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Abstract
The description of group-level, genotype- and phenotype-associated imaging traits is academically important, but the practical 
demands of clinical neurology centre on the accurate classification of individual patients into clinically relevant diagnostic, 
prognostic and phenotypic categories. Similarly, pharmaceutical trials require the precision stratification of participants 
based on quantitative measures. A single-centre study was conducted with a uniform imaging protocol to test the accuracy 
of an artificial neural network classification scheme on a cohort of 378 participants composed of patients with ALS, healthy 
subjects and disease controls. A comprehensive panel of cerebral volumetric measures, cortical indices and white matter 
integrity values were systematically retrieved from each participant and fed into a multilayer perceptron model. Data were 
partitioned into training and testing and receiver-operating characteristic curves were generated for the three study-groups. 
Area under the curve values were 0.930 for patients with ALS, 0.958 for disease controls, and 0.931 for healthy controls 
relying on all input imaging variables. The ranking of variables by classification importance revealed that white matter met-
rics were far more relevant than grey matter indices to classify single subjects. The model was further tested in a subset of 
patients scanned within 6 weeks of their diagnosis and an AUC of 0.915 was achieved. Our study indicates that individual 
subjects may be accurately categorised into diagnostic groups in an observer-independent classification framework based 
on multiparametric, spatially registered radiology data. The development and validation of viable computational models to 
interpret single imaging datasets are urgently required for a variety of clinical and clinical trial applications.
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Abbreviations
AD	� Axial diffusivity
ALS	� Amyotrophic lateral sclerosis
ALSFRS-r	� Revised amyotrophic lateral sclerosis func-

tional rating scale
ANN	� Artificial neural network
ATR​	� Anterior thalamic radiation
AUC​	� Area under the curve
C9orf72	� Chromosome 9 open reading frame 72
CST	� Corticospinal tract

CT	� Cortical thickness
DC	� Disease control
DTI	� Diffusion tensor imaging
EMM	� Estimated marginal mean
EPI	� Echo-planar imaging
FA	� Fractional anisotropy
FLAIR	� Fluid-attenuated inversion recovery
FOF	� Fronto-occipital fasciculus
FOV	� Field of view
FTD	� Frontotemporal dementia
FWE	� Family-wise error
GAN	� Generative adversarial networks
GM	� Grey matter
HC	� Healthy control
ICP	� Inferior cerebellar peduncle
ILF	� Inferior longitudinal fasciculus
IR-SPGR	� Inversion recovery prepared spoiled gradient 
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IR-TSE	� Inversion recovery turbo spin-echo sequence
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IVIG	� Intravenous immunoglobulin
LMN	� Lower motor neuron
LO	� Lateral occipital
Lt	� Left
MCP	� Middle cerebellar peduncle
MD	� Mean diffusivity
ML	� Machine learning
MLe	� Medial lemniscus
MND	� Motor neuron disease
MNI152	� Montreal Neurological Institute 152 standard 

space
MPM	� Multilayer perceptron model
NISALS	� Neuroimaging Society in ALS
PBA	� Pseudobulbar affect
PCC	� Pathological crying and laughing
PMC	� Primary motor cortex
QC	� Quality control
RD	� Radial diffusivity
ROC	� Receiver-operating characteristic curve
ROI	� Region of interest
Rt	� Right
SCP	� Superior cerebellar peduncle
SD	� Standard deviation
SE-EPI	� Spin-echo echo planar imaging
SENSE	� Sensitivity encoding
SLF	� Superior longitudinal fasciculus
SPIR	� Spectral presaturation with inversion 

recovery
T1w	� T1-weighted imaging
TBSS	� Tract-based spatial statistics
TE	� Echo time
TFCE	� Threshold-free cluster enhancement
TI	� Inversion time
TIV	� Total intracranial volume
TR	� Repetition time
UF	� Uncinate fasciculus
UMN	� Upper motor neuron
WM	� White matter

Introduction

Diagnostic delay in neurodegenerative conditions has a 
considerable literature. In ALS, the average interval from 
symptom onset to definite diagnosis is around 12 months [1, 
2]. Patients often describe insidious symptom onset many 
months before medical advice is sought. The key milestones 
of the diagnostic journey in ALS include symptom mani-
festation, visit to a general practitioner, review in a general 
neurology clinic, diagnostic investigations, and assessment 
in a tertiary referral centre to confirm a suspected diagnosis 
[3–6]. The constellation of initial symptoms may be con-
founded by comorbid conditions, and misdiagnoses in the 

initial phase of ALS are not uncommon. The implications 
of diagnostic delay are considerable as it may delay recruit-
ment into clinical trials, may have ramifications for genetic 
counselling, may increase the risk of misdiagnoses or poten-
tially lead to unnecessary medical or surgical interventions 
such as spinal laminectomies, carpal tunnel surgery, and 
intravenous immunoglobulin (IVIg) treatment [1]. Recent 
imaging studies have revealed that by the time the diagno-
sis is confirmed, significant neurodegenerative changes have 
already occurred [7], limiting the potential of putative neu-
roprotective medications. Recent evidence also suggests that 
considerable presymptomatic disease burden can be readily 
detected long before symptom manifestation [8–11]. These 
observations would suggest that, the optimal window for 
clinical trials is not well into the ‘post-diagnostic’ phase 
of the disease, when widespread cerebral and spinal cord 
degeneration can already be detected, but as early as the 
diagnostic likelihood or mutation status permit. The role of 
neuroimaging in ALS has been extensively discussed [12], 
but the literature is dominated by papers describing group-
level, phenotype- or genotype-associated imaging traits [13]. 
Various research consortia have invested considerable effort 
to increase cohort numbers, pool data from multiple centres 
to perform well-powered analyses and report radiological 
patterns representative of a particular phenotype [14]. The 
characterisation of stereotyped ‘signatures’ is academically 
interesting [12, 15], but the practical demands of clinical 
practice are markedly different [16]. As opposed to the 
scholarly pursuit of group-level descriptions, the priority of 
clinical neurology is the precision classification of a spe-
cific, single patient into diagnostic, phenotypic and prog-
nostic categories through the quantitative interpretation of 
their biomarker profile. Relatively few studies have focussed 
on the classification of individual patient imaging data in 
ALS [17, 18]. A variety of innovative approaches have been 
explored [19] spanning from z-score based approaches, 
through support vector machine frameworks, discriminant 
function analyses, to regression models, with varying degree 
of classification accuracy [16, 20–24]. Several studies have 
reported excellent ‘area under the curve’ (AUC) values 
with reference to the discriminatory potential of a specific 
measure between patients and healthy controls, but binary 
classification into ‘ALS’ versus ‘healthy’ does not mirror 
real-life diagnostic dilemmas. In the clinical setting, the dis-
tinction between ‘ALS’ and ‘healthy’ is seldom challeng-
ing; instead, the dilemma is typically whether subtle clinical 
changes represent incipient ALS or rather, the harbinger of 
an alternative neurodegenerative condition. Another com-
mon shortcoming of classification studies is the a priori 
selection of anatomical regions, often referred to as ‘regions 
of interest’ (ROIs) which are known to be affected in ALS, 
rather than performing formal feature selection analyses or 
ranking variables based on their discriminatory potential. 
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Finally, few studies have narrowed their analyses to a cohort 
of patients in their peri-diagnostic phase, which seems indis-
pensable to scrutinise and validate proposed frameworks. 
The classification of cases with marked disability and long 
disease duration reveals relatively little about the efficacy of 
a specific model architecture. Accordingly, the objective of 
this study is the development of an observer-independent, 
multiclass (three-way) classification protocol to categorise 
multiparametric imaging data of a large cohort of subjects 
consisting of patients with amyotrophic lateral sclerosis 
(ALS), healthy controls (HC) and disease controls (DC). 
An additional objective of the study is to evaluate and rank 
the importance of imaging measures and anatomical foci for 
further model optimisation, and to test a proposed classifica-
tion framework on subjects in their peri-diagnostic phase.

Methods

Participants

A total of 378 participants, 214 patients with ALS (‘ALS’), 
37 disease controls (‘DC’) with a non-ALS neurodegenera-
tive diagnosis and 127 healthy controls (‘HC’) were included 
in a prospective, single-centre imaging study. All partici-
pants gave informed consent in accordance with the Eth-
ics Approval of this research project (Beaumont Hospital, 
Dublin, Ireland). Exclusion criteria included prior cerebro-
vascular events, known traumatic brain injury, comorbid 
neoplastic, paraneoplastic or neuroinflammatory diagnoses. 
Participating ALS patients were diagnosed according to the 
revised El Escorial criteria. Disease controls consisted of 
patients with FTD and were diagnosed based on the Ras-
covsky criteria. Participating patients had a uniform neu-
rological assessment and key variables, such as disability 
scores, interval from diagnosis to scan, and handedness were 
recorded.

Magnetic resonance imaging

A standardised imaging protocol was implemented on a 
3 Tesla Philips Achieva Magnetic resonance (MR) plat-
form. A 3D Inversion Recovery prepared Spoiled Gradi-
ent Recalled echo (IR-SPGR) sequence was utilised to 
acquire T1-weighted (T1w) images with a field-of-view 
(FOV) of 256 × 256 × 160 mm, flip angle = 8°, spatial reso-
lution of 1 mm3, SENSE factor = 1.5, TR/TE = 8.5/3.9 ms, 
TI = 1060  ms. A spin-echo echo planar imaging (SE-
EPI) pulse sequence was used to acquire diffusion tensor 
images (DTI) using a 32-direction Stejskal-Tanner diffusion 
encoding scheme; FOV = 245 × 245 × 150 mm, 60 slices 
with no interslice gap, spatial resolution = 2.5 mm3, TR/
TE = 7639/59 ms, SENSE factor = 2.5, b values = 0, 1100 s/

mm2, dynamic stabilisation and spectral presaturation with 
inversion recovery (SPIR) fat suppression. To assess for 
comorbid inflammatory or vascular pathologies, fluid-atten-
uated inversion recovery (FLAIR) images were also acquired 
from each subject. An Inversion Recovery Turbo Spin Echo 
(IR-TSE) sequence was used for FLAIR imaging. Data were 
acquired in axial orientation: FOV = 230 × 183 × 150 mm, 
spatial resolution = 0.65 × 0.87 × 4 mm, 30 slices with 1 mm 
gap, TR/TE = 11,000/125 ms, TI = 2800 ms, 120° refocusing 
pulse, with flow compensation and motion smoothing and a 
saturation slab covering the neck region.

Imaging framework

Initial quality control steps included radiological review 
for incidental pathological findings, assessment for move-
ment artefacts, and evaluation of white matter abnormali-
ties on FLAIR. Following standardised pre-processing steps 
(described below), 28 volumetric metrics, 68 cortical thick-
ness values and 120 white matter indices were uniformly 
retrieved from each subject’s imaging data; a total of 216 
imaging measures were then appraised in each partici-
pant. These data were systematically analysed in post-hoc 
statistics.

Volume metrics

The standard anatomical reconstruction pipeline of the 
FreeSurfer image analysis suite [25], ‘recon-all’ was imple-
mented, including non-parametric non-uniform intensity 
normalisation, affine registration to the MNI305 atlas, 
intensity normalisation, skull striping, automatic subcortical 
segmentation, linear volumetric registration, neck removal, 
tessellation of the grey matter-white matter boundary, sur-
face smoothing, inflation to minimise metric distortion, 
and automated topology correction [26]. To segment the 
brainstem into the medulla oblongata, pons and midbrain, a 
Bayesian segmentation algorithm was utilised, which relies 
on a probabilistic atlas of the brainstem and its neighbour-
ing anatomical structures generated based on 49 scans [27]. 
The following 28 cerebral volume values were uniformly 
retrieved from each pre-processed T1-weighted dataset: 
(1) left cerebellar white matter volume, (2) left cerebellar 
cortex volume, (3) left thalamus volume, (4) left caudate 
volume, (5) left putamen volume, (6) left pallidum volume, 
(7) left hippocampus volume, (8) left amygdala volume, (9) 
left accumbens volume, (10) right cerebellar white matter 
volume, (11) right cerebellar cortex volume, (12) right thala-
mus volume, (13) right caudate volume, (14) right putamen 
volume, (15) right pallidum volume, (16) right hippocampus 
volume, (17) right amygdala volume, (18) right accumbens 
volume, (19) posterior corpus callosum volume, (20) mid-
dle corpus callosum volume, (21) central corpus callosum 
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volume, (22) mid-anterior corpus callosum volume, (23) 
anterior corpus callosum volume, (24) medulla volume, 
(25) pons volume, (26) superior cerebellar peduncle volume, 
(27) midbrain volume, and (28) total intracranial volume. 
Volumetric values of individual subjects were converted as 
percentage of the subject’s total intracranial volume (TIV) 
to account for individual TIV variations.

Cortical thickness values

Following pre-processing with ‘recon-all’, the labels of the 
Desikan–Killiany atlas were utilised to retrieve average cor-
tical thickness values [20] from 34 cortical regions in the left 
and right cerebral hemispheres; (1) banks superior temporal 
sulcus, (2) caudal anterior-cingulate cortex, (3) caudal mid-
dle frontal gyrus, (4) cuneus cortex, (5) entorhinal cortex, (6) 
frontal pole, (7) fusiform gyrus, (8) inferior parietal cortex, 
(9) inferior temporal gyrus, (10) insula, (11) isthmus–cingu-
late cortex, (12) lateral occipital cortex, (13) lateral orbito-
frontal cortex, (14) lingual gyrus, (15) medial orbital frontal 
cortex, (16) middle temporal gyrus, (17) parahippocampal 
gyrus, (18) paracentral lobule, (19) pars opercularis, (20) 
pars orbitalis, (21) pars triangularis, (22) pericalcarine cor-
tex, (23) postcentral gyrus (24) posterior-cingulate cortex, 
(25) precentral gyrus, (26) precuneus cortex, (27) rostral 
anterior-cingulate cortex, (28) rostral middle frontal gyrus, 
(29) superior frontal gyrus, (30) superior parietal cortex, 
(31) superior temporal gyrus, (32) supramarginal gyrus, (33) 
temporal pole, and (34) transverse temporal cortex.

White matter indices

Pre-processing of diffusion tensor data were implemented 
using in FMRIB’s software library. Raw DTI data first 
underwent eddy current corrections and skull removal; a 
tensor model was then fitted to generate maps of axial dif-
fusivity (AD), fractional anisotropy (FA), mean diffusiv-
ity (MD), and radial diffusivity (RD). FMRIB’s software 
library’s tract-based statistics (TBSS) module was utilised 
for non-linear registration and skeletonisation of individual 
DTI images. A mean FA mask was created and each sub-
ject’s individual AD, FA, MD and RD images were merged 
into 4-dimensional (4D) AD, FA, MD and RD image files. 
The study-specific white matter skeleton was masked by 
atlas-defined labels for the following 30 white matter regions 
of interests in MNI space: (1) left anterior thalamic radia-
tion, (2) right anterior thalamic radiation, (3) left cerebellar 
white matter skeleton averaged, (4) right cerebellar white 
matter skeleton averaged, (5) left cingulum, (6) right cin-
gulum, (7) left corticospinal tract, (8) right corticospinal 
tract, (9) left external capsule, (10) right external capsule, 
(11) forceps major, (12) forceps minor, (13) fornix, (14) left 
inferior cerebellar peduncle, (15) right inferior cerebellar 

peduncle, (16) left inferior fronto-occipital fasciculus, (17) 
right inferior fronto-occipital fasciculus, (18) left inferior 
longitudinal fasciculus, (19) right inferior longitudinal fas-
ciculus, (20) left medial lemniscus, (21) right medial lemnis-
cus, (22) middle cerebellar peduncle, (23) left posterior tha-
lamic radiation, (24) right posterior thalamic radiation, (25) 
left superior cerebellar peduncle, (26) right superior cer-
ebellar peduncle, (27) left superior longitudinal fasciculus, 
(28) right superior longitudinal fasciculus, (29) left uncinate 
fasciculus, and (30) right uncinate fasciculus. The labels of 
the standard-space ICBM-DTI-81 white matter atlas [28, 29] 
were utilised to create masks for the cerebellar peduncles, 
medial lemniscus, external capsule and posterior thalamic 
radiation. Labels of the JHU white matter tractography atlas 
[30, 31] were used to generate masks for the forceps major 
and minor, anterior thalamic radiation, uncinate, superior 
and inferior longitudinal fasciculi, cingulum, corticospinal 
tracts, inferior fronto-occipital fasciculi. The cerebellar label 
(label 2) of the MNI probabilistic atlas [32, 33] was used to 
generate a mask for averaged cerebellar diffusivity estima-
tion. The FMRIB fornix template [34] was used to mask 
the study-specific white matter skeleton in MNI space. Four 
diffusivity metrics (AD, FA, MD, RD) were retrieved from 
30 white matter regions in each subject, resulting in a white 
matter panel of 120 values.

Statistical analyses

An artificial neural network framework, a multilayer per-
ceptron model was implemented with hyperbolic tangent as 
the hidden layer activation function. The diagnosis (ALS, 
HC, DC) was set as dependent variable, and the retrieved 
imaging measures as covariates. Imaging metrics were 
rescaled by standardisation; (x − mean)/s. The model archi-
tecture included one hidden layer with 6 units. Data were 
partitioned into a training sample (68%) and testing sample 
(32%). A batch-type training approach was utilised with a 
gradient descent optimisation algorithm; initial learning rate: 
0.4, momentum: 0.9, interval centre: 0, interval offset: ± 0.5. 
Using the above model architecture, the following outputs 
were generated; synaptic weights, classification results, ROC 
curves, and AUC values. An independent variable impor-
tance analysis was also performed to rank the relevance of 
imaging metrics in determining group membership. To visu-
ally represent the accuracy of diagnostic classification, the 
predicted pseudo-probability of each diagnostic group was 
plotted in a bar chart. Based on the feature importance hier-
archy, a streamlined classification model was tested using 
only the 20 most important imaging variables. Finally, to 
further scrutinise the classification framework, the model 
was tested on a subset of patients in their peri-diagnosis 
phase, who were scanned within 6 weeks of their formal 
diagnosis.
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Results

The three groups, ALS (n = 214, age: 60.97 ± 11.92, 
140 male, 202 right handed), healthy controls (n = 127, 
age: 59.29 ± 10.95, 59 male, 112 right handed) and dis-
ease controls (n = 37, age: 62.4 ± 7.9, 20 male, 34 right 
handed) were matched for age (p = 0.23) and handedness 
(p = 0.12), but not for sex (p = 0.002). Of the 378 data-
sets, 256 (67.7%) was included in the training sample and 
122 (32.3%) in the testing sample. Cross-entropy error 
was 73.49 in the training sample and 85.03 in the testing 
sample; incorrect predications were 10.9% in the train-
ing sample and 24.6% in the testing sample. Classifica-
tion summary is presented in Table 1A. The predicted 
pseudo-probability of diagnosis in each cohort (confirmed 

diagnosis) is presented in Fig. 1. Receiver-operating char-
acteristic (ROC) curves are presented in Fig. 2A. Area 
under the curve values were 0.930 for ALS, 0.958 for dis-
ease controls, and 0.931 for healthy controls relying on 
all input imaging variables. The normalised importance 
of the 20 most relevant imaging variables in predicting 
group membership is shown in Fig. 3 with their corre-
sponding importance value. The ranked normalised impor-
tance of the 50 most relevant imaging metrics is presented 
in Table 2. The classification analyses were re-run with 
the 20 most important imaging metrics identified by the 
explorative analyses. Relying on only 20 imaging features, 
the classification accuracy was evaluated again (Table 1B). 
Area under the curve values based on only 20 core imag-
ing features (Fig. 2B) were 0.835 for ALS, 0.990 for DC, 
and 0.842 for healthy controls. As 19 white matter met-
rics were ranked among the 20 most important imaging 
features (Fig. 3) and the vast majority (92%) of imaging 
metrics among the 50 diagnostically relevant variables 
(Table 2) were diffusivity metrics, a final post hoc analysis 
was conducted where only white matter diffusivity indices 
were included as covariates in the perceptron model; all 
30 tracts and all four diffusivity metrics (120 variables 
in total). Area under the receiver-operating characteris-
tic curves generated based on white matter features alone 
(Fig. 2C) were 0.907 for ALS, 0.979 for DC, and 0.911 
for healthy controls. Classification outcomes using white 
measures alone are presented in Table 1C.

Table 1   Classification outcomes in the training and testing samples 
using A, all imaging features B, the 20 most important variables only 
and C, white matter diffusivity metrics alone

ALS amyotrophic lateral sclerosis, DC disease control, HC healthy 
control

Sample Observed Predicted

ALS DC HC % Correct

(A) All features included
Training ALS 140 2 9 92.7

DC 3 19 2 79.2
HC 11 1 69 85.2
Overall percent 60.2% 8.6% 31.3% 89.1

Testing ALS 52 6 5 82.5
DC 2 9 2 69.2
HC 14 1 31 67.4
Overall percent 55.7% 13.1% 31.1% 75.4

(B) 20 core features included
Training ALS 126 1 32 79.2

DC 3 23 1 85.2
HC 24 0 63 72.4
Overall percent 56.0% 8.8% 35.2% 77.7

Testing ALS 46 0 9 83.6
DC 2 7 1 70.0
HC 15 0 25 62.5
Overall percent 60.0% 6.7% 33.3% 74.3

(C) Only white matter metrics included
Training ALS 128 1 18 87.1

DC 0 24 0 100.0
HC 16 0 70 81.4
Overall percent 56.0% 9.7% 34.2% 86.4

Testing ALS 53 3 11 79.1
DC 0 12 1 92.3
HC 11 0 30 73.2
Overall percent 52.9% 12.4% 34.7% 78.5

Fig. 1   The predicted pseudo-probability profiles of subjects with an 
established diagnosis
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To scrutinise the validity of this classification strategy, 
the model was tested on a subset of patients (n = 119) who 
were scanned within 6 weeks of their diagnoses (‘peri-diag-
nosis cohort’). Using all imaging features AUC was 0.915 
for ALS, 0.979 for DC and 0.929 for HC. Using the 20 most 
important imaging features alone, AUC was 0.822 for ALS, 
0.958 for DC and 0.853 for HC. Using all WM metrics but 
no GM measures, AUC was 0.914 for ALS, 0.981 for DC 
and 0.92 for HC. Classification outcomes in the ‘peri-diag-
nosis’ cohort are presented in Table 3. Pseudo-probability 
profiles in the peri-diagnostic phase using all imaging fea-
tures are presented in Fig. 4 and the three ROC curves are 

shown in Fig. 5. Model architecture is presented in Fig. 6 
with 20 input variables.

Discussion

Our data indicate that quantitative imaging aids diagnostic 
classification and the systematic assessment of key ana-
tomical regions may not only help to distinguish ALS from 
healthy controls, but also discriminates it from other neuro-
degenerative conditions. The presented framework operates 
in an observer-independent fashion and receiver-operating 
characteristic curves indicate excellent sensitivity/specific-
ity profiles. In addition to the classification accuracy of the 
multilayer perceptron model utilised, the ranking of imag-
ing features with respect to categorisation relevance offers 
valuable insights for the streamlining and optimisation of 
future models.

The utility of a variety of supervised and unsuper-
vised machine-learning approaches have been explored 
in ALS, including support vector machines, regression-
based approaches, random forests, discriminant function 
analyses, dimension reduction frameworks, but these are 
seldom applied to imaging data [17, 35, 36] due to chal-
lenges associated with MRI scanning, quality control, pre-
processing, data acquisition costs and data harmonisation. 
Advanced neural network architectures have been suc-
cessfully trialled in other conditions, including multilayer 
‘deep-learning’ learning models and generative adversarial 
networks (GAN) [37–40]. The development of automated 
diagnostic frameworks based on radiology data in ALS are 
hampered by the scarcity of large, uniformly acquired train-
ing data sets. While the acquisition and recording of epide-
miology data and clinical measures can be relatively easily 

Fig. 2   Receiver-operating characteristic curve of patients with ALS, disease controls (DC) and healthy controls (HC) using all imaging features 
(A—left), the 20 most important variables only (B—middle) and white matter diffusivity metrics alone (C—right)

Fig. 3   The hierarchy of normalised variable importance
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Table 2   The importance and 
normalised importance of 
the 50 most relevant imaging 
variables in predicting group 
membership

AD axial diffusivity, ALS amyotrophic lateral sclerosis, DC disease control, FA fractional anisotropy, HC 
healthy control, Lt left, MD mean diffusivity, RD radial diffusivity, Rt right

Rank Imaging metric Importance Normalised 
importance (%)

1. MD Corticospinal Tract Rt 0.014 100.0
2. FA Corticospinal Tract Rt 0.013 91.9
3. FA Corticospinal Tract Lt 0.011 80.8
4. RD Sup Cerebellar Ped Lt 0.010 75.6
5. FA Average Cerebellar Rt 0.010 73.3
6. RD Inf. Longitudinal_Fasciculus Lt 0.010 72.9
7. FA Medial Lemniscus Lt 0.010 72.3
8. RD Uncinate Fasciculus Rt 0.010 72.1
9. FA Average Cerebellar Lt 0.009 67.1
10. AD Cingulum Lt 0.009 64.2
11. FA Forceps Major 0.009 64.1
12. MD Sup. Longitudinal Fasciculus Rt 0.008 61.4
13. AD Sup. Longitudinal Fasciculus Rt 0.008 60.7
14. MD Inf. Longitudinal Fasciculus Lt 0.008 60.4
15 RD Anterior Thalamic Radiation Lt 0.008 59.3
16. RD Medial Lemniscus Rt 0.008 57.6
17. MD Forceps Minor 0.008 57.5
18. RD Corticospinal Tract Lt 0.008 56.6
19. Lt lateraloccipital thickness 0.008 56.6
20. MD Corticospinal Tract Lt 0.008 55.9
21. RD Medial Lemniscus Lt 0.008 55.6
22. AD External Capsule Rt 0.008 54.6
23. FA Uncinate Fasciculus Rt 0.007 54.2
24. RD Sup. Cerebellar Ped Rt 0.007 54.0
25. Lt posteriorcingulate thickness 0.007 53.7
26. AD Forceps Minor 0.007 53.6
27. RD Anterior Thalamic Radiation Rt 0.007 53.5
28. FA Inf. Cerebellar Peduncle Rt 0.007 53.1
29. FA Inf. Longitudinal Fasciculus Rt 0.007 52.4
30. Lt precentral thickness 0.007 51.1
31. RD Average Cerebellar Lt 0.007 51.0
32. RD Inf. Cerebellar Peduncle Lt 0.007 51.0
33. MD Middle Cerebellar Peduncle 0.007 50.7
34. RD Inf. Cerebellar Peduncle Rt 0.007 50.1
35. FA Inf. Cerebellar Peduncle Lt 0.007 49.9
36. MD Post. Thalamic Radiation Rt 0.007 49.8
37. MD Inf. Fronto-Occipital Fasciculus Rt 0.007 49.7
38. FA Inf. Longitudinal Fasciculus Lt 0.007 49.3
39. FA Sup. Cerebellar Peduncle Lt 0.007 48.8
40. MD Medial Lemniscus Lt 0.007 48.3
41. Lt Caudal middle frontal thickness 0.007 48.2
42. AD Medial Lemniscus Rt 0.007 47.4
43. Left-Amygdala Volume % 0.007 47.1
44. RD Middle Cerebellar Peduncle 0.007 47.0
45. MD Anterior Thalamic Radiation Rt 0.006 46.8
46. FA Uncinate Fasciculus Lt 0.006 45.7
47. FA Medial Lemniscus Rt 0.006 45.4
48. RD Forceps Major 0.006 45.3
49. RD Forceps Minor 0.006 45.0
50. MD External Capsule Rt 0.006 45.0
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harmonised, imaging data harmonisation requires consider-
able investment.

Our study consisted of an exploratory arm, where imaging 
metrics from the entire cerebrum were incorporated, without 
the a priori selection of anatomic regions considered rel-
evant based on published imaging or post mortem evidence. 
While the predilection of disease burden to the corticospinal 
tracts, precentral gyrus and brainstem is well established, 
our strategy centred on the indiscriminate interrogation 
of imaging variables from across the entire cerebrum. To 
develop a truly observer-independent pipeline, individual 
imaging data were spatially co-registered to standard space, 
and only validated atlases were utilised to retrieve integ-
rity variables from a range of anatomical regions. Cortical 
and subcortical, grey matter and white matter, supratento-
rial and infratentorial, left and right hemisphere structures 

were uniformly evaluated without prioritising potentially 
discriminatory anatomical regions a priori.

The ranking of variable importance revealed interesting 
trends. By large, integrity metrics of white matter regions 
discriminated the three groups better than grey matter 
measures. This is in line with previous observations that 
white matter degeneration is a relatively early feature of 
ALS [7, 41], while GM changes are less consistent, and 
may only become readily detectable in the later stages of 
the disease. A practical ramification of the recognition of 
the superior discriminatory power of white matter meas-
ures is that diffusion tensor protocols should be routinely 
incorporated into clinical and pharmacological trials pro-
tocols as opposed to only relying on T1-weighted, FLAIR 
and T2-weighted data sets which are classically used for 
clinical evaluation to rule out mimic conditions. Interest-
ingly, there was only one grey matter variable among the 
first 20 diagnostically relevant imaging features and only 
4 grey matter variables were ranked in the first 50 fea-
tures. Our post hoc analyses also confirmed that excellent 
subject classification can be achieved relying on white 
matter measures alone (Figs. 2 and 5, Tables 1 and 3). 
These models provided accurate diagnostic classification 
without evaluating grey matter measures or volumes at 
all, and were solely based on measures derived from DTI. 
Furthermore, our results confirm the imperative of evalu-
ating non-FA diffusivity measures. While FA is the most 

Table 3   Classification outcomes in the peri-diagnostic phase in the 
training and testing samples using A, all imaging features B, the 20 
most important variables only and C, white matter diffusivity metrics 
alone

ALS amyotrophic lateral sclerosis, DC disease control, HC healthy 
control

Sample Observed Predicted

ALS DC HC % Correct

(A) All features included
Training ALS 76 5 9 84.4

DC 1 19 3 82.6
HC 15 1 65 80.2
Overall percent 47.4% 12.9% 39.7% 82.5

Testing ALS 23 0 6 79.3
DC 2 11 1 78.6
HC 11 0 35 76.1
Overall percent 40.4% 12.4% 47.2% 77.5

(B) 20 features included
Training ALS 58 3 24 68.2

DC 3 22 1 84.6
HC 15 1 68 81.0
Overall percent 39.0% 13.3% 47.7% 75.9

Testing ALS 26 4 4 76.5
DC 1 6 4 54.5
HC 7 0 36 83.7
Overall percent 38.6% 11.4% 50.0% 77.3

(C) Only white matter metrics included
Training ALS 62 3 13 79.5

DC 1 24 0 96.0
HC 12 1 75 85.2
Overall percent 39.3% 14.7% 46.1% 84.3

Testing ALS 30 2 9 73.2
DC 2 9 1 75.0
HC 5 1 33 84.6
Overall percent 40.2% 13.0% 46.7% 78.3

Fig. 4   The predicted pseudo-probability profiles of ALS patients 
around the time of their diagnosis (< 6 weeks), disease controls (DC) 
and healthy controls (HC)



2448	 Journal of Neurology (2022) 269:2440–2452

1 3

commonly evaluated white matter metric in descriptive 
analyses, RD, MD, and AD proved to be equally impor-
tant discriminatory variables in our models. The review 
of ranked discriminating variables (Table 2.) is not only 
interesting from the perspective of biophysical meas-
ures, but also from an anatomical standpoint. The relative 
importance of key ALS-associated brain regions such as 
corticospinal tracts and precentral gyrus is not surprising 
given the ample evidence of the pathognomonic involve-
ment of these structures in ALS. Conversely, the indices 
of some brain regions, such as the brainstem, ranked rela-
tively low in the hierarchy of feature importance despite 
their archetypal involvement in ALS [42]. The discrimi-
natory relevance of external capsule integrity is also of 
interest as ALS studies overwhelmingly emphasise inter-
nal capsule alterations [43]. It is also noteworthy that mul-
tiple cerebellar measures are among the most important 
discriminatory features, including intra-cerebellar white 
matter diffusivity metrics, volumetric values as well as 
cerebellar peduncle integrity measures. The recognition 
that cerebellar degeneration is an important facet of ALS 
biology is not new, but regional cerebellar disease burden 
has only been recently characterised in detail [44–50]. 
Our findings highlight the practical importance of sys-
tematically evaluating infratentorial indices in ALS and 
not only focussing on supratentorial variables. Several 
long association tracts (ILF, FOF) were also listed among 
the first 50 discriminatory regions, which are likely to 
aid discrimination from the disease-control group [51]. 
Frontotemporal dementia is a genetically, molecularly and 
clinically heterogeneous group of conditions, and specific 
subtypes are associated with specific imaging signatures 
[52, 53]. Our study illustrates the relevance of assessing 
brain regions which are not classically affected in ALS 
[54]. These regions may be preferentially affected in other 

Fig. 5   Receiver-operating characteristic curve of patients with ALS 
around the time of their diagnosis (< 6 weeks), disease controls (DC) 
and healthy controls (HC) using all imaging features (A—left), the 20 

most important variables only (B—middle) and white matter diffusiv-
ity metrics alone (C—right)

Fig. 6   The multilayer perceptron model architecture. Input layer: 20 
imaging metrics. Hidden layer: 6 nodes (units). Hidden layer activa-
tion function: hyperbolic tangent. Output layer: diagnostic label. CST 
corticospinal tract, SCP sup cerebellar ped, ILF inferior longitudinal 
fasciculus, MLe medial lemniscus, UF uncinate fasciculus, SLF supe-
rior longitudinal fasciculus, ATR​ anterior thalamic radiation, LO lat-
eral occipital, Rt right, Lt left



2449Journal of Neurology (2022) 269:2440–2452	

1 3

conditions therefore the interrogation of imaging metrics 
from these anatomical foci is invaluable in discriminating 
ALS from alternative diagnoses. More broadly, our results 
support the importance of exploring imaging data without 
a priori anatomical assumptions.

Our approach illustrates that a multitude of metrics may 
be readily incorporated into complex classification models 
across a variety of anatomical regions. These models may be 
potentially further expanded to include additional measures 
such as wet biomarkers, additional imaging metrics or clini-
cal measures [55–64]. In this application only cerebral meas-
ures were evaluated, despite the potential of spinal metrics 
[65–68]. Similar frameworks could potentially be utilised for 
the discrimination of other MND phenotypes such as PLS, 
PMA or flail-arm syndrome [69–71].

This study is not without limitations. A three-way clas-
sification scheme was implemented with a single disease-
control group. The inclusion of a ‘mimic’ disease-control 
group would have been helpful to test the model further, 
but the definition of a true ALS mimic condition is con-
tentious. Only total volumes of subcortical structures were 
explored as input variables in this study, even though the 
assessment of specific amygdalar nuclei, thalamic nuclei 
or hippocampal subfields may enhance the discrimination 
of ALS form other neurodegenerative conditions [72–75]. 
Moreover, our model only evaluated cerebral metrics, there-
fore LMN pathology is not accounted for and discrimination 
from LMN-predominant MNDs cannot be reliably assessed 
[76–82]. Additional validation of the model with presymp-
tomatic mutation carriers would have tested the classifica-
tion accuracy of the model further by evaluating subjects 
with limited disease burden [10, 83]. Model overfitting to a 
particular training cohort is invariably a significant risk and 
this study is no exception. Notwithstanding these limitations, 
our results indicate that subjects may be accurately classified 
into a diagnostic cohort, healthy control, or diseases control 
categories based on imaging data alone.

Conclusions

The meaningful interpretation of singe-subject imaging data 
is an urgent priority of clinical neuroradiology. Group-level 
descriptive analyses offer valuable academic insights, but 
the practical demands of clinical neuroradiology and clinical 
trial applications require accurate single-subject classifica-
tion based on a core set of quantitative markers.
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