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Abstract: Sophora flavescens, also known as Kushen, has traditionally been used as a herbal medicine.
In the present study we evaluated the ameliorative effects of kushenol C (KC) from S. flavescens against
tBHP (tert-Butyl hydroperoxide)-induced oxidative stress in hepatocellular carcinoma (HEPG2) cells
and acetaminophen (APAP)-induced hepatotoxicity in mice. KC pretreatment protected the HEPG2
cells against oxidative stress by reducing cell death, apoptosis and reactive oxygen species (ROS)
generation. KC pretreatment also upregulated pro-caspase 3 and GSH (glutathione) as well as
expression of 8-Oxoguanine DNA Glycosylase (OGG1) in the HEPG2 cells. The mechanism of
action was partly related by KC’s activation of Akt (Protein kinase B (PKB)) and Nrf2 (Nuclear
factor (erythroid-derived 2)-like 2) in the HepG2 cells. In in vivo investigations, coadministration of
mice with KC and APAP significantly attenuated APAP-induced hepatotoxicity and liver damage,
as the serum enzymatic activity of aspartate aminotransferase and alanine aminotransferase, as
well as liver lipid peroxidation and cleaved caspase 3 expression, were reduced in APAP-treated
mice. Coadministration with KC also up-regulated antioxidant enzyme expression and prevented
the production of proinflammatory mediators in APAP-treated mice. Taken together, these results
showed that KC treatment has potential as a therapeutic agent against liver injury through the
suppression of oxidative stress.

Keywords: kushenol C; Nrf2; Akt; antioxidant; OGG1; liver injury

1. Introduction

The dried roots of Sophora flavescens, also known as Kushen, and one of the oldest
medicinal herbs used in traditional Chinese medicine, are used for the treatment of a
variety of ailments including toxicity removal, parasite elimination and diuresis induc-
tion. Sophora flavescens is also used in the traditional Chinese medicine for the treatment
of gastrointestinal hemorrhage, skin diseases and pyretic stranguria, and has been con-
firmed in many studies to have antitumor, antiviral and anti-inflammatory properties [1–4].
Phytochemical studies have also confirmed the presence of quinolizidine alkaloids and
prenylated flavonoids, which, interestingly, have demonstrated pharmacological activities
as antitumor, antiviral and anti-inflammatory agents, thus confirming the pharmacological
benefits of Kushen as depicted in traditional Chinese medicine [5–7]. One of the prenylated
flavonoids isolated from Kushen is Kushenol C (KC). However, limited data exist on the
biological activities of KC. One study reported that KC possesses greater antioxidant activi-
ties, by preventing the generation of reactive oxygen species in a liver cell line, compared
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to other prenylated flavonoids such as kushenol A, 8-prenylkaempferol, formononetin and
8-prenylnaringenin isolated from the roots of S. flavescens [8]. We previously reported that
KC inhibited the activation of signal transducer and activator of transcription 1 (STAT1),
STAT6, and nuclear factor kappa B (NF-κB) in a stimulated macrophage cell line and
upregulated the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Akt in
the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway in a skin cell line, thereby
conferring anti-inflammatory and antioxidative stress properties to KC [7]. KC was shown
to inhibit the activities of cytochrome P450, the drug-metabolizing enzyme and drug
transporter that plays a central role in the metabolism and elimination of drugs in the
liver [9]. In the present study, we investigated whether KC confers protection to the liver
against tert-Butyl hydroperoxide (t-BHP)-induced and acetaminophen (APAP)-induced
liver oxidative injury and sought to understand its mechanism of action.

2. Materials and Methods
2.1. Plant Material

The roots of S. flavescens were purchased from Jeongeup herbal medicine shop, Korea,
on April 2015. The species was identified by J.H. Kim. A voucher specimen (NIHHS-1)
was deposited in the herbarium of the Department of Horticultural and Crop Environment,
National Institute of Horticultural and Herbal Science (NIHHS).

2.2. Extraction and Isolation

The roots of S. flavescens were extracted three times with 72 L of 95% methanol (MeOH)
at 27 ◦C for seven days. The concentrated methanol extract (770 g), suspended in distilled
water (1 L), was fractionated by chloroform (CHCl3), ethyl acetate (EA) and water. 100 g
of the EA fraction was chromatographed with silica gel column chromatography using a
CHCl3-MeOH gradient system (from 1:0 to 1:4) to yield ten fractions (EA1-EA10). The EA7
fraction was separated by C-18 column chromatography using a water-MeOH gradient
system (from 1:1 to 1:7) to achieve compound 1 (9 mg, KC, Figure 1A).

2.3. Chemicals and Reagents

EZ-Cytox reagent and KC (≥98%, HPLC) came from Dogenbio (Seoul, Korea) and
ChemFaces (Wuhan, China), respectively. APAP, silymarin, tert-Butyl hydroperoxide
(tBHP), ImmunoHistoMountTM, LY294002 PI3K/Akt inhibitor, ML385 Nrf2 inhibitor,
and O8 OGG1 inhibitor came from Sigma-Aldrich (St. Louis, MO, USA). 6-carboxy-2′,7′-
dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA, C400) came from Invitrogen
(Carlsbad, CA, USA). Antibodies for 8-Oxoguanine DNA Glycosylase (OGG1), Nrf2, Bcl-
2, Bax, phosphor-p38, phosphor-JNK, and β-actin came from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Antibodies for caspase-3, cleaved caspase-3, Akt, phosphor-Akt,
and phosphor-ERK came from Cell Signaling Technology Inc. (Beverly, MA, USA). JC-
1 dye and MEBCYTO apoptosis kits came from Thermo Scientific (Rockford, IL, USA)
and MBL International (Nagoya, Japan), respectively. Horse serum, ImmPRESSTM HRP,
and 3-amino-9-ethylcarbazole (AEC) peroxidase substrate came from Vector laboratory
(Burlingame, CA, USA). All other chemicals used were of reagent grade and came from
Sigma Chemical Co. (St. Louis, MO, USA) unless otherwise stated.

2.4. Cell Culture

HEPG2 cells were cultured in Dulbecco’s modified eagle medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin antibiotics at
37 ◦C under 5% CO2 in an incubator. The cells were subcultured at 80% confluence, and
during the culturing period cells were counted and used in experiments.

2.5. Cell Viability Studies

Cell viability was performed using EZ-Cytox reagent. The HEPG2 cells (3 × 105 cells/mL)
were seeded in 96-wells plates for 16 h and treated with or without KC at various concentra-
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tions for 1 h, and further incubated with or without tBHP (1 mM) for 24 h. Then 10 µM of
EZ-Cytox reagent was added to the wells and incubated for 4 h. The absorbance of each
well was then measured using a spectrophotometer (Tecan, Männedorf, Switzerland) at
450 nm. The absorbance of each well corresponded with the HEPG2 cells’ viability and
was calculated as the percentage of the control.

Figure 1. Effect of kushenol C on cell viability and reactive oxygen species (ROS) production in tBHP-
treated HEPG2 cells. (A) The Chemical structure of Kushenol C (KC). (B) Cells were treated with
different concentration of KC and cell viability was determined using EZ-Cytox reagent. (C) Cells
were preincubated with KC at different concentrations for 1 h and then treated with tBHP for
24 h. Cell viability was determined using EZ-Cytox reagent. (D) Cells were preincubated with KC
at different concentrations for 1 h and then treated with tBHP for 1 h and ROS production was
determined as described in the Materials and Method section. Error bars represent the mean ± SD,
# p < 0.001 vs. Control, ** p < 0.01, *** p < 0.001 vs. tBHP-only treated cells.

2.6. Measurement of Intracellular ROS

The HEPG2 cells were incubated KC at indicated concentrations for 1 h and then
treated with tBHP (1 mM) for 1 h. The cells were incubated with 10 µM carboxy-H2DCFDA
for 0.5 h and the cells were then washed in PBS and harvested. Intracellular ROS was im-
mediately examined using a flow cytometer (Cytomics FC500; Beckman, Miami, FL, USA).

2.7. Western Blot Analysis

The HEPG2 cells were preincubated with or without 50 µM of KC for 1 h and then
treated with or without 0.5 mM of tBHP for 12 h. Then cellular proteins were extracted
in radioimmunoprecipitation assay buffer (RIPA buffer). The protein concentration was
measured using Bradford’s assay and 30 µg of protein from each sample was subjected
to Western blot analysis. For the Western blot analysis, the protein was separated on an
SDS-PAGE gel by electrophoresis and electrophoretically transferred to a polyvinylidene
fluoride (PVDF) membrane. The membranes were incubated with various primary an-
tibodies overnight and after washing in tris-buffered saline with 1% Tween 20 (TBST)
buffer, the membranes were further incubated with appropriate corresponding horseradish
peroxidase-conjugated secondary antibodies. After further washing, the proteins on the
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membranes were visualized using an enhanced chemiluminescence reagent (Dogenbio).
The membranes were stripped with Western blot stripping buffer (Thermo scientific) and
incubated with actin antibodies and the immunoblotting procedure repeated. The protein
bands were quantified using ImageJ analysis software and normalized to the expression of
the internal control β-actin; the results were further normalized to the control.

2.8. Measurement of Cellular Glutathione

The HEPG2 cells were preincubated with or without 50 µM of KC for 1 h and then
treated with or without 0.5 mM of tBHP for 12 h. The cells were harvested in cold buffer
containing 50 mM MES, pH 6.5. and 1 mM EDTA. After centrifugation, at 10,000× g
for 15 min at 4 ◦C the supernatant was removed and after deproteinization, glutathione
(GSH) was measured using Cayman Chemical GSH assay kits (Ann Arbor, MI, USA) in
accordance with the manufacturer’s instructions.

2.9. Flow Cytometry Analysis

The HEPG2 cells were preincubated with or without 50 µM of KC for 1 h and then
treated with or without 0.5 mM of tBHP for 12 h. An apoptosis assay was performed using
the MEBCYTO Apoptosis Kit according to the manufacturer’s instructions. In brief, the
cells were trypsinized in PBS and resuspended in binding buffer. Annexin V- fluorescein
isothiocyanate (FITC) and Propidium Iodide were added, mixed and incubated at room
temperature for 15 min in the dark. After the incubation, binding buffer was added and
the cell samples were measured using a flow cytometer (Cytomics FC500; Beckman, Miami,
FL, USA).

2.10. Immunofluorescence Analysis

The HEPG2 cells were preincubated with or without 50 µM of KC for 1 h and then
treated with or without 0.5 mM of tBHP for 12 h. Immunofluorescence staining was
performed according to the kits manufacturer’s protocol (Thermo Scientific). In brief, after
culture and treatment of cell of the cells, they were incubated at 37 ◦C for 15 min with the
prepared staining solution. The cells were trypsinized and centrifuged at 400× g and the
supernatant discarded. The cells were resuspended in assay buffer and washed once. After
washing, the cells were suspended in assay buffer and 5 µL was transferred onto a glass
slide for analysis by fluorescent microscopy.

2.11. Animals and Treatments

Specific pathogen-free male Balb/c mice (six weeks old) weighing 18–20 g were
obtained from Orient Bio Inc. (Gwangju, Korea). They were housed in a room with
standard environmental conditions of temperature 22 ± 2 ◦C, humidity of 50–60% and a
12/12 h light-dark cycle. The mice were fed with a commercial standard laboratory diet
and water ad libitum. The experimental procedures were performed in accordance with the
Jeonju University Institutional Animal Care and Used Committee guidelines (Approved
No. JJU-IACUC-2018-2). The mice were randomly assigned into six groups with five mice
per group as follows: group 1, normal control; group 2, APAP 500 mg/kg; group 3, APAP
plus KC 1 mg/kg; group 4, APAP plus KC 10 mg/kg; group 5, APAP plus KC 20 mg/kg;
group 6 (a positive control), APAP plus silymarin 50 mg/kg. KC and silymarin were
prepared in saline. APAP was prepared in vehicle (1% Et-OH and saline). Groups 1 and 2
were administered the saline, and groups 3–6 were administered KC and silymarin orally
every day for seven days. Three hours after the final administration, group 1 was treated
intraperitoneally with the vehicle. Groups 2–6 were treated intraperitoneally with APAP at
a dose of 500 mg/kg of body weight and fasted for 16 h. All groups were subsequently
euthanized. Blood was obtained by cardiac puncture after the mice had been anesthetized
with ether. The blood samples were allowed to solidify at room temperature for 30 min
and then centrifuged to separate the serum at 2000 g for 15 min at 4 ◦C. Liver samples were
also harvested and rinsed with ice cold saline. The liver samples were quickly frozen with
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liquid nitrogen and stored at minus −80 ◦C until used for further studies. A portion of
each liver tissue was fixed in neutral buffered formalin for histopathologic examination.

2.12. Analysis of Serum AST and ALT

Activities of the hepatic enzymes aspirate aminotransferase (AST) and alanine amino-
transferase (ALT) were determined using AST and ALT colorimetric assay kits (BioVision,
Milpitas, CA, USA) following the manufacturer’s instructions.

2.13. Histopathologic Examination

Histopathological examination was performed as previously described by Cho et al., [10].
Hematoxylin and eosin (H&E) stain was used for evaluation of liver toxicity. Immunohis-
tochemistry was performed using a cleaved caspase-3 antibody. Histopathological changes
were analyzed under a light microscope (Leica, Wetzlar, Germany).

2.14. Analysis of Lipid Peroxidation and GSH Amount

Lipid peroxidation and GSH amount in liver tissues were determined using an MDA
(malondialdehyde) ELISA (enzyme-linked immunosorbent assay) kit (Cell Biolabs, San
Diego, CA, USA) and a GSH assay kit (United States Biological, Salem, MA, USA) in
accordance with the manufacturer’s instructions, respectively.

2.15. Analysis of Liver SOD (Superoxide Dismutase) and Catalase

Liver SOD and catalase activities were determined using SOD and catalase assay kits
(Cayman Chemical, Ann Arbor, MI, USA) in accordance with the manufacturer’s instructions.

2.16. Analysis of Serum TNF-α and IL-6

The concentrations of TNF-α (tumor necrosis factor- α) and IL-6 (interleukin-6) in
serum were determined using an ELISA kit (R&D Systems, Minneapolis, MN, USA) in
accordance with the manufacturer’s instructions.

3. Results
3.1. KC Showed no Cytotoxicity to HEPG2 Cells and Prevented tBHP-Induced ROS Production
and Cytotoxicity on HEPG2 Cells

The effects of KC (chemical formula shown in Figure 1A) on cell viability of HEPG2
cells were first studied. The results presented in Figure 1B demonstrated that treatment
of the cells with KC up to 50 µM alone did not significantly affect the viability of the cells.
Then the effects of KC on tBHP-induced ROS production and cell death were investigated.
The results of the effects of KC on tBHP-induced cell death are shown in Figure 1C. The
results revealed that treatment of the cells with tBHP significantly decreased the viability
of the cells, while pretreatment with KC at 10, 20, 30, 40, and 50 µM prevented the decrease
in cell viability and significant preventions were obtained when the cells were treated
with 40 and 50 µM KC. As presented in Figure 1D, when the HEPG2 cells were treated
with tBHP alone, ROS production in the cells was significantly increased. However, when
the cells were pretreated with KC at 10, 30, and 50 µM, ROS production in the cells was
dose-dependently decreased and a significant decrease was obtained when the cells was
treated with 50 µM of KC.

3.2. KC Prevented tBHP-Induced Apoptosis and Mitochondrial-Related Apoptosis Signals in
HEPG2 Cells

Next, the effects of KC on tBHP-induced apoptosis and alteration in mitochondrial-
related apoptosis signal were investigated. As shown in Figure 2A, flow cytometer analysis
demonstrated that treatment of the cells with tBHP increased the apoptosis of HEPG2 cells,
while preincubation with KC at 50 µM before treatment with tBHP prevented apoptosis in
the cells. Treatment of the cells with KC at 50 µM alone did not have any effects on apoptosis
of the cells when compared to the control. Immunofluorescence data presented in Figure 2B
revealed that the cells treated with tBHP had significant loss of mitochondrial membrane
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potential, while with 50 µM of KC preincubation the loss in mitochondrial membrane
potential was decreased in the tBHP-treated cells. Figure 2C,D, through Western blot
analysis, showed that cells treated with tBHP had decreased expression of caspase-3, while
preincubation of the cells with 50 µM of KC inhibited the decrease of caspase-3. Treatment
of the cells with KC at 50 µM alone did not have any effects on caspase expression in
the cells when compared to the control. Figure 2C also revealed that cells treated with
tBHP showed degradation of antiapoptotic Bcl-2 and slightly increased Bax, while the
cells that were preincubated with KC at 50 µM before treatment with tBHP showed no
significant degradation of Bcl-2, while Bax was significantly degraded. Treatment with KC
at 50 µM alone did not have any significant effects on Bcl-2, while Bax was also significantly
decreased when compared to the control. The ratio of Bax/Bcl-2 expression significantly
decreased in the cells with KC (Figure 2E).

Figure 2. Effect of kushenol C on apoptosis, mitochondria membrane potential, caspase-3 and
Bax/Bcl-2 expressions in tBHP-treated HEPG2 cells. Cells were preincubated with or without KC
for 1 h and then treated with or without 0.5 mM of tBHP for 12 h. (A) Apoptosis assay was per-
formed using an MEBCYTO (registered trademark of MBL International Corporation (Woburn, Ma,
USA)) Apoptosis Kit. (B) Immunofluorescence staining was performed using a JC-1 mitochondrial
membrane potential kit. (C) Caspase-3, Bcl-2, and Bax protein expression levels were investigated
by Western blot assay and the band densities were analyzed using ImageJ analysis software, with
respect to actin (D,E). (F) Intracellular glutathione (GSH) was measured using a Cayman assay GSH
assay kit. Error bars represent the mean ± SD, # p < 0.001 vs. Control, *** p < 0.001 vs. tBHP-only
treated cells.

3.3. KC Rescued tBHP-Induced Cellular GSH Depletion

The effects of KC in tBHP-induced GSH depletion in HEPG2 cells were investigated.
As shown in Figure 2D, there was a depletion of GSH in the cells treated with tBHP, while
the depletion of the GSH was significantly reduced when the cells were preincubated with
50 µM of KC before treatment with tBHP. Treatment of the cells with 50 µM of KC alone
significantly increased GSH when compared to the control.

3.4. KC Prevented tBHP-Supression of the DNA Repair Protein OGG1

The effects of KC on OGG1 expression in tBHP-treated HEPG2 cells were investigated.
As demonstrated in Figure 3, OGG1 expression in the cells was decreased when the
cells were treated with tBHP. However, preincubation of the cells with KC at 50 µM before
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treatment with tBHP prevented the suppression of OGG1 expression. In addition, treatment
of the cells with KC alone upregulated the expression of OGG1 when compared to the
control cells. The results in Figure 3B further revealed that while preincubation of the tBHP-
treated cells with KC alone prevented cell death, preincubation of the cells with KC and
O8, the OGG1 inhibitor at noncytotoxic concentration, did not prevent the tBHP-induced
cell death.

Figure 3. Effect of kushenol C on OGG1 expressions in tBHP-treated HEPG2 cells. (A) Cells were
preincubated with or without KC for 1 h and then treated with or without 0.5 mM of tBHP for 12 h.
OGG1 expressions protein levels were investigated by Western blot assay. (B) Cells were preincubated
with KC at different concentrations and O8 (the OGG1 inhibitor) for 1 h and then treated with tBHP
for 12 h. Cell viability was determined using EZ-Cytox reagent. Error bars represent the mean ±
SD, # p < 0.001 vs. Control, *** p < 0.001 vs. tBHP-only treated cells, ††† p < 0.001 vs. tBHP plus KC
treated cells.

3.5. KC Upregulated the Activation of AKT and Nrf2 Expression in tBHP-Treated Cells

The effects of KC on the activation of AKT and expression of Nrf2 in tBHP-treated
cells were investigated. As reported in Figure 4A–C, there was a decrease in the expression
of activated AKT (p-AKT) and Nrf2 expression in HEPG2 cells treated with tBHP alone.
When the cells were preincubated with 50 µM of KC before treatment with tBHP, significant
increases in the expressions of p-AKT and Nrf2 were observed. In addition, treatment with
KC alone maintained the expression levels of p-AKT and Nrf2 in the cells when compared
to the control cells. Further investigations with potent inhibitors of AKT (LY294002) and
Nrf2 (ML385) revealed that while KC prevented tBHP-induced cell death, copreincubation
of the tBHP-treated cells with KC and ML385 or LY294002 at noncytotoxic concentration
did not prevent tBHP-induced cell death (Figure 4D).

3.6. KC Upregulated the Activation of MAPK in tBHP-Treated Cells

The effects of KC on the activation of p38, ERK and JNK in tBHP-treated cells were
investigated. As reported in Figure 5, there was a decrease in the expression of activated p38
(p-p38) and JNK (p-JNK), except for ERK (p-ERK), in HEPG2 cells treated with tBHP alone.
However, when the cells were preincubated with 50 µM of KC before treatment with tBHP,
a significant increase in the expressions of p-p38 and p-JNK, except for p-ERK, could be
observed. In addition, treatment of the cells with KC alone maintained the expression levels
of p-p38, p-JNK, and p-ERK when compared to the control cells. Further investigations with
potent inhibitors of p38 (SB203580), JNK (SP600125), except for ERK (PD98059), revealed
that while KC prevented tBHP-induced cell death, copreincubation of the tBHP-treated
cells with KC and SB203580, SP600125, except for PD98059, at noncytotoxic concentration
did not prevent tBHP-induced cell death.
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Figure 4. Effect of kushenol C on AKT and Nrf2 expressions in tBHP-treated HEPG2 cells. (A) Cells were preincubated with
or without KC for 1 h and then treated with or without 0.5 mM of tBHP for 12 h. AKT and Nrf2 protein expression levels
were investigated by Western blot assay and the band densities were analyzed using ImageJ analysis software, with respect
to actin (B,C). (D) Cells were preincubated with KC at different concentrations and/or AKT and Nrf2 inhibitors for 1 h and
then treated with tBHP for 12 h. Cell viability was determined using EZ-Cytox reagent. Error bars represent the mean ± SD,
# p < 0.001 vs. Control, ** p < 0.01, *** p < 0.001 vs. tBHP-only treated cells, ††† p < 0.001 vs. tBHP plus KC treated cells.
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Figure 5. Effect of kushenol C on MAPKs expressions in tBHP-treated HEPG2 cells. (A) Cells were preincubated with or
without KC for 1 h and then treated with or without 0.5 mM of tBHP for 12 h. p38, JNK, and ERK with their activated forms
were investigated by Western blot assay and the band densities were analyzed using ImageJ analysis software, with respect
to actin. (B) Cells were preincubated with KC at different concentrations and/or p38, JNK, and ERK inhibitors for 1 h and
then treated with tBHP for 12 h. Cell viability was determined using EZ-Cytox reagent. Error bars represent the mean ± SD,
# p < 0.001 vs. Control, * p < 0.05 vs. tBHP-only treated cells, † p < 0.01, †† p < 0.001 vs. tBHP plus KC treated cells.
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3.7. KC Protected against APAP-Induced Liver Injury

The effects of KC on APAP-induced hepatotoxicity were investigated. The mice were
coadministrated with KC and APAP. Histological results of liver sections presented in
Figure 6A revealed massive necrosis and inflammation in the mice treated with APAP alone.
KC treatment significantly ameliorated APAP-induced liver injury in a dose-dependent
manner. Further findings through immunohistochemistry analysis demonstrated that
cleaved caspase-3 was highly expressed in the mice treated with APAP alone while cotreat-
ment with KC significantly decreased cleaved caspase-3 expression (Figure 6B). The serum
levels of both AST and ALT, the markers of liver damage, were also markedly elevated in
mice treated with APAP, and KC cotreatment significantly inhibited APAP-induced AST
and ALT levels in the serum (Figure 6C,D). The results obtained with KC treatment were
similar to the results obtain with cotreatment with silymarin, a positive standard used in
the analysis.

Figure 6. Effect of kushenol C on APAP-induced hepatotoxicity in mice. Thirty mice were partitioned into six groups (n = 5):
group 1, normal control; group 2, APAP 500 mg/kg; group 3, APAP plus KC 1 mg/kg; group 4, APAP plus KC 10 mg/kg;
group 5, APAP plus KC 20 mg/kg; group 6 (a positive control), APAP plus silymarin (SM) 50 mg/kg. (A) Hematoxylin
and eosin-stained sections of the mice liver showing hepatotoxicity and inflammation. (B) Immunohistochemically stained
sections of the liver showing the expression of cleaved caspase 3. (C,D) AST and ALT levels were measured in the serum of
each mouse. Error bars represent the mean ± SD, # p < 0.001 vs. NC group, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. APAP-only
treated group.
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3.8. KC Treatment Reduced APAP-Induced Hepatic Oxidative Stress

The effects of KC on APAP-induced-induced oxidative stress in the liver were inves-
tigated. Antioxidant enzymes in liver tissues were investigated. As shown in Figure 7,
hepatic MDA contents were increased in mice administered with APAP alone. The hepatic
MDA was significantly decreased in the mice that were coadministered with KC at various
concentrations and APAP. Silymarin, as expected, also decreased MDA levels to a level sim-
ilar to KC administration. In addition, mice administered with APAP alone had decreases
in the levels of GSH, SOD and catalase. Hepatic GSH, SOD and catalase were significantly
increased in the mice that were coadministered with KC at various concentrations and
APAP. Silymarin, as expected, also increased GSH, SOD and catalase levels to a similar
level as KC.

Figure 7. Effect of kushenol C on APAP-induced MDA production and suppression of antioxidant
enzymes in mice. Thirty mice were partitioned into 6 groups (n = 5): group 1, normal control; group
2, APAP 500 mg/kg; group 3, APAP plus KC 1 mg/kg; group 4, APAP plus KC 10 mg/kg; group
5, APAP plus KC 20 mg/kg; group 6 (a positive control), APAP plus silymarin (SM) 50 mg/kg.
(A) MDA levels, GSH (B), SOD (C), and catalase (D) were measured in the liver tissue. Error bars
represent the mean± SD, # p < 0.001 vs. NC group, * p < 0.05, ** p < 0.01 vs. APAP-only treated group.

3.9. KC Inhibited APAP-Induced Hepatic Inflammation

The effects of KC on APAP-induced hepatic inflammation were investigated. As
shown in Figure 8, TNF-α and IL-6 were significantly increased in the serum of mice
administered with APAP alone. Cotreatment with KC significantly decreased the APAP-
induced increase in TNF-α and IL-6 in the serum. The results obtain with KC treatment
were similar with the results obtain with silymarin treatment.
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Figure 8. Effect of kushenol C on APAP-induced hepatic inflammation in mice. Thirty mice were
partitioned into 6 groups (n = 5): group 1, normal control; group 2, APAP 500 mg/kg; group 3, APAP
plus KC 1 mg/kg; group 4, APAP plus KC 10 mg/kg; group 5, APAP plus KC 20 mg/kg; group 6 (a
positive control), APAP plus silymarin (SM) 50 mg/kg. TNF-α (A) and IL-6 (B) levels were measured
in the serum of each mice. Error bars represent the mean ± SD, # p < 0.001 vs. NC group, * p < 0.05, **
p < 0.01 vs. APAP-only treated group.

4. Discussion

In the present study, we investigated the effects of KC in tBHP-treated HEPG2 cells
and APAP-administered mice. We found that treatment of HEPG2 cells with tBHP induced
the production of ROS that probably resulted in apoptosis and death of the HEPG2 cells
due to oxidative stress. We also found that administration of APAP to mice led to oxidative
stress, inflammation and hepatotoxicity of the liver. Preincubation of the HEPG2 cells with
KC prevented the cell death caused by tBHP. Coadministration of the mice with KC and
APAP also prevented oxidative stress, inflammation and hepatotoxicity caused by APAP.

tert-Butyl hydroperoxide (t-BHP) is commonly used as a model substance to study
cellular alterations and outlining mechanisms resulting from oxidative stress in cells. It is
specifically used as an in vitro model to study nonalcoholic fatty liver disease and hepato-
toxicity because it induces ROS production and depletes GSH, thus resulting in oxidative
stress and ultimately death of liver cells [11]. Here, we revealed that KC at noncytotoxic
concentrations markedly enhanced the HEPG2 cell viability and prevented apoptosis by
probably suppressing ROS production. ROS induces the release of apoptogenic factors like
caspases from mitochondria. These caspases are a family of cysteine proteases that cleave
target proteins at specific residues. Among the more than ten members of the caspase
family, the extensively studied caspase-3 (the “executor of apoptosis,”) plays a crucial role
in cell death [12,13]. The caspase protein is usually preserved in the cell in an inactive
form (pro-caspase). Upon activation it is cleaved and converted to its active form (cleaved
caspase) that executes the apoptosis of cells. In this study, we demonstrated that tBHP
treatment of HEPG2 cells led to the decrease in pro-caspase 3, probably suggesting an
increase in its cleaved form (the cleaved caspase 3). KC treatment of the tBHP-treated
HEPG2 cells helped to maintain the level of pro-caspase 3 as in the control cells, thus
suggesting that there was a decrease in the level of the cleaved caspase 3 in the cells. We
predict that this regulation mechanism of KC and procaspase expression helped in the
prevention of apoptosis and cell death of tBHP-treated HEPG2 cells. However, this fact will
need to be confirmed in further studies by measuring cleaved caspase 3. ROS production in
cells also affects the expression of other apoptosis related proteins such as the antiapoptosis
protein-Bcl-2 and proapoptosis protein-Bax that can also cause DNA damage and cell
death [14]. Here, we revealed that prevention of tBHP-induced apoptosis by KC was also
evidenced by the regulation of mitochondrial-related apoptosis signals, which included
upregulation of the antiapoptosis protein Bcl-2 expression, the suppression of expression
of the proapoptosis protein-Bax, and prevention of DNA damage revealed by increase
in the expression of OGG1. Here, we determined that KC acts by favoring the relative
abundance of antiapoptotic proteins over their proapoptotic partners. We also specifically
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determined that tBHP-induced cell death was associated with DNA damage because po-
tent inhibitors of OGG1 failed to prevent cell death. The fact that cotreatment with KC
and OGG1 inhibitor prevented cell death meant that one of the mechanisms of action of
KC was preventing DNA damage in the HEPG2 cells. KC was also found to upregulate
the expression GSH in the tBHP-treated cells, which might have also contributed to the
prevention of the oxidative stress and HEPG2 cells death induced by tBHP. One could
conclude here that KC’s protection of tBHP-induced cell death is mediated by an increase
in cellular GSH biosynthesis.

In response to oxidative stress, the antioxidant defense system is activated as a com-
pensatory response to protect cell damage by maintaining cellular redox homeostasis [15].
The activation of the Nrf2 transcription factor through the AKT signaling pathway is re-
sponsible for the cellular biosynthesis of antioxidant enzymes in the cells. Here, we further
determined whether KC’s upregulation of GSH and OGG1 was mediated by its regulation
of the AKT/Nrf2 pathway. We found that tBHP suppressed the activation of AKT (p-AKT)
and Nrf2 expression, indicating a decrease in activated Nrf2 in the cells. However, KC
enhanced the activation of AKT and Nrf2 expression, thus indicating that KC’s action in the
AKT/Nrf2 pathway promoted the expression of Nrf2 downstream antioxidants (GSH and
OGG1) and hence prevention of cell death caused by tBHP. This conclusion was further
confirmed because potent inhibitors of the AKT/Nrf2 pathway failed to prevent cell death
in the presence of KC. However, it is thought that further investigation into the mechanism
of KC on the nrf2 signaling pathway is needed.

To further under the mechanisms underlying the protective effects of KC in tBHP-
treated HEPG2 cells, we investigated the effect of KC on the activation of ERK, JNK
and p38 in the MAPK pathway. Oxidative stress can activate various cellular kinases,
including MAPKs, which are responsible for cell protection against oxidative stress and
inflammation [16,17]. Here, we found that tBHP treatment instead led to the suppression
of the activation of JNK and p38, contrary to other studies [18,19]. We concluded that this
decrease in the levels of activated JNK and p38, except for ERK, was the results of cell
death induced by tBHP. Our conclusion was confirmed when KC treatment of the tBHP
cells prevented cell death but KC treatment of the tBHP cells in the presence of potent
inhibitors of JNK and p38 did not rescued the cell death caused by tBHP. The data further
suggest that the activation of MAPKs might be involved in the cytoprotective effect of KC
in tBHP-treated cells.

The protective effects of KC in HEPG2 cells pushed us to further investigate in vivo,
the effects of KC on APAP-induced hepatotoxicity in mice. APAP overdose is well known
for its toxicity to liver where it even causes liver failure in experimental animals and
humans [20]. Numerous studies have demonstrated that oxidative stress plays a key role
in APAP-induced hepatotoxicity [20–22]. In our in vivo studies we found that APAP also
induced hepatotoxicity and damage to the liver as evidenced by intrahepatic hemorrhage;
increased cleaved caspase 3 expression; liver inflammation, liver cell vacuolar degeneration,
increase levels of AST, ALT and MDA, and decreases in GSH, SOD and catalase in the liver.
We also observed that KC had therapeutic potential in detoxification against APAP-induced
intoxification and hepatotoxicity of the liver. This was evidenced by reduced or absence of
intrahepatic hemorrhage, decreased expression of cleaved caspase 3; and reduced levels
of AST, ALT and MDA in mice co-administered with KC. The upregulation of the GSH,
SOD and catalase antioxidant defense system further confirmed the protective potentials
of KC against oxidative stress that leads to hepatotoxicity in the liver. In addition, the
decreased level of proinflammatory cytokines such as IL-6 and TNF-α might also contribute
to the amelioration of APAP-induced hepatic inflammation. These data indicated that KC
protected against APAP-induced liver injury and the effects of KC, even at lower doses,
was almost the same as silymarin, the well-known antidote used for treatment of liver
injury [23,24], thus revealing the potential need for further investigation of KC as antidote
for APAP-induced acute liver injury.
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In conclusion, the findings of this study demonstrated that pretreatment of HEPG2
cells with KC protects against tBHP-induced oxidative stress by apoptosis and cell death
through the regulation of caspase 3, Bax/Bcl-2, GSH and ROS generation, through a
mechanism that involves Nrf2 activation mediated by AKT. The study also demonstrated
the therapeutic detoxification of KC against APAP-induced hepatotoxicity, revealing the
great potential of KC for the treatment of liver injury caused by APAP overdose.
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11. Kučera, O.; Endlicher, R.; Roušar, T.; Lotková, H.; Garnol, T.; Drahota, Z.; Červinková, Z. The Effect of tert-butyl hydroperoxide-
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