humans has important implications for the search

of neural correlates of frequency (pitch) perception in humans. For

example, while explanations for the dependence of frequency-

discrimination thresholds on stimulus parameters such as frequen-

cy, intensity, and duration, have so far focused almost exclusively

on peripheral (i.e., cochlear and auditory-nerve) response proper-

ties, our approach provides a method for examining the role of

central factors, such as variations in neuronal density [46,47] or in

spike-count correlations across BFs at the cortical level, in

determining behavioral discrimination thresholds.

Methods

Responses of a population of frequency-selective cortical units

were simulated as follows. The spike rate (in spikes/s) for unit i

(i = 1,…, n) in response to a tone of frequency, f, and intensity, l,

was computed as,

ri f ,lð Þ~hi fð Þ re lð Þ{rsð Þzrs, ð1Þ

where re(l) and rs denote the stimulus-evoked spike rate at BF and

the spontaneous spike rate, respectively, and hi(f) represents the

frequency-tuning function,

hi fð Þ~ 1z
ai Df {wi D

wi

� �
e
{

ai Df {wi D
wi , ð2Þ

in which Qi denotes the BF (in Hz) of unit i, and the sharpness

parameter, ai, was adjusted to yield a quality factor, Q, consistent

with that of single units in the primary auditory cortex of primates

[23]. This function is sometimes referred to as the ‘‘rounded

exponential’’ (roex) function, and has been used to model

psychophysical auditory-filter shapes [48] as well as neural

frequency-tuning curves in the primary auditory cortex of primates

[49]. The spontaneous rate, rs, was set to 0.1 spikes/s and the

evoked rate, re, for a 50 dB SPL pure tone having a frequency

equal to the BF of the unit was set to15 spikes/s. These numbers

are consistent with neurophysiological data [42]. Other physio-

logically realistic values for these parameters (e.g., rs = 1 and re = 10

or 20) were also tested and led to qualitatively similar conclusions.

Spike counts were simulated by drawing samples from a

multivariate Gaussian probability density function with mean

vector, r(f, l) = [r1(f, l), …, rn(f, l)], and covariance matrix, V(f, l),

V f ,lð Þ~ r f ,lð Þr f ,lð ÞT
h i

0C, ð3Þ

where # denotes the Hadamard (entrywise) matrix product.

Consistent with neurophysiological data indicating that spike-

count correlations for neuron pairs in primary auditory cortex

tend to decrease with increasing BF distance and decreasing

receptive-field overlap between the units [24,25], the spike-rate

correlation matrix, C, was defined as,

C~a di,jz 1{di,j

� �
r

� �
HT H, ð4Þ

where di,j = 1 for i = j and di,j = 0 for i?j, and H = [h1(Q), …,

hn(Q)], in which the elements of each n-vector, hi(Q), were equal to

h
1
2
i fð Þ evaluated at f = Qj, j = 1,…, n, and a~1=max HT H

� �
. To

obtain integer-valued spike counts, samples from the multivariate

Gaussian probability density function were rounded to the nearest

unit.

Neglecting the effect of rounding, the highest frequency-

discrimination performance, d9f, that can be obtained using the

information contained in the spike counts of a population of units

with characteristics as described above can be determined as

[42,47],

d 0f ~Df

ffiffiffiffiffiffiffiffiffiffi
I fð Þ

p
, ð5Þ

where Df denotes the frequency difference between the two tones

being discriminated, and I(f) denotes the Fisher information for

frequency,

fð Þ~Lr f ,lð ÞT

Lf
V{1 f ,lð Þ Lr f ,lð Þ

Lf
z

1

2
Tr

LV f ,lð Þ
Lf

V{1 f ,lð Þ
� �2
" #

, ð6Þ

where Tr denotes the trace operator. The partial derivative of the

rate vector with respect to frequency, Lr f ,lð Þ=df , can be

determined based on the preceding equations.

Analogous equations were used to compute performance for

an intensity-discrimination task. To compute the partial

derivative of the rate vector with respect to sound intensity,

Lr f ,lð Þ=dl, we assumed that the spike rate varied linearly with

the stimulus intensity (in dB), and adjusted the constant of

proportionality between these two variables to yield the

desired performance (d9 = 1) for the intensity-discrimination

task.

Unit-specific measures of performance, d9/unit, were computed

as,

d 0i~Dx

ffiffiffiffiffiffiffiffiffiffi
Ii xð Þ

p
, ð7Þ

with,

Ii xð Þ~ Lr f ,lð ÞT

Lx
V{1 f ,lð Þ Lr f ,lð Þ

Lx

" #
i

z
1

2
Diagi

LV f ,lð Þ
Lx

V{1 f ,lð Þ
� �2
" #

,

ð8Þ

where x can be either f (frequency) or l (intensity), [.]i denotes the ith

element of its (vector) argument, and Diagi[.] denotes the ith element

of the diagonal of its argument. The stimulus difference, Dx, was set

to the discrimination threshold (corresponding to d9 = 1) for the

considered task: 1.68 Hz for frequency discrimination, and 1.22 dB

for intensity discrimination.
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