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Roles of Identified Long Noncoding RNA in Diabetic Nephropathy
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Diabetes mellitus is the leading chronic disease in the world, and diabetic nephropathy (DN) as one of its complications could
increase the mortality. The development of DN is associated to abnormal hemodynamic factors like cytokine networks and the
intervention of metabolic risk factors like blood pressure, blood glucose, and blood lipid. However, the pathogenesis of DN is
still poorly understood. Although glucose-lowering drugs and insulins have significant effects on blood glucose, the fluctuation
of blood glucose or other risk factors could continuously damage the kidney. Recent studies reported that the progression of DN
is closely related to the expression of long noncoding RNA (lncRNA), which is important for the early diagnosis and targeted
intervention of DN. In this review, we briefly summarize the published studies on the functions and potential mechanism of
reported lncRNA in the regulation of DN.

1. Diabetic Nephropathy

Diabetic nephropathy (DN) is a progressive kidney disease
that develops consequently to diabetes and is the important
cause of chronic renal disease worldwide [1]. And DN
accounts for approximately 40% of diagnosed end-stage
kidney failure [2]. The early features of DN include glomeru-
lar mesangial expansion, hypertrophy, and increased renal
accumulation of extracellular matrix (ECM) proteins such
as collagens and fibronectin, as well as podocyte effacement
[3, 4]. Albuminuria is used to stage DN and is regarded as a
biomarker for diagnosis [5, 6]. But the typical pathological
characteristics of DN can also be characterized by excessive
proliferation of ECM and diffuse glomerular basement
thickening of mesangial cells (MCs), which can eventually
lead to glomerular sclerosis and renal interstitial fibrosis
when exposed to high glucose [7, 8], because MCs can
secrete various cytokines, such as transforming growth factor
β1 (TGF-β1), collagen (COL), and fibronectin (FN) [9].
In addition, genetic factors are also important for disease
risk [10, 11]; recent evidence has shown the involvement
of epigenetic factors, such as DNA methylation, histone

posttranslational modifications, microRNAs (miRNAs), and
lncRNAs which are involved in the development of renal
diseases, including DN [11]. It has been reported that many
factors which are crucially linked with the progress of DN,
such as inflammation, oxidative stress, activated hexose,
renal ECM, and the polyol pathway, are related to epigenetic
factors [5].

2. Long Noncoding RNA (lncRNA)

lncRNA was first described in the large-scale sequencing of
full-length eDNA library in mice in 2002. lncRNA is a group
of transcription materials with >200 nucleotides, which
lacks a specific complete open reading frame and has no
protein-coding function [12]. lncRNA accounts for 80% in
the whole mammalian genome transcripts [12]. The majority
of lncRNAs are produced by the transcribing of RNA
polymerase [13]. Similar to mRNA, lncRNA is commonly
expressed in eukaryotic genomes with 5′cap structures and a
poly adenosine tail [14]. According to the location of lncRNA
and proximal protein-coding genes in the genome, lncRNA
can be classified into six categories: exon sense overlapping,
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intron sense overlapping, intronic antisense, natural anti-
sense, and bidirectional and intergenic lncRNA [15]. Recent
studies have shown that lncRNA regulates gene expression
on a variety of levels, mainly including epigenetic tran-
scription and posttranscriptional modification, and the
regulation modes include chromosomal modification, tran-
scriptional interference, or transcriptional activation [16].
Expression disorders of lncRNA are found in many types
of tumors and neurological and cardiovascular diseases
[17, 18]. Accumulating evidence has indicated the signifi-
cant roles of lncRNAs in the pathophysiology of DN,
and the crosstalk between lncRNA and DN was widely
reported in recent years [19–21]. lncRNAs are involved
in the procession of DN through regulating many impor-
tant factors, such as pathologic process in MCs, reactive
oxidative products (ROS), mechanisms involving ECM accu-
mulation, and actions of miRNAs [1, 22, 23]. For example,
ENSMUST00000147869 is downregulated in diabetic renal
tissue, and mesangial cell proliferation and fibrosis are
significantly enhanced through silencing its expression
[24]. ROS-induced expression of ASncmtRNA-2 may con-
tribute to DN fibrosis through regulating TGF-β1 [25].
CYP4B1-PS1-001 is significantly downregulated in early
DN, and it can significantly inhibit the proliferation and
fibrosis of MCs through inducing its overexpression [26].
NR_033515 promoted cell proliferation, fibrogenesis, and
the EMT (epithelial-mesenchymal transition) process by
miR-743b-5p [1]. Therefore, abnormal expression of lncRNA
plays key roles in the occurrence and development of DN.

3. lncRNA Upregulated in DN

3.1. LncPVT1. PVT1 (plasmacytoma variant translocation 1)
is a lncRNA (1.9 kb) that encodes a number of alternative
transcripts. When it is amplified and overexpressed, it will
increase cell proliferation and inhibit apoptosis [27]. PVTI
is the first ncRNA reported to associate with kidney disease
[28], which is highly expressed in human renal MCs under
a high-glucose condition and significantly promotes the
expression of fiber connection protein (FN1), type IV colla-
gen, TGF-β1, and type 1 plasminogen activator inhibitor
(PAI-1). More importantly, the deletion of PVT1 gene in
MCs significantly reduced the expression of major ECM pro-
teins and their regulatory factors, including FN1, COL4A1,
TGF-β1, and PAI-1 [1, 29], while PAI-1 is the main inhibitor
of glomerular ECM degradation [30]. It indicates that PVT1
may participate in the genesis and development of DN by
regulating the accumulation of ECM. Some studies also
suggest that some of the effects of PVT1 on ECM factors
may be mediated through the actions of miRNAs, such as
miR-1207-5p and miR-1207-3p [1].

3.2. lncRNA MALAT1. Metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1) is broadly expressed in
mammalian tissues including the kidney and in tumors
[31]. And MALAT1 is also aberrantly upregulated in early
DN [32]. β-Catenin is a key mediator in the WNT signaling
pathway, which can contribute to podocyte malfunction and
albuminuria as well as kidney fibrosis [33]. MALAT1 could

promote the translocation of β-catenin into the nuclei via
enhancing serine/arginine splicing factor 1, and nuclear
accumulation of β-catenin can cause podocyte damage and
eventually lead to DN [20, 34, 35]. In addition, MALAT1 is
a real culprit as an initiator of inflammation and oxidative
stress, which can regulate glucose-induced upregulation of
inflammatory mediators IL-6 and TNF-α through activation
of serum amyloid antigen 3 (SAA3) [36]. Such changes may
influence endothelial stability which is essential for all organs
and for macro- and microvessels, which in the end leads to
DN [37–39]. Furthermore, MALAT1 regulates renal tubular
epithelial pyroptosis by modulated miR-23c targeting of
ELAVL1 in DN [40]. Therefore, MALAT1 may be a potential
therapeutic target for DN.

3.3. LincRNA Gm4419. Gm4419 (Ensembl ID
ENSMUST00000180671) is a LincRNA, which is located in
chromosome 12 (Chr12:21417911-21419803, 1730 bp) [41],
and it is a regulator of the transcription factor nuclear factor
kappa light-chain enhancer of activated B cells (NF-κB),
which is a crucial inflammatory stimulus for DN [42].
Gm4419 can directly interact with p50 to regulate the
NF-κB/NLRP3 inflammasome signaling pathway and medi-
ate inflammatory molecular expressions in MCs, and it is
associated with the development of inflammation, fibrosis,
and proliferation of MCs with high glucose [23]. The silenc-
ing of Gm4419 expression leads to significant inhibition of
cell inflammation, fibrosis, and proliferation in MCs with
high-glucose conditions [23]. Thus, Gm4419 may have a
functional role in DN inflammation through NF-κB/NLRP3
inflammasome signaling and may act as a novel and specific
therapeutic target for DN.

3.4. lncRNA GM5524. Cellular autophagy and apoptosis are
essential for the maintenance of normal tissue homeostasis
under physiological conditions [43]. The disorder of cellular
autophagy and apoptosis has been reported in diabetes and
its complications [44]. Gm5524 is significantly upregulated
in DN tissues and podocytes under high-glucose conditions
[45]. Gm5524 may be involved in DN by affecting these
two processes: the first process is Gm5524 having effects on
apoptosis and autophagy-associated factors through inhibit-
ing antiapoptotic Bcl2 protein expression. And proapoptotic
protein Bax expression is increased in Gm5524 knockdown
podocytes [46, 47]. The second process is Gm5524 which
promotes the development of DN by activating the LC3/ATG
signaling pathway, which is a well-established biochemical
assay to determine the activation of autophagy [45]. Thus,
Gm5524 may further the understanding of the involvement
of lncRNAs in DN.

3.5. lncRNA NR_033515. NR_033515 is significantly upreg-
ulated in serum of DN patients, and the expression level is
related to the different stages of DN and positively associ-
ated with diagnostic markers of DN (KIM-1 and NGAL).
Overexpression of NR_033515 promotes MC proliferation
and inhibits MC apoptosis. And it also increases the expres-
sion of proliferation-related genes (PCNA and cyclin D1),
fibrogenesis-related gene proteins (P38, ASK1, fibronectin,
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and α-SMA), and EMT biomarkers (E-cadherin and vimen-
tin) by regulating miR-743b-5p expression [19]. Thus, NR_
033515 may be a pivotal target for the early diagnosis and
treatment of DN.

3.6. lncRNA Erbb4-IR. Erbb4-IR is located within the intron
region between the first and second exons of ErBb4 gene
on chromosome 1 of the mouse genome. A pathogenic role
of Erbb4-IR is revealed in human T2DN tissues, and its
molecular mechanism is also elucidated in a novel T2DN
mouse stain in S3KO db/db mice [48]. The functional role
of Erbb4-IR in T2DN is revealed by kidney-specific silenc-
ing of Erbb4-IR to protect against the development of
T2DN such as elevated microalbuminuria, serum creatinine,
and progressive renal fibrosis in db/db mice. In addition,
Erbb4-IR can directly inhibit the transcription of renoprotec-
tive miR-29b, and then TGF-β/Smad3 signaling is activated.
Therefore, renal fibrosis and renal dysfunction are largely
promoted by Erbb4-IR during the progression of T2DN
[49]. Thus, Erbb4-IR may represent a precise therapeutic
target for DN.

3.7. lncRNA ASncmtRNA-2. Antisense mitochondrial non-
coding RNA-2 (ASncmtRNA-2) is a mitochondrial lncRNA
that is expressed in the mitochondria and exported to the
nucleus [50, 51]. Previous studies have revealed that it is
involved in the tumorigenesis and mitochondrial retrograde
signaling pathways [51]. Notably, it has been demon-
strated that ASncmtRNA-2 is overexpressed during aging
and replicative senescence in human endothelial cells [52].
And ASncmtRNA-2 potentially serves a role in physiological
oxidative stress and overproduction of oxidative products
such as ROS, which can induce injury to the human kidneys
through the following mechanisms: (i) inducing lipid per-
oxidation, protein crosslinking, and the formation of DNA
adducts, leading to tissue damage; (ii) inducing direct dam-
age to cellular DNA; and (iii) activating multiple cellular
signaling pathways, including NF-κB and TGF-β1. These
mechanisms induce further generation of ROS, synthesis,
secretion of cytokines, and deposition of ECM compo-
nents, which induce more severe damage to the kidneys.
Therefore, ASncmtRNA-2 can be a novel method to regu-
late ROS generation to reduce renal damage in DN in a
clinical setting [25, 53–55].

3.8. lncRNA Lnc-MGC. Lnc-MGC can serve as a scaffold for a
cluster of 40 miRNAs and appears to induce features of early
DN [56]. Lnc-MGC can regulate megacluster (MGC), and its
3′ region overlaps with Mirg, and the middle region with
Gm2922, other ncRNAs. Lnc-MGC is regulated by an endo-
plasmic reticulum (ER) stress-related transcription factor,
CHOP (C/EBP homologous protein), via TGF-β1-dependent
and TGF-β1-independent pathways [57]. ER stress has been
observed to be increased in patients with progressive DN,
and expression of renal CHOP and albuminuria is signifi-
cantly increased in aged diabetic mice by promoting ER
stress [58, 59]. Furthermore, a chemically modified oligonu-
cleotide (gapmer) targeting Lnc-MGC can inhibit cluster
miRNAs and then decrease protein synthesis, ER stress,

glomerular ECM, and hypertrophy in diabetic mice and
human DN tissues [57]. These results demonstrate the trans-
lational implications of targeting Lnc-MGC for controlling
DN progression.

4. lncRNAs Downregulated in DN

4.1. lncRNA TUG1. lncRNA taurine-upregulated gene 1
(TUG1) was firstly identified as a part of photoreceptors
and retinal development in mouse retinal cells, a lncRNA
located at chromosome 22q12 [60]. TUG1 was considered
to be involving in regulating carcinogenesis in several malig-
nant tumors, and it also has been reported to play a key role
in the progression of DN [61]. TUG1 is significantly
repressed in the podocytes of diabetic mice by rescuing
PPARγ coactivator α (PGC-1α) expression, which is an
important member of the nuclear receptor superfamily and
well known to have an important role in mitochondrial bio-
energetics and respiration [62, 63], and ameliorating the
courses of DN, for regulating glomerular MCs proliferation,
cell cycle, and diabetic glomerular ECM synthesis [64–66].
TUG1 acts as an endogenous sponge of miR-377 and down-
regulates miR-377 expression levels and thereby can relieve
the inhibition of its target gene PGC-1α and alleviates
ECM accumulation and cytokine secretion in MCs, includ-
ing PAI-1, TGF-β1, FN, and collagen IV (Col IV) under
high glucose [67]. Overall, TUG1 provides a novel insight
of DN pathogenesis.

4.2. lncRNA MIAT. Myocardial infarction-associated tran-
script (MIAT), also known as retinal noncoding RNA 2
(RNCR2), is identified in myocardial infarction [68]. Dys-
function of kidney tubules in the tubular system of a diabetic
kidney is proposed as the initial event in the development of
DN [69]. In diabetic rats, MIAT shows the lower level and its
expression is negatively correlated with serum creatinine
and BUN [70]. MIAT can regulate proximal convoluted
tubule cell viability via stabilizing nuclear factor erythroid
2-related factor 2 (Nrf2) expression, which is the key mole-
cule of cellular defense against high blood glucose-induced
oxidative stress and genotoxicity of cells. And Nrf2 can
pathologically and functionally protect the kidney against
diabetic damage [71, 72]. Interestingly, expression of Nrf2
can be enhanced by MIAT overexpression in 45mM glucose-
incubated renal tubular epithelial cell line (HK-2 cells) [70]. In
summary, the data suggest that MIAT/Nrf2 served as an
important signaling pathway for DN and it might be the
potential therapeutic to reduce the burden of this disease.

4.3. lncRNA CASC2. Cancer susceptibility candidate 2
(CASC2) has been showed to have critical functions in
tumorigenesis [73]. Recently, it was reported that the low
expression of CASC2 has diagnostic values in serum and
renal tissues for diabetes complicated with chronic renal fail-
ure [74]. A follow-up showed that patients with low serum
level of CASC2 had significantly higher incidence of chronic
renal failure by inhibiting the JNK pathway, which is com-
mon in patients with DN. Overexpression of CASC2 signifi-
cantly inhibited the apoptosis of podocytes. In addition,
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treatment with a JNK activator significantly reduced the
inhibitory effects of CASC2 overexpression on apoptosis of
podocytes [75, 76]. Furthermore, the ROC curve analysis
showed that the CASC2 level in renal tissues and serum is
effective in diagnosing type 2 diabetes complicated with
chronic renal failure [74]. Thus, CASC2 may serve as a pre-
dictive factor and target for the treatment and prevention of
DN with chronic renal failure.

4.4. lncRNA ENSMUST00000147869. ENSMUST00000147869
has been found to be downregulated in DN, prolifer-
ation and fibrosis indexes are reversed in MCs with
the action of Cyp4a12a, a neighboring gene locus to
ENSMUST00000147869, and it is the predominant 20-
hydroxyeicosatetraenoic acid synthase involved in deter-
mining sex- and strain-specific differences in susceptibility
to hypertension and other cardiovascular diseases [77].
Cyp4a12a is a member of Cyp4a isoforms. CYP4 proteins
metabolize fatty acids, eicosanoids, and vitamin D and are
important for chemical defense, and the production of kid-
ney CYP4 arachidonic acid metabolites can contribute to
the abnormalities in renal function [78]. Downregulated
Cyp4a12a is defined as a target gene, which can be
recruited during ENSMUST00000147869 overexpression
[77]. ENSMUST00000147869 can affect the synthesis of
ECM and dramatically decreased the levels of fibronectin
and Col IV in MCs under a high-glucose condition [24]. So
the overexpression of ENSMUST00000147869 can signifi-
cantly reduce the expression of the proliferation index
(PCNA and cyclin D1) and fibrosis index (collagen I and
FN) in MCs, as well as the growth rate. Thus, intergenic
lncRNA ENSMUST00000147869 with nearby Cyp4a12a
can be regarded as the potential therapeutic target and
molecular biomarker for DN.

4.5. LincRNA 1700020I14Rik. 1700020I14Rik is located in
chromosome 2 (Chr2: 119594296–119600744) [79], which
has been found to be downregulated and acts as an endoge-
nous RNA to regulate the miRNAs in DN. The induced over-
expression of 1700020I14Rik can reduce the expression of
miR-34a-5p via the silent information regulator T1/hypox-
ia-inducible factor-1α (Sirt1/HIF-1α) signal pathway and
eventually promotes proliferation and fibrosis in MCs [22].
Intriguingly, it has been reported that Sirt1 is a direct target
of miR-34a-5p [22, 42], so the Sirt1/HIF-1α signaling path-
way plays a significant role in the proliferation and fibrosis
of DN [80]. However, knockdown of 1700020I14Rik will
reverse the upper processes. Furthermore, the expressions
of renal fibrosis genes including TGF-β1, FN, and Col IV also
decreased by induced overexpression of 1700020I14Rik [22].
These results provide new insights into the regulation
between 1700020I14Rik and miR-34a-5p/Sirt1/HIF-1α sig-
naling pathway during the progression of DN.

4.6. lncRNA CYP4B1-PS1-001. CYP4B1-PS1-001 is located
within a cluster of genes on chromosome 4 related to cyto-
chrome P450 (CYP450) and is important in many reactions
involving drug metabolism and synthesis of cholesterol, ste-
roids, and other lipids [81]. CYP4B1-PS1-001 is significantly

downregulated in response to early DN. While overexpres-
sion of CYP4B1-PS1-001 can inhibit proliferation and fibro-
sis of MCs due to an interaction with nucleolin (NCL).
Furthermore, degradation of CYP4B1-PS1-001-associated
NCL is mediated by a ubiquitin proteasome-dependent
pathway [26]. The results show that overexpression of
CYP4B1-PS1-001 decreases the levels of FN and collagen
I as the major components of ECM in MCs under a high-
glucose condition [81]. Overall, CYP4B1-PS1-001 could
provide a potential therapeutic target and molecular bio-
marker in DN pathogenesis.

4.7. lncRNA Gm15645. Gm15645 is significantly downreg-
ulated in DN tissue podocytes in a high-glucose condi-
tion. The mechanism of Gm15645 is opposite with that of
Gm5524, which may affect podocyte apoptosis and autoph-
agy via regulation of the Bcl2/Bax and LC3/ATG pathways
in DN [45].

4.8. lncRNA LINC01619. LINC01619 can regulate miR-27a/-
FoxO1 (forkhead box protein O1) and endoplasmic reticu-
lum (ER) stress-mediated podocyte injury in DN by
serving as a “sponge” for miR-27a. FOXO1 is the earliest
discovered transcription factor of the FOXO subfamily
and plays an important physiological function in prolifer-
ation, apoptosis, differentiation, oxidative stress, and other
biological processes involved in cell metabolic diseases such
as diabetes [82]. FOXO1 abolishment not only upregulates
CHOP and GRP78 expression in podocytes but also
increases podocyte foot process effacement [83]. Thus,
the recovery of LINC01619 can alleviate oxidative stress
and podocyte injury, and the silence of LINC01619 can
induce oxidative stress and podocyte injury, diffuse podo-
cyte foot process effacement, and decrease renal function
[83]. Downregulation of LINC01619 contributes to pro-
teinuria and declines renal function in DN patients; there-
fore, targeting LINC01619 may be a therapeutic approach
for preventing DN.

5. Conclusion

lncRNAs play a crucial role in the pathogenesis and progres-
sion of DN. The upregulated lncRNAs have a common func-
tion: they can promote the excessive proliferation of ECM,
glomerular sclerosis and renal interstitial fibrosis, and
inflammation and thickening of MCs. On the contrary, the
downregulated lncRNAs appear to function as the protective
factor against DN (Figure 1). In the previous studies, most
studies of DN were focused on the functions of miRNAs.
The regulation of lncRNA in DN is complex, involving inter-
actions among multiple molecules and signaling pathways.
Detailed functional verification in multiple models of DN is
essential for the identification of lncRNA with clinical appli-
cation potentials. Furthermore, recent studies suggested that
N6-methyladenosine (m6A) modification of lncRNAs may
play key roles in many diseases, such as cancer, leukaemia,
Parkinson’s disease, obesity, and diabetes [84, 85]. Regula-
tory roles between lncRNAs and m6A methylation in DN
need to be further clarified.
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