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Abstract

Humans have a large capacity of recognition memory (Dudai, 1997), a fundamental property of higher-order
brain functions such as abstraction and generalization (Vogt and Magnussen, 2007). Familiarity is the first step
towards recognition memory. We have previously demonstrated using unsupervised neural network simula-
tions that familiarity detection of complex patterns emerges in generic cortical microcircuits with bidirectional
synaptic plasticity. It is therefore meaningful to conduct similar experiments on biological neuronal networks to
validate these results. Studies of learning and memory in dissociated rodent neuronal cultures remain incon-
clusive to date. Synchronized network bursts (SNBs) that occur spontaneously and periodically have been
speculated to be an intervening factor. By optogenetically stimulating cultured cortical networks with random
dot movies (RDMs), we were able to reduce the occurrence of SNBs, after which an ability for familiarity de-
tection emerged: previously seen patterns elicited higher firing rates than novel ones. Differences in firing rate
were distributed over the entire network, suggesting that familiarity detection is a system level property. We
also studied the change in SNB patterns following familiarity encoding. Support vector machine (SVM) classifi-
cation results indicate that SNBs may be facilitating memory consolidation of the learned pattern. In addition,
using a novel network connectivity probing method, we were able to trace the change in synaptic efficacy in-
duced by familiarity encoding, providing insights on the long-term impact of having SNBs in the cultures.
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Significance Statement

Studies of memory mechanisms in neuronal networks formed by cultured neurons have been complicated
by spontaneously occurring synchronized network bursts (SNBs), which prevent encoding of stimulus infor-
mation. We have developed an optogenetic method to suppress SNBs using random dot stimuli, which al-
lowed us to demonstrate the ability of cultured cortical networks to detect a familiar input. Whereas SNBs
interfere with familiarity encoding, they may facilitate memory consolidation. These results indicate that ge-
neric cortical microcircuits have an innate ability for familiarity detection, a form of recognition memory.

Introduction
Learning and memory are indispensable for brain func-

tionality. Recognition, the ability to recognize previously
experienced sensory inputs, is a form of declarative mem-
ory that is common in our daily life and fundamental to
many higher-order processes such as concept learning,

abstraction and generalization. Prior studies (Nickerson,
1965; Shepard, 1967; Standing, 1973) have demonstrated
that subjects can recognize many thousands of pictures
several days after they have seen the pictures only once,
suggesting a vast recognition memory for images, with no
capacity limit detected in practical experiments.
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Familiarity and recollection are two components of rec-
ognition memory (Yonelinas, 2002; Squire et al., 2007).
Recollection requires accurate recall of details with their
context, whereas familiarity merely needs a signal indicat-
ing that the object has been encountered before (Wixted,
2007). Unlike conditional or reinforcement learning, which
requires association or reward, familiarity is simply en-
coded through unsupervised learning (i.e., sensory experi-
ence) and retrieved on re-presentation of the input. These
features have made familiarity a perfect paradigm to study
learning and memory from a bottom-up perspective.
Synaptic plasticity has long been implicated in the proc-

esses of learning and memory. Memories are thought to
be encoded and stored in “engrams,” groups of neurons
connected through synapses whose efficacy was modi-
fied during learning. Characterization of the changes in a
population of neurons following learning and after memo-
ry formation can be an important building block to forge a
link between molecular/cellular synaptic plasticity and be-
havioral modifications.
Dissociated neuronal cultures growing on multielec-

trode arrays (MEAs) provide an accessible way to study
familiarity in neuronal populations in vitro. MEAs are de-
signed to obtain parallel recordings at multiple sites of the
dynamics of cultured neuronal networks. By introducing
the light-gated ion channel channelrhodopsin-2 (ChR2)
into neurons, non-invasive optogenetic stimulation has
been made possible for encoding sensory experiences.
Correlation between sensory input and network activity
modification can be established to provide insights into
the mechanisms of learning and memory at the neuronal
network level.
A few groups have already made efforts to study learn-

ing and memory using MEAs. Maeda et al. (1998) and
Jimbo et al. (1998) found that the reliability and reproduci-
bility of stimuli-evoked network bursts was enhanced
after tetanization at single electrodes. Tateno and Jimbo
(1999) reported improved temporal precision of initial re-
sponse spikes to test stimuli after training. Later Jimbo et
al. (1999) reported that single-site stimulation could in-
duce pathway-dependent potentiation or depression.
However, subsequent attempts made to reproduce these
observations were less successful. By including control
recordings, Wagenaar et al. (2006b) argued that the “posi-
tive modifications” observed did not differ significantly
from what could be caused by the drift in spontaneous
network activity. Applying the same tetanization protocol
(20Hz delivered at a single site, as in Jimbo et al., 1999),
Chiappalone et al. (2008) failed to observe significant po-
tentiation; instead, they saw only a global decrease in the

evoked network activity (Chiappalone et al., 2008, their
Fig. 4). Additional studies were conducted, either with
electrical (Massobrio et al., 2015) or optogenetic stimula-
tion (Lignani et al., 2013). Constrained by the inflexibility
of input and output (electrical stimulation and data collec-
tion through the same electrodes), most of the studies
characterized network dynamics by measuring changes
in mean firing rate, as well as burst frequency and dura-
tion, the values of which are highly variable and poorly as-
sociated with learning. Consequently, results from these
studies have not reached a common agreement to date.
Whether in vitro neuronal networks exhibit learning and
memory as an emerging property remains inconclusive.
Computer simulations with neural network models previ-

ously demonstrated that generic cortical microcircuits with
bidirectional synaptic plasticity can perform familiarity de-
tection (Zhang et al., 2017). However, these simulated net-
works do not have all the properties of neuronal networks
growing on MEAs. One major difference is the synchron-
ized network bursts (SNBs), which are universally observed
in biological cultures. A SNB is characterized by network-
wide synchronized high-frequency firing that is spontane-
ously initiated and lasts several hundred milliseconds.
SNBs occur periodically in cultured cortical networks in the
absence of external inputs, and are separated by windows
of nearly silent network activity with occasional sparse
asynchronous firings (Maeda et al., 1995; van Pelt et al.,
2004; Eytan and Marom, 2006; Chiappalone et al., 2007;
Colombi et al., 2016). In vitro studies investigating the ca-
pability of neuronal networks to process spatiotemporal in-
puts have shown that SNBs disrupt short-term memory
(Dranias et al., 2015; Ju et al., 2015). Similarly, when SNBs
were introduced in simulated neural networks, average
performance on familiarity detection declined (Zhang et al.,
2017). In this study, we provide evidence on familiarity de-
tection in MEAs in the presence of SNBs.

Materials and Methods
Culture preparation
Dissociated cortical primary cultures were prepared from

Sprague Dawley rat embryonic day (E)18 brains from either
sex. Cortical tissue was dissected in ice-cold HBSS. The
isolated cortices were digested using the Worthington
Papain Dissociation System (Worthington Biochemical
Corporation). Cells were plated on MEA dishes with 252
electrodes arranged in a 16 � 16 grid (30-mm diameter,
200-mm interelectrode distance, Multi-Channel Systems).
Prior to plating, MEAs were cleaned with 1% Tergazyme
solution, sterilized with 70% ethanol, surface-treated with
fetal bovine serum (FBS), and coated with 0.1mg/ml poly-
D-lysine (Invitrogen). Cells were plated onto a circular area
with a diameter of 6 mm centered at the electrode array
area. The final density was ;4000 cells/mm2. The plating
droplet was left on the MEAs for 30min to allow cell attach-
ment. Culturing medium (Neurobasal supplemented with
2% B-27, 0.5 mM L-glutamine, 10% penicillin/streptomy-
cin) with 10% FBS (Sigma) was then added to the cells (1
ml for each MEA). Medium was completely changed 24 h
later [1d in vitro (DIV1)] to remove FBS. Subsequent
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medium changes were done on DIV6, DIV10, and every 3d
afterwards. Half of the medium was replaced each time.
Cultures were covered with plastic caps with a fluorinated
ethylene-propylene membrane (ALA-Scientific) and main-
tained in a humidified CO2 incubator (5% CO2, 37°C). On
DIV9, MEA cultures were transfected with an adeno-asso-
ciated virus (AAV9) encoding ChR2 (AAV9.hSyn.hChR2
(H134R)-EYFP.WPRE.hGH, Addgene 26973P, MOI 100,000).
Half of the medium was changed on DIV10 to prevent virus
toxicity. Alternative transfection on DIV1 was applied on cul-
tures used in the study of early connectivity development.
Overall, we observed similar development patterns between
cultures transfected on DIV1 and DIV9. DIV9 was chosen as
the transfection date for cultures used for the main experi-
ments for its least disruption on long-term viability of the
cultures. All experimental procedures were conducted in
accordance with Institutional Animal Care and Use
Committee (IACUC) and approved by SingHealth.

MEA recording
Recordings were performed on an anti-vibration table

and in a Faraday cage. During recordings, MEAs with cul-
turing medium (see above, Culture preparation) were
placed in a customized CO2 incubator placed on top of an
inverted microscope (see below, Optical stimulation) inside
the cage. Extracellular electrophysiological signals were
acquired using the USB-MEA256 hardware systems (Multi
Channel Systems). MC_Rack software (Multichannel
Systems) was used to process extracellular signals that
were high pass filtered at 300Hz and low pass filtered at
3 kHz with fourth-order Bessel filters. Each channel was
sampled at a frequency of 20kHz. Action potentials were
detected using a voltage threshold set at six times the SD
(6s ) of the biological noise for each recording channel.

Optical stimulation
Stimulus presentations and MEA recordings were trig-

gered and synchronized by transistor-transistor logic
(TTL) pulses generated by MATLAB that signaled the be-
ginning and end of each session. Optical stimulation was
conducted using a 500-mW DPSS laser with a wave-
length of 473 nm. The laser beam was optically expanded
and projected onto a reflective spatial light modulator
(SLM; Holoeye Photonics), with a resolution of 1920 �
1080 pixels. The patterns reflected by the SLM were con-
trolled by the DVI graphics output of a personal computer
and were refreshed at 50Hz. The reflected light patterns
were then projected onto MEA cultures through the objec-
tive lens of an inverted microscope (Eclipse Ti-E, Nikon).
The final light intensity at the MEA culture is ;4.5 mW/
mm2. This setup allowed us to design arbitrary blue-light
images and use them as stimuli. The stimulation presenta-
tion was programmed with the Psychtoolbox-3 (http://
psychtoolbox.org) in MATLAB.

Cross-correlation histogram (CCH) probing
Cultured neuronal networks were probed with optical

stimuli to identify synaptic connections and monitor
changes in their efficacies. The optical stimulation area,

which approximately covered the electrode array area, is
divided into a 16 � 16 grid, resulting in 256 square “dots.”
Each probing session is conducted by stimulating the cul-
ture with a series of random-dot frames, in which all grid
positions were black, except for five randomly-selected
positions which were white, resulting in five blue dots si-
multaneously stimulating the network when the laser is
on. Each stimulating frame lasts 100ms, during which the
light is on for 40ms, and off for 60ms. Each of the 256 po-
sitions in the grid is stimulated 20 times in total in a ran-
dom order during a probing session, resulting in a random
dot movie (RDM) of 5120 frames. Each probing session
lasts ;1.7min. Neuronal responses were recorded from
the 252 MEA electrodes concurrently with the optoge-
netic random dot probing. A potential causal relationship
between each stimulating grid position and each elec-
trode (recording position) was evaluated by calculating a
CCH between the electrode response time-series and the
stimulating time-series. CCHs are calculated as

cch tð Þ ¼
X

t

i tð Þjðt� tÞ;

where t is the time lag between the two time-series, and i,
jare the time-series representations (1-dimensional vec-
tors) of the electrode response time points and the stimu-
lus time points. The entire probing session was binned
into 1-ms windows. For an electrode, if it detects spikes
in a particular time bin, the time-series vector i will contain
1 in the corresponding time bin, otherwise 0. For a stimu-
lating position, if a probing stimulus is imposed in a partic-
ular time bin, the time-series vector j will contain 1 in the
corresponding time bin, otherwise 0. CCH calculates the
discrete cross-correlation between the two time-series
and find the time lag that returns the largest correlation
(the peak of the CCH curve). A sharp peak with a positive
time lag in the CCH indicates that the electrode consis-
tently detects a response at a defined time window after
the grid position is stimulated, and therefore a directional
synaptic connection likely exists between the grid posi-
tion (presynaptic) and the electrode (postsynaptic).
Assuming the recorded spike train (electrode response)
follows a Poisson process, the significance of the peak
can be tested against the p value of the Poisson
distribution:

P kð Þ ¼ e�l l
k

k!
:

P kð Þcomputes the chance of observing a peak value of
k given the mean of cch tð Þ as l . When the chance falls
below P=1e�6, and the electrode detects a response in
more than half of the trials (10 out of 20 times when the
dot is stimulated), we draw a connection. The value 1e�6

is chosen empirically to control the number of connec-
tions that will be detected as reliable connections in a cul-
ture. Setting it too high (1e�5) will result in having too
many connections detected, e.g., some channels are con-
stantly firing and thus will be assigned connections with
nearly all stimulating position. Setting it too low (1e�7) will
result in having too few connections detected and
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increasing the variance of network analysis. The latency
of the connection is reflected by the time lag tp where the
CCH reaches its peak after stimulation. The efficacy of the
connection is estimated by the area under the poststimu-
lus time histogram (PSTH). With the detected connec-
tions, we were able to draw a connectivity map for each
culture. The connectivity map comes together with direc-
tionality information, which can be used to augment anal-
ysis and understanding. Two connectivity maps of the
same culture obtained before and after a certain treat-
ment can be compared with evaluate whether the culture
has undergone significant connectivity changes. For in-
stance, the relative change of the efficacy, change in the
area under the PSTH curves divided by area under the ini-
tial PSTH curve, is calculated for all connections. Positive
efficacy change indicates potentiation, while negative effi-
cacy change indicates depression. To evaluate the overall
network efficacy change, the positive changes and nega-
tive changes are summed together respectively over all
connections and represented as “P:

P
(0, changes

, 100%1 changes. 100%)” and “N:
P

(changes, 0%)”
in the figure legend. The unit of P and N is [%]. Positive
changes. 100% are capped at 101%. The potentiation
to depression ratio “R” (R =P/|N|, where |N| is the absolute
value of N) is calculated to reflect the overall change in
network efficacy. R. 1 indicates long-term potentiation
(LTP) at the network level and R,1 indicates long-term
depression (LTD) at the network level. CCH probings were
conducted 5min after each treatment to reflect the long-
term effect associated with the treatments.

Experimental design
We used three cartoon-like images of a car front, a dog

face and a human face (Fig. 1H) to study the networks’
ability to learn and memorize complex input patterns. The
three patterns were converted to line drawings in 50 � 50
grids of the same size as the stimulating area. The lumi-
nance of each pattern is tuned to balance the elicited neu-
ronal baseline response. Experiments typically consisted
of three sessions: baseline recording, learning stimulation
and testing recording. Network baseline responses to
each of the three patterns was recorded 10 times. Three
patterns were presented in random orders with 10-s inter-
vals and 100-ms stimulation time. As the network re-
sponse is subject to noise introduced by fluctuation in the
network background activity level due to SNBs, applying
an illuminating window of 100ms enables us to record
stable and consistent network responses for baseline and
testing phases. Learning was conducted by stimulating
the cultures with one of the three patterns at 50Hz (50%
duty cycle, 10ms on and 10ms off) for 60 trials with 9-s
intervals and 1-s stimulation time. Network testing (post-
learning) response was recorded the same way as base-
line recording.

Burstiness index (BI)
We adopted the idea of BI (Chiappalone et al., 2005;

Hinard et al., 2012) to quantify degree of network bursting.
Continuous recordings of network spontaneous activity

(10min, recorded at the beginning of experiments) were
divided into 1-s bins and the fraction of spikes contained
by the 15% most active bins was calculated (f15). BI was
defined as BI = (f15 – 0.15)/0.85, with 0 for not bursting at
all, and 1 for maximum burstiness. The 15% was chosen
empirically with the observation that SNBs occur on aver-
age in 15% of the time bins in an SNB-dominant culture.
Equivalently it assumes the culture has an average inter-
burst interval (IBI) of 6.7 s. For cultures with average
IBI,6.7 s, we increased the 15% accordingly.

RDMs
In order to suppress SNBs, neuronal networks were

pre-stimulated by RDMs. In experiments involving RDM
treatment, the movie was generated in a 10 � 10 grid of
the same size as the stimulating area. In each frame, 25
out of 100 dots were randomly chosen and illuminated to
stimulate the culture for 50ms. The culture was then al-
lowed to rest for 50ms in dark. Frames were refreshed at
a frequency of 10Hz. These values for the frequency and
number of dots were determined to be optimal for sup-
pression of SNBs. RDMs were played for 0.5–1 h to the
cultures, after baseline recording, and before learning
stimulation.

Culture exclusion
For experiments comparing the conventional learning

paradigm and the RDM-learning paradigm (Figs. 7G,H, 8),
we started with 26 healthily plated cultures (enough cells
survived by DIV22 for good coverage of the stimulating
area). Before each experiment, we recorded a 10-min ses-
sion of the culture’s activity at rest and excluded cultures
with frequency of background SNBs .0.2Hz (too active)
or ,0.05Hz (too quiet). Five cultures were excluded this
way. Cultures whose network efficacy changed signifi-
cantly before and after the baseline/testing recording
phase were also excluded, because they were found to
be unstable and produce inconsistent results in other
steps. Five cultures were excluded this way. For the RDM
learning paradigm, cultures whose bursting activity was
not significantly suppressed by the RDMs (R. 0.2) were
excluded from the study, because their subsequent learn-
ing capacity were compromised. Three cultures were ex-
cluded this way. Eventually we were left with a total of
thirteen cultures: the conventional learning paradigm was
used for five cultures, in three cultures we used the RDM-
learning paradigm and conducted testing 10min after the
learning stimulation, while in five cultures we used the
RDM-learning paradigm with extended testing at 30min,
1 h, and 24 h after learning.

Support vector machine (SVM) classification
Pattern-induced network responses at baseline and

testing phases are binned at 10ms. Data from all bins of
the three classes (human, dog, car) are pooled together
(pooling-all-sample method) to train one SVM classifier,
to avoid the curse of dimensionality (the number of fea-
tures is greater than the number of instances). The trained
SVM classifier was then applied to classify 5-min
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continuous recordings of network spontaneous activity
(binned at 10ms) obtained before the baseline phase and
immediately after the learning phase. Classified labels
during SNBs were summarized to get the ratio of

classified SNB bins belonging to each of the three com-
plex patterns. In a separate effort to validate the usage of
the pooling-all-sample method, 60% of the pattern-in-
duced network responses were used to train the SVM

Figure 1. Network connectivity and stimulus pattern. A, B, Pictures of a DIV30 MEA culture taken with a 4� objective illuminated
by bright-field light (A) and fluorescent light (510 nm with 3-s exposure time) to visualize ChR2-YFP expression (B). C–G, Network
connectivity summary of the MEA culture. C, All significant connections detected by CCH probing. Each line is drawn from a pre-
synaptic dot position to a postsynaptic electrode. D, Histogram of the distances of the connections in C, binned at 200 mm, which is
the spacing between two adjacent electrodes. E, Group average latency of the corresponding connections in D. Error bars indicate
the SDs. Max and min latencies are marked as red and green. F, Histogram of the latencies of the connections. G, Histogram of the
CCH peak values of the connections. The value is normalized to 100 trials. A peak at 100 means for every trial when the presynaptic
dot position was stimulated, the postsynaptic electrode detected a response. Connection efficacy is positively correlated with the
CCH peak, but to be more precise, we used the area under the PSTH curve as the measure of connection efficacy in the subse-
quent analyses. H, Cartoon-like images of a car front, a dog face and a human face, projected as blue light patterns onto an MEA
culture with ChR2-YFP expressing neurons.
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classifier and the remaining data were classified by the
trained classifier. LIBSVM (Chang and Lin, 2011, software
available at http://www.csie.ntu.edu.tw/;cjlin/libsvm,
RRID:SCR_010243) and its built-in multiclass classifica-
tion were used.

Evaluation metric
The learning protocol (50Hz, 50% duty cycle, 10ms on,

and 10ms off for 60 trials with 9-s intervals and 1-s stimu-
lation time) was applied equally to all cultures, because
we did not set up any feedback loop that can be used to
control the learning duration or stop the tetanus stimula-
tion after the induced LTP exceeds a pre-set threshold.
As a result, the learning-induced LTP might appear inad-
equate for some cultures, i.e., they may display similar
magnitudes of change induced by “learning” as com-
pared with response fluctuation due to noise. In light of
this, the focus of the performance analysis is not the sig-
nificance level of magnitude of change, but whether the
learned pattern triggers more response than the control
patterns at testing. In detail, the induced response differ-
ences between the familiar pattern and the two control
patterns were averaged and then the value was normal-
ized against the response to the familiar pattern to make
the result comparable among cultures:

D ¼ ðxf � xc1Þ1ðxf � xc2Þ
2xf

;

where x is the network response to be evaluated. It can
take the value of network firing rate induced by the input
patterns or the ratio of classified SNB bins belonging to
the input patterns [for more information, see above,
Support vector machine (SVM) classification]. xf is the re-
sponse induced by the familiar pattern. xc1, xc2 are the re-
sponses induced by the two control patterns.

Results
The goal of the experiments described here was to inves-

tigate the ability of cultured neuronal networks resembling
cortical microcircuits to recognize a familiar (previously
seen) stimulus pattern. We have used cultured cortical neu-
rons growing on a MEA and transfected with ChR2, allowing
us to optogenetically stimulating the network with complex
patterns, while recording from hundreds of neurons (Fig. 1).
A universal property of dense cultured cortical networks is
the appearance of highly SNBs every few seconds (Maeda
et al., 1995; van Pelt et al., 2004; Eytan and Marom, 2006;
Chiappalone et al., 2007; Colombi et al., 2016). We have
therefore characterized the development of SNB activity in
our MEA cultures and developed an optogenetic approach
to suppress them. In additional, we developed an optoge-
netic approach to define directional connectivity maps for
the networks, using a CCH analysis, which allows us to
measure alterations in synaptic efficacy following learning
paradigms.

Bursting, connectivity, and network development
Similar to previous observations, SNBs emerged in the

MEA cultures on DIV8 and became dominant from DIV13

onwards. The frequency and duration of SNBs increased
over time and stabilized after DIV20 (Wagenaar et al.,
2006a), with characteristic IBIs of 5–10 s. To trace the
neuronal network development, we established longitudi-
nal connectivity maps for the cultures (Fig. 2A–D). These
maps reveal that local connections (length � 300 mm) are
detectable at DIV13 (Fig. 2A); a sparsely connected net-
work starts to form by DIV19 (Fig. 2B); global connections
(length. 300 mm) become widespread by DIV22 (Fig. 2C);
finally, a densely connected network with extensive global
and local connections is formed by DIV26 (Fig. 2D). If
loosening the threshold used for CCH detection from
1e�6 to 1e�5 (see Materials and Methods for more details),
long-range connections will appear in the connectivity
maps at DIV13 (data not shown) and DIV19 (Fig. 2E).
The developmental profile described by Figure 2A–D

varied 1 or 2 d for individual cultures with different cell
densities. We performed most of our experiments from
DIV22 onwards, so we could characterize learning-in-
duced changes of a large number of connections and
understand the effect of a training paradigm from the net-
work perspective. This time window was also consistently
used in (Chiappalone et al., 2008). A statistical summary
of the number of connections and connection length of
Figure 2A–D is provided in Figure 2F.

Network response to high-frequency stimuli
Another benefit of using mature and strongly connected

cultures is that they are able to fire more synchronously in
response to high-frequency stimuli. The ChR2 version we
used has the H134R mutation, which increases the photo-
current but is associated with slower channel-closure ki-
netics, resulting in a reduced temporal precision (Yizhar et
al., 2011). It is shown in the CCH probing data that the la-
tency of an optically elicited response is centered around
30ms (Fig. 1F), which limits the firing frequency to be elicited
through direct optical response to 30Hz. Nevertheless, a
subset of neurons in mature cultures was able to fire syn-
chronously to stimuli with a frequency of .30Hz (for exam-
ples, see Fig. 2G3–G4). These neurons are usually receiving
EPSPs from multiple concurrently stimulated grid positions.
We name them as the “postsynaptic hub neurons” in con-
nectivity maps. Strong connection efficacies in mature cul-
tures assist the propagation of EPSPs, thereby securing the
temporal precision of firing. Nevertheless, pyramidal neu-
rons have been reported not to follow well with stimuli be-
yond 40Hz, because they are limited by their intrinsic
cellular biophysical properties (Hjelmstad et al., 1997;
Gunaydin et al., 2010). The reliability of neuronal activation
through ChR2 dropped significantly as the frequency of light
pulse delivery increased (Arenkiel et al., 2007). We tested
MEA culture responses to stimuli of 20–100Hz (Fig. 2G1–
G5). The highest frequency that cortical neurons could fire
synchronously was 50Hz. Therefore, we used 50Hz as the
learning stimulation protocol for subsequent experiments.

Plasticity induction in presence of SNBs
By looking at the BI values, the cultures can be classi-

fied into two types. Cultures dominated by SNBs are
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found to be associated with high BI values [BI = 0.866
0.03 (SEM), n=6]. Cultures with compromised SNBs and
more asynchronous firings are associated with low BI val-
ues [BI = 0.386 0.08 (SEM), n=3]. After delivering 50Hz

stimuli to the cultures, we noticed opposite outcomes
from the two types of cultures (Fig. 3). In cultures domi-
nated by SNBs, networks exhibited LTD in overall change
[R=0.676 0.16 (SEM), n=6; for an example, see Fig.

Figure 2. Development of network connections and neuronal responses to high-frequency stimuli. A–D, Culture connectivity de-
tected by CCH probing. The culture was transfected with ChR2-YFP on DIV1. CCH measurements were conducted on DIV13 (A),
DIV19 (B), DIV22 (C), and DIV26 (D). E, Culture connectivity if loosening the threshold of CCH detection on DIV19. F, Summarizing
the number of connections detected on DIV13, DIV19, DIV22, and DIV26 (top), and the distribution of connection length for each
DIV (bottom). G1–G6, Channel responses to light pulses of 20Hz (G1), 30Hz (G2), 40Hz (G3), 50Hz (G4), and 100Hz (G5). G6,
Channel waveforms in response to 50-Hz pulses (G4). The channel is selected as a representative of channels with the best re-
sponse to high-frequency tetanus. Culture was stimulated on DIV22. Yellow bars highlight when light pulses were delivered.
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3A1–A5]. The decrease is quantified by a histogram of
PSTH area relative changes centered at �20% (for an ex-
ample, see Fig. 3A3). On the contrary, in cultures where
SNBs occurred less often with more asynchronous firings in
the background, overall LTP was observed [R=1.736 0.18
(SEM), n=3; for an example, see Fig. 3B1–B5]. Figure 3C,
panels 1, 2, provides examples for potentiated and de-
potentiated connections and the corresponding change
in their CCH, PSTH curves and raster plots. The protocol
used in generating the results is CCH – 50-Hz tetanus –

CCH.

In a further analysis examining the directionality of
these connections, we noticed that the potentiated con-
nections induced by 50-Hz tetanization clustered around
postsynaptic neurons (electrodes) rather than presynaptic
neurons (grid positions; for an example, see Fig. 3B1). In
our experiment setup, if the hub is an electrode, it will
have only incoming connections; if it is a grid position, it
will have only outgoing connections.
Comparing the electrode responses to SNBs and 50-Hz

tetani, we noticed that spontaneous firing patterns at indi-
vidual electrodes during an SNB were more concentrated

Figure 3. High-frequency tetanization induces LTD or LTP depending on culture “burstiness.” A1–A5, Network connectivity change
in a network with frequent SNBs. A1, Potentiated (red) and de-potentiated (blue) connections in the culture detected by CCH prob-
ings conducted right before and 5min after 50-Hz stimulation (whole field stimulation, 50Hz for 60 trials with 9-s intervals and 1-s
stimulation time). A2, Network firing rate as a function of time, binning at 1 s. BI (see Materials and Methods) is 0.83, based on a 5-
min recording of network spontaneous activity, conducted before any stimulation. A3, Summary of efficacy change for all connec-
tions detected (see Materials and Methods, CCH probing, for more details regarding the calculation). P:

P
(0,changes�100% 1

changes. 100%). N:
P

(changes, 0%). The unit of P and N is [%]. R reflects the overall change in network efficacy (R=P/|N|). A4,
Summary of the change in response latency for all connections detected. A5, Summary of the change in PSTH peak heights for all
connections detected. B1–B5, Network connectivity change in a network with sparse SNBs (same format as A1–A5). C1, C2, CCH,
PSTH curves, and raster plots of the highlighted connections in B1 before (green) and after (magenta) the 50-Hz stimulation. C1 cor-
responds to connection c1, which was potentiated. The relative change of area under PSTH curve is 46.71%. C2 corresponds to
connection c2, which was depotentiated. The relative change of area under the PSTH curve is �20.06%. CCH curves were used to
identify a connection and its response latency. PSTH curves were used to calculate the efficacy change.
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Figure 4. A–D, Comparison of network firing rate during SNBs and in response to 50-Hz stimulation. A, Local field potential (LFP)
recorded at a single MEA electrode during an SNB. The red trace is noise and the green trace is when LFP exceeds the detection
threshold set at �6s of the noise. B, LFP recorded at a single electrode during 50-Hz light stimulation. C, Network firing rate map
during SNBs. Average firing rate was calculated for each electrode over 100-ms time bins during a 5-min recording of network activ-
ity with no external input. Firing rate in the top 15% bins was averaged to represent the firing rate during SNBs. No spike sorting
was conducted. D, Network firing rate map during response to whole-field 50-Hz tetanization, averaged over 60 trials. Electrode sig-
nals collected from multiple neurons were filtered through spike sorting and the signal from the most synchronized neuron was re-
tained for plotting. Notice the difference in color bar scales in C, D. E–G, raster plots of network activity in resting state (E), in
response to RDMs (F), and resting state of a less synchronized culture (G). H, Network efficacy change ratio [R =P/|N|; see Materials
and Methods, CCH probing, for more details regarding the calculation] from baseline (B) to 30min under RDMs (R 30min) followed
by 30min in resting state (N 30min) and 1 h in resting state (N 1 h). APV was added to the culture medium (100 mM) to evaluate the
contribution of NMDA receptors.
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with shorter duration (0.2–0.3�) and larger amplitude
(1.5–2�), compared with induced response by 50-Hz
stimulation (Fig. 4A,B). This kind of ultrahigh-frequency
spontaneous firing was observed at a large number of
electrodes during an SNB (number of electrodes detected
at least 50Hz firing.30; Fig. 4C), whereas the number of
electrodes detected synchronous firing to 50Hz was lim-
ited (number of electrodes detected at least 50Hz
firing�17; Fig. 4D).

RDMs induce LTD prior to learning
Given the analysis above, the question we addressed

next is whether SNBs can be suppressed in cultures,
while maintaining network viability. Pharmacological and
electrical treatments have been proposed on this matter.
Pharmacological reagents, such as NMDA receptors an-
tagonist (e.g., APV and Mg21) and gap junction blockers
(e.g., carbenoxolone), are able to suppress SNBs to a
great extent, but at the same time they also compromise
the neuronal network functionality, especially its learning
ability. A non-pharmacological method, i.e., randomly ap-
plied electrical stimuli through electrodes at high fre-
quency, was suggested to quiet SNBs by mimicking the
random noise coming from the external world (Wagenaar
et al., 2005). Applying the quieting protocol resulted in en-
hanced functional plasticity (Madhavan et al., 2006) and
increased likelihood of evoked network response (Goel
and Buonomano, 2013). We therefore applied optoge-
netic stimulation in the form of RDMs (see Materials and
Methods) to the neuronal networks prior to any learning
stimulation, in an attempt to mimicking the effect of sen-
sory inputs on the neocortex in an awake animal. As the
cultures were extensively engaged in randomly induced
firings during RDMs, SNBs emerged less frequently
[BI = 0.866 0.03 (SEM), n=6 (for an example of culture
activity before applying RDMs, see Fig. 4E); BI = 0.096
0.02 (SEM), n=6; for an example of culture activity during
RDM stimulation, see Fig. 4F)]. The activity of a less burst-
ing culture seems to fall between the two extreme condi-
tions [BI = 0.386 0.08 (SEM), n=3; for an example of less
bursting cultures, see Fig. 4G].
We repeated the RDM stimulation protocol in the pres-

ence of 100 mM APV in the culture medium to block NMDA
receptors and compared the network efficacy changes
observed with those seen in control cultures in the ab-
sence of APV. A reduced degree of depression immedi-
ately after a 30-min RDM and faster recovery after 1 h in
resting state were observed when NMDA receptors were
blocked (for an example, see Fig. 4H). The difference is
marked by a network efficacy drop,80% (R=0.536
0.27, n=2) in APV versus a network efficacy drop.90%
(R=0.076 0.004, n=3) without APV, and faster recovery
to the original efficacy at 1 h (R= 1.6760.82, n=2) after
RDMs in APV versus prolonged depression at 1 h without
APV (R=0.366 0.08, n=3). The observed depression is
unlikely to be a result of neurons dying, as the cultures
survived well for days after the RDM stimulation. The de-
crease in efficacy in presence of APV is more likely a result
of temporary network exhaustion or an NMDA-independ-
ent form of LTD (Pöschel and Manahan-Vaughan, 2005).

In contrast, the prolonged depression at 1 h after RDM
stimulation in the absence of APV, suggests that LTD was
induced and the process can be NMDAR dependent.
Furthermore, the CCH probings conducted 5min after
RDM stimulation reveals network-wide LTD (R=0.0976
0.015, n=5; for an example, see Fig. 5A). RDM-induced
network-wide LTD potentially opens a window for en-
hanced learning, by creating more space for synaptic po-
tentiation. The protocol used in generating the results
above is CCH – RDM – CCH.

Learning specificity emerged after RDM pre-
stimulation
After the cultures were pre-stimulated with RDMs for at

least 30min, we applied the same 50-Hz stimulation pro-
tocol. CCH probing results show that, in contrast to the
previous LTD outcome in cultures dominated by SNBs,
network average efficacy change became LTP (R. 1; Fig.
5B), similar to the LTP induced in the SNB-compromised
cultures. To further validate that the LTP was indeed in-
duced by the 50-Hz stimulation rather than culture self-re-
covery from RDM pre-stimulation, we probed network
responses to the three complex patterns at the testing
phase. As a proper control, network efficacy change
caused by the testing (Fig. 5C) was not as significant as
50-Hz stimulation, which confirms the minimum disturb-
ance caused in baseline and testing phases. Comparing
the PSTH curves of network response to the three pat-
terns at baseline and testing, we found a pattern-specific
firing rate increase for the learning stimulus (n=5; for two
examples, see Fig. 6B). A similar firing rate increase was
not observed in the learning experiments without RDM
pre-stimulation (n=5; for one example, see Fig. 6A). A
statistical summary of the network activity over trials dur-
ing the baseline/testing phases for the three cultures
shown in Figure 6A,B is provided in Figure 6C. The proto-
col used in generating the results above is CCH – RDM –

CCH – 50-Hz tetanus – CCH.
The pattern-specific firing rate increase indicates that

the neuronal networks have acquired familiarity to the
trained pattern. Therefore, we conclude that learning after
RDMs is more efficient than learning without RDM pre-
stimulation. The ability to recognize familiar patterns
seems to be an emergent and intrinsic network property,
in which information of the complex patterns is separated
in a high-dimensional feature space. PSTH curves at indi-
vidual electrode channels evoked by the three patterns
were compared before and after learning (Fig. 7A,B).
Firing rate increase to the familiar pattern was observed at
many channels widely distributed in the network.
The experimental paradigm was therefore updated

from “baseline ! learning ! testing” (protocol is CCH –

baseline – CCH – 50-Hz tetanus – CCH – testing – CCH,
referred as the conventional learning paradigm from here
on) to “baseline ! RDM ! learning ! testing” (protocol
is CCH – baseline – CCH – RDM – CCH – 50Hz – CCH –

testing – CCH, referred as the RDM-learning paradigm
from here on). Baseline recording was conducted before
RDM pre-stimulation to prevent unwanted network recov-
ery induced by the baseline recording. This way, the

Research Article: New Research 10 of 19

May/June 2020, 7(3) ENEURO.0006-19.2020 eNeuro.org



network baseline responses were generally higher than
the testing responses (Fig. 6B2), because RDMs induced
significant network LTD, and the subsequent learning only
selectively potentiated a subset of the connections.

Memory consolidation in vitro
What we have observed so far is at best early-phase

LTP (Huang, 1998; Blundon and Zakharenko, 2008).
During the experiments, CCH probings were conducted
5min after learning, and network responses to the three
patterns were obtained 10min after learning at the testing
phase. This time scale is longer than short-term memory

but still short for long-term memory. Given that SNBs oc-
curred sporadically in the background, which might result
in an ongoing modification of network connectivity, we
wanted to address the question whether the encoded fa-
miliarity would be consolidated into long-term memory.
In intact animals, memory consolidation has been cor-

related with high-frequency oscillations that can be ob-
served during sleep. Cultures with SNBs have been
proposed as a slow-wave sleep model (Colombi et al.,
2016). Therefore, it is reasonable to hypothesize that
SNBs may be retaining the encoded pattern by spontane-
ously initiating neuronal activities through the potentiated

Figure 5. RDM-induced network-wide LTD enables future LTP. A1–A3, Network connectivity changes induced by 30 min RDM stim-
ulation. A1, Potentiated (red) and depotentiated (blue) connections in the culture detected by two CCH probings conducted immedi-
ately before and 5min after the 30-min RDMs. A2, Summary of the relative change in area under the PSTH curves for all the
connections detected. See Materials and Methods for the meanings of P, N, and R numbers. A3, Summary of the change in re-
sponse latency for all the connections detected. B1–B3, Network connectivity changes induced by 50-Hz stimulation conducted
after the RDMs (same format as A1–A3). The human face pattern was used as the learning stimulus. C1–C3, Network connectivity
changes caused by the testing recording (same format as A1–A3).
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connections. In order to decode the information con-
tained in the SNBs, we used an SVM approach to classify
SNBs.
At first, SVM classifiers were trained to recognize net-

work responses induced by the three complex patterns.
Then, the SVM classifier trained with pattern-induced re-
sponses obtained at the baseline phase was applied to
classify SNBs in the 5-min continuous recording obtained
before the baseline phase; the SVM classifier trained with

pattern-induced responses obtained at the testing phase
was applied to classify SNBs in the 5-min continuous re-
cording obtained immediately after the learning phase.
Classified labels of SNBs before and after learning are
compared. The results show that after the RDM-learning
paradigm, a larger portion of SNBs were classified as the
trained pattern (Fig. 7D), indicating a higher similarity in
the network activity pattern. In other words, SNBs carried
more information of the trained pattern after learning.

Figure 6. PSTHs of the network responses to the three complex patterns probed at baseline and testing phases. Noisy trials in
which SNBs occurred within 1 s before the pattern stimulus onset were removed. Blue indicates the stimulus duration. Red boxes
indicate the patterns presented during the learning phase. The left column is baseline response. The right column is testing re-
sponse. A, Baseline and testing responses recorded from an MEA culture with non-RDM learning. B, Baseline and testing re-
sponses recorded from two MEA cultures with learning after RDM pre-stimulation. Dotted lines were drawn at the same heights for
all three patterns at baseline/testing to aid visualization of firing rate difference. C, Summarizing the average number of spikes
(mean area under PSTH curves 1 SEM) induced by each pattern over trials during baseline/testing phases for the three cultures
shown in A, B. C1 corresponds to A; C2 corresponds to B1; C3 corresponds to B2. Red arrows indicate the patterns presented
during the learning phase.
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Figure 7. A, B, PSTH difference in response to the training and control patterns at individual electrodes. A, Difference between the re-
sponses to a human face (trained) and a car front (control) stimulus pattern at baseline. Red indicates a higher PSTH to the human face
and blue indicates a higher PSTH to the car front. PSTHs are summed over 20-ms bins. An average PSTH curve of 10 trials is calcu-
lated to represent the electrode response to the probing pattern. The boxed electrode response is enlarged as the inset; x-scale is [0,
0.2 s] for all; y-scale is [0, 500] spikes/s for all. Only the most active portion of the electrode array is shown (10 � 13 electrodes). Only
the response to car front is shown as the response to a control pattern for clarity. B, Difference between the responses to a human face
(trained) and a car front (control) stimulus pattern at testing (same format as A). C, D, SVM classified labels for SNBs recorded before
(blue) and after learning (red) in the conventional learning paradigm (C) and the RDM-learning paradigm (D). Five-minute continuous re-
cordings of network spontaneous activity were used. Red box indicates the trained pattern. E, F, SVM classification accuracy on pat-
tern-induced responses (E) and after we randomized the pattern labels for training as a control (F). The pink bar at 0.04 s indicates the
termination of light stimulus. Gray shading indicates the SEM of 10 trained SVMs. Yellow indicates classification accuracy above chance
level and green for below chance level. G, H, Memory consolidation in cultures with extended testing phase. G, Network response
to the trained pattern was probed at 10min, 30min, 1 h, and 24 h after the learning phase. Network firing rate induced by the image
cues was used to evaluate memory recall. Firing rate discrepancies between the familiar pattern and the two control patterns were aver-
aged and then the value was normalized with respect to the familiar pattern to make the results comparable among cultures (see
Materials and Methods, Evaluation metric, for more details regarding the calculation). H, SVM classification of SNBs recorded at base-
line, 10min and 24 h after learning was conducted by using the network responses obtained in G as training sets. SNB ratios (see C, D
for an example) between the familiar pattern and the two control patterns were averaged to make the results comparable among cul-
tures (see Materials and Methods, Evaluation metric, for more details regarding the calculation). Same cultures as in G.
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Therefore, the trained pattern is likely being replayed dur-
ing SNBs, potentially undergoing memory consolidation.
On the contrary, SNBs after the conventional learning par-
adigm did not resemble the trained pattern more (Fig. 7C).
Separately, we validated the trained SVM classifiers by
looking at their classification accuracy of an independent
set of pattern-induced network responses (60% data
were used for training, 40% data for testing) recorded at
baseline. The results show good accuracy at 30–120ms,
while the pattern stimuli were delivered at 0–40ms (Fig.
7E). When the pattern labels were randomized prior to
SVM training, the classification accuracy reduced to
chance level (Fig. 7F).
To further investigate the long-term retention of the en-

coded familiarity, we extended the testing phase in an in-
dependent set of experiments by including three sessions
of testing spaced at 30min, 1 h, and 24 h after the learning
phase in addition to the original testing conducted at
10min. While network firing rate distinction was observed
to be not well maintained 30min after learning, network
firing rate to the familiar pattern re-appeared to be on top
when probed at 24 h after learning (Fig. 7G). A similar ef-
fect has been reported by another group (Chiappalone et
al., 2008, their Fig. S1), who found network response
maintenance 1 d after LTP induction experiments. So, if
we only focus on the familiarity recall with 1-d retention
(24 h), the network firing rate discrepancy between famil-
iar and control patterns is as good as when recalled im-
mediately after learning (10min), implying the existence of
memory consolidation. A similar trend was observed with
the corresponding SNB replay ratio (Fig. 7H). The protocol
used in generating the results above is CCH – RDM – 50-
Hz tetanus – CCH (10min) – CCH (30min) – CCH (1 h) –
CCH (24 h).

Comparison between conventional learning and RDM-
learning paradigms
Summarizing all the findings above, we present here the

major difference between the conventional learning para-
digm and the novel RDM-learning paradigm. As the dy-
namics of in vitro dissociated neuronal networks are highly
variable and noisy in nature, we have had plenty of outlier
cultures with unique behavior that could not be subse-
quently reproduced. This paper therefore focuses on the
most reproducible observations. When 50-Hz tetanus
was given to cultures during the learning phase, little
LTP (R, 2) was observed following the conventional
learning paradigm (Fig. 8A), whereas significant LTP
(R. 2) was observed following the RDM-learning para-
digm (Fig. 8B). One prerequisite for the training to be effi-
cient in the RDM-learning paradigm was that the RDM
pre-stimulation had to induce major depression in the
network efficacy [R = 0.09760.015 (SEM), n= 5; Fig.
8B]. In cultures that RDM pre-stimulation did not induce
sufficient depression, the subsequent firing rate distinc-
tion was compromised. In the conventional learning par-
adigm, network firing rate to the trained pattern was
decreased in general (Fig. 8C), suggesting mild LTD in-
duction following the 50-Hz tetanization. Although pat-
tern-specific LTD might be an alternative learning

outcome, the encoded LTD is unlikely to be replayed by
the background SNBs (Fig. 8E) and therefore will eventu-
ally be lost over time. In the RDM-learning paradigm, net-
work response to the three patterns was first greatly
suppressed by the RDMs and then a subset of neurons
was selectively stimulated and recruited to store the en-
coded familiarity, resulting in a comparatively higher net-
work firing rate to the trained pattern among the three
(Fig. 8D). More importantly, postencoding SNBs sponta-
neously reactivate the memory engram (Fig. 8F), which
provides means to maintain the strengthened pathways
in the network and potentially creates a robust model for
learning and memory studies in vitro.

Discussion
The goal of the experiments described above was to

study learning and memory in neuronal networks. A major
issue holding back progress in networks formed by cul-
tured cortical neurons is the spontaneous occurrence of
highly SNBs.

Development of SNBs
SNB activity patterns change with the developmental

stage of cultured cortical neurons, and they have been
shown to disrupt the encoding of short-term memory
(Dranias et al., 2015; Ju et al., 2015). In addition, it has
been postulated that SNBs are essential for neuronal net-
work development and maturation (Luhmann et al., 2016).
The fact that properly maintained MEA cultures can sur-
vive for months (Potter and DeMarse, 2001) creates an
opportunity to study the development of the functional
activity of these neuronal networks in detail. In our experi-
ments, SNBs emerged as early as DIV8, indicating the ex-
istence of global connections at this early age, However,
long-range connections were not detectable by our CCH
analysis until the culture had adequately matured. The
sparsity of detectable global connections before DIV22 is
likely the result of synaptic efficacies being relatively weak
initially. Normally, spatial and temporal summation of mul-
tiple inputs is required to trigger a postsynaptic action po-
tential. In order to be detected by CCH probing, a global
connection must be strong enough to trigger the firing of
the postsynaptic neuron by itself. The long-range connec-
tions that were uncovered in the connectivity map at
DIV19 (Fig. 2E) by lowering the CCH detection threshold
possibly represent newly formed connections which are
still relatively weak. Some of these can strengthen as the
network matures. In other words, the CCH analysis relies
on strong connections to reconstruct the network archi-
tecture. We have focused on such strong connections,
because they are more stable and reliable when we look
for subtle changes due to plastic modification.

Long-term effect of SNBs
In cultures dominated by SNBs, high frequency stimula-

tion with a training pattern caused an LTD of network activ-
ity (Fig. 3A1–A5). The overall LTD is consistent with
observations reported earlier (Chiappalone et al., 2008), that
high-frequency tetanization caused an overall decrease in
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evoked network response, rather than a global increase as
conventionally expected. For cultures in which SNBs were
sparse and which displayed more asynchronous firing, tet-
anization with a pattern resulted in LTP (Fig. 3B1–B5).
Potentiated connections clustered around a few postsy-
naptic neurons (Fig. 3B1). This result supports the idea that
these postsynaptic hub neurons, receiving multiple inputs
from concurrently stimulated dot positions of the training
pattern, have a higher chance to fire synchronously in re-
sponse to high-frequency stimuli, which in turn results in
potentiation of the synapses between them and their pre-
synaptic inputs following the “Hebbian” rule.
An individual MEA electrode may record from between

one and four neurons (Litke et al., 2004). Therefore, net-
work firing frequency recorded by the MEA during SNBs

can be much higher than the 50-Hz frequency we used for
tetanization. It is reasonable to assume that the neuronal
networks have been excessively potentiated by SNBs,
leaving little space for future LTP. In other words, SNBs im-
pose a higher LTP threshold for in vitro neuronal networks.
SNBs have been hypothesized to assist the synaptic

development and maturation of the neuronal networks in
young cultures (Kerschensteiner, 2014). However, the re-
sults described above potentially implicate the adverse
long-term effect of having SNBs in cultures.

Learning familiar inputs after RDMs
We have shown that stimulating the networks with

RMDs induces a form of LTD, in which the frequency of

Figure 8. Summary of culture performance under the conventional learning paradigm (A, C, E) and the RDM-learning paradigm (B,
D, F). A, B, Network efficacy change ratio [R =P/|N|; see Materials and Methods, CCH probing, for more details regarding the calcu-
lation] induced at the baseline phase, RDM pre-stimulation, learning phase, and testing phase for experiments conducted under the
conventional learning paradigm (A) and the novel RDM-learning paradigm (B). C, D, Network firing rate discrepancy between familiar
and control patterns (see Materials and Methods, Evaluation metric, for more details regarding the calculation; p, 0.01 (**) for un-
paired two-sample t test) for experiments conducted under the conventional learning paradigm (C) and the novel RDM-learning par-
adigm (D). E, F, Change in SNB replay ratio for the familiar pattern (see Materials and Methods, Evaluation metric, for more details
regarding the calculation; p, 0.001 (***) for unpaired two-sample t test) for experiments conducted under the conventional learning
paradigm (E) and the novel RDM-learning paradigm (F). Different sets of cultures were used in each panel.
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SNBs is substantially reduced. We have used a BI to mon-
itor this process. If we view the baseline network activity
with abundant SNBs as purely ordered (for an example,
see Fig. 4E) and activity during RDMs as purely disordered
(for an example, see Fig. 4F), then the activity of the net-
works after RMD treatment (for an example, see Fig. 4G)
seems to fall at the “edge of chaos,” which has been pre-
dicted to have optimal computational power (Bertschinger
and Natschläger, 2004; Legenstein and Maass, 2007).
High-frequency tetanization after RDM pre-stimulation

induced pattern-specific LTP. The pattern-specific net-
work firing rate increase indicates that the neuronal net-
works have acquired familiarity to the trained pattern.
Therefore, we conclude that the ability to recognize famil-
iar complex patterns is an emergent and intrinsic property
of neuronal networks that are maintained in vitro. The net-
work’s ability to discern patterns and recognize a familiar
input has been predicted by previous studies with simu-
lated neural network models. Constrained by the spatial
resolution of MEAs, we could not measure the activity of
each individual neuron in the network, and therefore we
could not identify the critical neurons and subnetworks re-
sponsible for familiarity, as was done for the simulated
neural networks. Nevertheless, based on the PSTH curves
of network responses at individual electrodes, we can tell
that the firing rate increase to the familiar pattern is dis-
tributed to many channels in the network, implying it re-
flects a network property. Similar observation has been
found in reservoir computing (Subramoney et al., 2019).
In the learning experiments, after we applied pattern-

specific optogenetic stimulation, we probed the network
responses to both trained and control patterns. By includ-
ing control patterns, it came to our attention that in cultures
dominated by periodic SNBs, high-frequency tetanization
induced little learning specificity. It was only after we pre-
stimulated the cultures with RDMs which counteracted the
SNBs by reducing network efficacy on average, we started
seeing a difference in evoked network responses induced
by high-frequency tetanization between the training and
control patterns (Fig. 6). By showing that the network re-
sponse change is directly associated with the trained pat-
tern, we established a more specific causal relationship
that is less likely to be confounded by fluctuations in net-
work background activity. Missing proper controls and the
lack of direct causality in the early studies prior to
Wagenaar et al. (2006b) potentially undermine their reliabil-
ity, because changes in the network firing rate, SNB fre-
quency or response latency are not exclusive to learning
but could simply be caused by fluctuations and drifts in
network excitability.
The flexibility provided by optogenetic stimulation and

the novel CCH probing method allows us to examine
changes in the network at each step and provides more in-
sight into the functional role of SNBs. For cultures without
RDM pre-stimulation, high-frequency tetanization induced
LTD. Whereas for cultures after RDM pre-stimulation or
cultures with naturally compromised SNBs, high-frequency
tetanization induced LTP. Applying CCH probings, we dis-
covered that RDM pre-stimulation induces a network-wide
depression. These phenomena together suggest chronic

SNBs have excessively potentiated the networks, leaving
little space for future potentiation (Wagenaar et al., 2006b).
Therefore, when high frequency tetani were delivered, the
networks underwent changes skewed to the LTD side, im-
pairing the learning specificity. We suspect that the equivo-
cal observations from previous MEA studies stem from
differences in network SNB levels at the resting state.
Many of the aforementioned studies did not characterize
the bursting status of their cultures, leaving the problem
open for further investigation.
For experiments performed using the RMD-learning path-

way, the network baseline responses were generally higher
than the testing responses (Fig. 6B2), because RDMs in-
duced significant network LTD, and the subsequent learn-
ing only selectively potentiated a subset of the connections.
Nevertheless, occasionally we observed the opposite,
namely that the testing responses were higher in firing rate
than baseline responses (Fig. 6B1). This occurred when
there was an increase in average IBI duration for SNBs
in the background from baseline to testing, suggesting that
the networks were more engaged in SNBs at baseline, but
more entrained to external stimuli at testing. This phenom-
enon can happen in either paradigm, i.e., learning with or
without RDM pre-stimulation. When it occurred in the con-
ventional learning paradigm, despite the overall firing rate
increase in evoked network responses at the testing phase,
no learning specificity to the trained pattern was co-ob-
served, indicating the change was not correlated with famil-
iarity encoding. This phenomenon is easily confused with a
real learning effect when there is no rigorous control.
Based on our experience, a sufficiently dense, viable

MEA culture will be dominated by SNBs from DIV13 on-
wards. Although the bursting has been regarded as sei-
zure-like in some studies (Wagenaar et al., 2005; Ahn et
al., 2017), it is more likely to be a result of the absence of
external inputs during the development of neuronal net-
works (Madhavan et al., 2006). The frequency of SNBs in
a mature culture stabilizes at 0.1–0.2Hz, which falls into
the frequency range of the d brain waves detected by
EEGs (0.1–4Hz). d Waves are characterized as the slow-
est brain waves with the highest amplitude and are com-
monly found in stage N3 slow-wave sleep (Vlahou et al.,
2014). Therefore, a few recent studies suggest that the
emergence of SNBs signifies MEA cultures in a state
equivalent to chronic sleep. Similarity in gene expression
profiles between cortical cultures and sleep models pro-
vides further support for this notion (Hinard et al., 2012).
Carbachol, a cholinergic agonist, was applied to the cul-
tures and successfully transformed the network activity
from resembling slow-wave sleep to more like activity
during rapid eye movement (REM) sleep (Colombi et al.,
2016). We noticed that the network activity induced by
RDM pre-stimulation (Fig. 4F) showed a similar pattern to
the Carbachol-induced REM-like activity. The fact that
RDM pre-stimulation counteracted SNBs and caused net-
work-wide depression may be suggesting how synaptic
efficacy homeostasis is established in the brain.
A few studies investigating learning and memory in cul-

tured neuronal networks attempted to circumvent the
SNB obstacles. One group was able to show the
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networks’ ability for pattern separation with L-shape pat-
terns, but they argued that electrical tetanization with a fre-
quency above 200Hz was required to observe the learning
specificity (Ruaro et al., 2005). It seems that using a higher
frequency may be able to conquer the over-potentiation
problem caused by SNBs. Nevertheless, inducing such an
ultrahigh-frequency tetanus is not feasible with our optoge-
netic stimulation. The membrane properties of cortical neu-
rons prevent them from firing synchronously faster than
50Hz. Therefore, it is impossible to induce 200-Hz spiking
activity in a physiological condition. Another group demon-
strated learning specificity in networks’ direct response to
stimuli after pharmacologically inducing neurogenesis
(Tanaka et al., 2017), which potentially introducedmore im-
mature synapses to the network whose efficacy had not
yet been over-potentiated by SNBs. In a study that failed to
induce network LTP with high-frequency tetanization
(Chiappalone et al., 2008), it was shown that associative
memories could be induced in the cultured networks by
pairing a session of high-frequency tetanus with an in-
phase single pulse applied at a spatially distant electrode.
The mechanism underlying the in-phase pairing protocol
for associative memory induction was not explicitly ex-
plained. In a following review article, it was speculated that
the in-phase pairing protocol induced stronger network
bursts than a session of high-frequency tetanus alone
(Bologna et al., 2010). In addition, metaplasticity has been
reported underlying associative memory (Sharma and
Sajikumar, 2014; Xu et al., 2014), and the in-phase pairing
protocol might be an efficient way of modifying metaplas-
ticity in the cultured networks, which in turn modifies the
threshold for synaptic plasticity induction.
SNBs re-appear after the RDM-learning-testing se-

quence, and 24 h later they still encode information spe-
cific to the learned pattern (Fig. 7), suggesting that they
take part in memory consolidation. Regarding why the
network firing rate to the familiar pattern was not consis-
tently the highest for the shorter retentions (30min and 1
h), we do not have an explicit answer for now. It has been
shown that postencoding maintenance of the activity pat-
tern present during learning is critical for memory consoli-
dation (Guzman-Ramos and Bermudez-Rattoni, 2011;
Park et al., 2016). Specifically, a time course study that in-
vestigated the influence of transient inactivation of perirhi-
nal cortex on recognition memory (Winters and Bussey,
2005) showed that memory consolidation was impaired
when the cortical neuron activity was suppressed by lido-
caine shortly after encoding (0–20min), but no impairment
was found if the suppression was incurred 40min after
encoding. It was then suggested that at some time point
beyond 20min after encoding, the memory trace became
sufficiently strengthened to resist any disruption to the
neuronal activity. On account of this, it is possible for us
to observe the firing rate decay at 30-min and 1-h time
points, while the memory was still consolidated at 24 h.
On the other hand, the weakened response to the familiar
pattern at 30min and 1 h might be a network strategy to
get ready for new information processing (Oliveira et al.,
2010) and prevent encoded memory being overwritten.
Nevertheless, it is important to note that each of the

cultures that we studied is a single network, which carries
no hierarchical regulations like in the brain. We should
take caution to avoid over-explaining the firing rate decay,
as it may be simply due to network exhaustion after multi-
ple testing sessions in a relatively short window.
The presence of SNBs may not be entirely a bad thing.

In fact, spontaneous synchronized activity is common to
the brain at many levels (Corlew et al., 2004; Blankenship
and Feller, 2010). On the largest scale, spontaneous oscil-
lations have been observed for the entire brain by fMRI
and EEG (Burke et al., 2013). On the brain circuit scale, it
has been shown that high-frequency synchronized activ-
ity in the hippocampal-cortical dialogue during slow-wave
sleep is involved in memory consolidation (Mitra et al.,
2016), reflected as sharp-wave ripples in hippocampus
and sleep spindles/k-complexes in cortex (McVea et al.,
2016). Neuronal activity patterns evoked during learning
have been found to be replayed in the hippocampus dur-
ing sleep (Breton and Robertson, 2013). There is a chance
that SNBs in vitro function in a similar way to enforce the
strengthened connections. The SVM classification results
show that the encoded pattern was “replayed” by SNBs
after learning. It sheds some light on the existence of
memory consolidation mechanism in neuronal networks.
Therefore, even in the presence of SNBs, in vitro neuronal
networks can be used to study learning and memory with
proper preparations.

Conclusion
In this study, a novel probing method was applied to

scrutinize the network change in response to learning. By
counteracting spontaneously occurring SNBs, we man-
aged to induce pattern-specific familiarity, an observation
that is comparable to what has been demonstrated in sili-
co and has never been reported before for in vitro neuro-
nal networks. The postlearning activity pattern of SNBs
carried more information of the familiar stimulus, suggest-
ing a mechanism of memory consolidation. It is concluded
that in vitro neuronal networks can acquire familiarity to
complex patterns with specificity, and we suggest a
novel elucidation to the role of SNBs as a double-edged
sword that disrupts the encoding of new memories and
facilitates the consolidation of existing memories at the
same time.
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