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ABSTRACT

Objective: The objective of this study is to demonstrate the feasibility of applying word embeddings to expand

the terminology of dietary supplements (DS) using over 26 million clinical notes.

Methods: Word embedding models (ie, word2vec and GloVe) trained on clinical notes were used to predefine a

list of top 40 semantically related terms for each of 14 commonly used DS. Each list was further evaluated by

experts to generate semantically similar terms. We investigated the effect of corpus size and other settings (ie,

vector size and window size) as well as the 2 word embedding models on performance for DS term expansion.

We compared the number of clinical notes (and patients they represent) that were retrieved using the word em-

bedding expanded terms to both the baseline terms and external DS sources expanded terms.

Results: Using the word embedding models trained on clinical notes, we could identify 1–12 semantically simi-

lar terms for each DS. Using the word embedding expanded terms, we were able to retrieve averagely 8.39%

more clinical notes and 11.68% more patients for each DS compared with 2 sets of terms. The increasing corpus

size results in more misspellings, but not more semantic variants and brand names. Word2vec model is also

found more capable of detecting semantically similar terms than GloVe.

Conclusion: Our study demonstrates the utility of word embeddings on clinical notes for terminology expansion

on 14 DS. We propose that this method can be potentially applied to create a DS vocabulary for downstream

applications, such as information extraction.
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INTRODUCTION

The safety of dietary supplements (DS) has received increasing atten-

tion in recent years due to evidence showing that DS can cause ad-

verse events, leading to potentially dangerous clinical outcomes.1,2

Results from an annual survey on DS by Council for Responsible

Nutrition (CRN) revealed that 76% of US adults take DS in 2017,

resulting in an increase of 5% compared with 2016.3 The current

postmarketing surveillance utilizes voluntarily submitted reports of

suspected adverse events caused by DS. The reporting schema often

suffers from underestimation since only a fraction of severe events

(eg, death) are reported.4 Although National Health and Nutrition

Examination Survey (NHANES) has reported the DS use on the

population level,5 there remains a critical need to investigate their

use on the individual level. Such information is critical for better un-
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derstanding the effects of supplement use with coadministered medi-

cations and attendant adverse events. Moreover, the inherent limita-

tions of both voluntary reporting and clinical trials have created an

imperative need for complementary data sources and data-driven

methods for automatic identification and detection.6

Electronic health record (EHR) data, especially clinical notes, of-

fer a potentially effective data source for active pharmacovigilance

on DS.7 One main advantage of EHR data is the availability of com-

prehensive clinical information obtained during the course of care,

especially those related to patient safety extensively documented in

clinical notes, such as signs and symptoms. Analyzing the clinical

notes provides a promising approach for assessing the DS use on the

individual level, which can further facilitate DS safety research and

clinical decision support. However, one main obstacle surrounding

the secondary use of EHR data is the lack of standardized terminol-

ogy for DS. Furthermore, a biomedical terminology such as

RxNorm usually fails to cover all various expressions of DS in the

clinical notes, including misspellings, brand names, other lexical var-

iances, etc. The domain specific terminology plays a significant role

in a variety of applications.8 To facilitate the meaningful use of

EHR data for the purpose of improving patient safety in terms of DS

consumption, it is vital to understand how DS are represented in

EHR, namely to gain insights on the syntactic and semantic variabil-

ity of DS in clinical notes. A DS terminology developed on EHR is

critical for identifying DS use status for patients, which is beneficial

for subsequent DS safety research and development of clinical deci-

sion support system. Additionally, a comprehensive DS terminology

based on EHR data can further contribute to identifying patients

who meet the criteria of consuming DS for placement in clinical tri-

als both accurately and thoroughly. This has been demonstrated by

the 2018 shared tasks of National Natural Language Processing

(NLP) Clinical Challenges (n2c2), one aim of which was to deter-

mine whether a patient has used DS (excluding Vitamin D) in the

past 2 months.9

Due to the nature of clinical natural language, the names of DS

in the clinical notes often have tremendous syntactic and semantic

variability. Existing terminologies such as the Unified Medical Lan-

guage System (UMLS) have a low level of coverage for DS var-

iants.10 Although there are databases (eg, Natural Medicine

Comprehensive Database), representing DS, these syntactic and se-

mantic variabilities are usually outside the scope of the databases. In

addition, as a very specific subdomain language in medicine, the

comprehensive terminology for DS does not exist. Therefore, the

method to efficiently explore the semantic variants, brand names,

and misspellings of DS is required for a number of downstream

applications, such as information extraction through natural lan-

guage processing techniques, which will serve as an initial step for

future DS safety surveillance systems.

Generally, there are two classes of methods used to expand se-

mantically similar terms based on word similarity.11 One is a

thesaurus-based method, such as measuring the similarity between

two senses defined by a thesaurus like MeSH or SNOMED-CT.12

The limitation of this method is that thesauri might be missing new

words or may not be available in every language or sublanguage.

The other method is based on the distributional semantics, in which

the word similarity is estimated based on the distributions of the

words in the corpus. Distributional semantics makes the assumption

that words with similar meanings tend to occur in similar con-

texts.13 Distributional methods, including spatial and probabilistic

models, have been applied to estimate the semantic similarity be-

tween two medical terms.14 To capture the word similarity, vector

models, such as co-occurrence vector using some weighting func-

tions including pointwise mutual information (PMI),15 are most

commonly used. However, such representation methods often suffer

from the limitation that they are high-dimensional, which requires a

large amount of storage.16 Another problem is that the matrix has

sparsity issues, making the subsequent machine learning models less

robust and generalizable.17

Word embedding models have been shown to be able to reveal hid-

den semantic relationships between words, such as similarity or related-

ness. The concept of “word embedding,” as defined by Bengio et al in

2003,18 refers to the representations for words occupying a real-valued

low-dimensional and dense vector space where the similarity between

words is measured by cosine similarity. Compared with traditional dis-

tributional semantics models, word embedding models are more effi-

cient and scalable since they can be trained on a large amount of

unannotated data.19 Word2vec20,21 and GloVe17 are two popular word

embedding models. Word2vec and GloVe trained the word vectors in a

different way, and there were very limited studies conducted to investi-

gate the advantage of one model over another.

In the clinical domain, word embedding models have been ap-

plied on a variety of NLP tasks, such as named entity recognition

and clinical text classification.22,23 Pretrained word vectors are often

used as input features for such tasks. Nguyen et al16 utilized word2-

vec to discover the variants of adverse drug reaction terms in social

media data. The results of this study showed that the expanded lexi-

con by word2vec can improve the performance of using social media

data to capture the prevalence of adverse events. Bethany et al8 ap-

plied word2vec for automatic lexicon expansion of radiology terms

with promising results. Pakhomov et al24 evaluated the word2vec on

a document retrieval task; the results showed that the expanded

queries with semantically similar phrases could identify more

patients with heart disease. Wang et al25 evaluated the word embed-

dings in an information retrieval task through expanding the search

query with five most similar terms from word embeddings. Cur-

rently, no prior study has investigated the effects of the corpus size

for the word embeddings on the performance of NLP tasks.

Based on the theoretical ground of distributional semantics, we

hypothesized that word embedding models can be used to detect se-

mantically or syntactically similar terms for DS in clinical notes.

Thus, the objective of this study is to use word embeddings to ex-

pand the terminology of DS from clinical notes. Specifically, we

evaluate the effects of various settings (eg, corpus size, window size,

and vector size) of word embedding models, and compare the per-

formance of different word embedding models (ie, word2vec and

GloVe) on the task of expanding DS terminology in clinical notes.

METHODS

Study design
The study was carried out in three steps outlined as follows: (1) col-

lecting and preprocessing clinical notes; (2) training word vectors us-

ing two word embedding models (ie, word2vec and GloVe) and

experimenting on the different settings with respect to corpus size,

window size, vector size, and the type of vectors (ie, CBOW, skip-

gram); (3) conducting both intrinsic and extrinsic evaluations. The

overview and workflow of the method is shown in Figure 1.

Data collection and preprocessing
Clinical notes from April 2015 to December 2016 were collected

from clinical data repository (CDR) at the University of Minnesota
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Medical Center. The CDR houses the EHR of patients seeking

healthcare at 8 hospitals and over 40 clinics. The CDR contains 130

million clinical notes of over 2 million patients. Institutional review

board (IRB) approval was obtained for accessing the clinical notes.

The collected corpus went through minimal preprocessing work in-

cluding punctuation removal and lowercasing. All the notes were

compiled as a single text file with all the words separated by a single

space for subsequent model training.

Model training and parameter tuning
In this study, we first applied word2vec to generate the word vectors

for preprocessed, different-sized corpora with default setting of

parameters (ie, CBOW, window size of 8, and vector size of 200).

Specifically, starting at the first 3 months’ (from April to June of

2015) clinical notes, we increased the corpus size by every 3 months.

Thus, we obtained 7 corpora with the time spans of 3, 6, 9, 12, 15,

18, and 21 months. Seven word2vec models were then trained on

these 7 corpora. By inputting the name (eg, “garlic”) for each of the

14 DS into these trained word2vec models, we obtained a ranked

list containing 40 semantically related terms for each of 14 DS

from each model. Based on the human annotations (details de-

scribed below), we investigated how the change of corpus size af-

fect the number of various semantically similar terms. Once the

optimal corpus size was determined based on the human evalua-

tion on the top 40 terms, we investigated the different parameter

settings regarding the window size (ie, 4, 6, 8, 10, and 12) and the

vector size (ie, 100, 150, 200, and 250) on the optimal sized cor-

pus. We also trained the word2vec skip-gram model on the corpus

with the optimal size. The threshold for subsampling was set as

1e�4. The number of threads was set as 20 and the number of iter-

ations was 25. In addition, in order to compare the performance of

GloVe model with that of the word2vec model, we trained the

GloVe model on the same corpus of the optimal size used to train

the word2vec model. Different parameter settings were also tested,

including the vector size (ie, 50, 100, 150, and 200) and the win-

dow size (ie, 8 and 15). For both models, the optimal parameters

were chosen based on the number of semantically similar terms an-

notated by the human experts.

Annotation and intrinsic evaluation
Fourteen commonly used DS were chosen for evaluation based on

online survey and peer-reviewed publications,26–28 which included

calcium, chamomile, cranberry, dandelion, flaxseed, garlic, ginger,

ginkgo, ginseng, glucosamine, lavender, melatonin, turmeric, and

valerian. For each DS name used as an input, the trained word2vec

model returned a list of 40 top-ranked semantically related terms

with varied cosine similarity scores. Similarly, we applied the cosine

similarity measure on the word embeddings obtained by GloVe to

generate a list of 40 top-ranked semantically related terms for each

of the 14 DS. Two experts with both clinical and informatics back-

grounds independently annotated the lists. Expert judgment was

used to evaluate these terms to identify the semantically similar

terms. Annotation guidelines were first created to classify terms on

the list into four categories: semantic variants, brand names, mis-

spellings, and irrelevant terms. The disagreement was settled by dis-

cussion and further judged by another informatics expert. The

interannotator agreement was calculated using the Cohen’s Kappa

score.

We used the expert-curated terms as the gold standard to intrin-

sically evaluate the mean average precision (MAP) of the returned

40 top-ranked terms for each of the 14 DS (totally 560 terms). We

compared the performance of word2vec and GloVe using MAP

score and the number of semantically similar terms annotated by hu-

man experts.

Extrinsic evaluation (note identification)
We combined the terms identified by both word2vec and GloVe

and applied them in two notes identification tasks using NLP-PIER

Figure 1. The overview and workflow of the method. EHR: electronic health record.
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(Patient Information Extraction for Research),29 a tool developed by

the NLP-IE group at the University of Minnesota specifically for

indexing the collection of clinical notes used in this study. PIER

allows researchers to input keywords to easily access the clinical

notes. However, simple keyword searching for DS is often not effec-

tive. For example, a keyword of “Vitamin C” in identifying patients

taking vitamin C is insufficient without considering its semantically

similar terms such as “ascorbic acid” and “Vit C,” which are well-

represented in clinical notes. Therefore, we evaluated the effective-

ness of our expanded DS terms through notes identification task.

Specifically, for querying clinical notes, we compared these terms

with two sets of baseline terms: (1) a single DS term for each of 14

DS; (2) a set of expanded terms using only the external DS knowl-

edge bases. Since this query expansion is not involved in an IR sys-

tem, no relevance related to the identified notes is evaluated. We

described the experiments in the following two tasks.

Task 1: Comparing performance of the word embedding expanded

queries with the baseline queries

For each DS, the baseline query (using only a single DS term) was used

to identify the clinical notes through NLP-PIER. We call query terms

identified by the two word embedding models and human experts as

“word embedding expanded terms.” The word embedding expanded

terms were augmented with the baseline term for query expansion. The

expanded queries were used to identify the notes for each DS. The num-

ber of the distinct clinical notes and patients were counted for both

baseline queries and word embedding expanded queries. The number of

additional notes and patients found by expanded queries and percentage

increase were calculated.

Task 2: Comparing performance of the word embedding expanded

queries with the queries expanded using external DS knowledge

sources

We further compared the performance of the word embedding ex-

panded queries with queries based on 2 external knowledge sources

including Natural Medicines Comprehensive Database (NMCD)30

and Dietary Supplement Label Database (DSLD).31 NMCD, man-

aged by the therapeutic research center, is one of the most compre-

hensive and reliable natural medicine resources. For each product,

the database provides 15 categories of information including com-

prehensive other names the product is known by. DSLD is created

and managed by the Office of Dietary Supplements (ODS) and Na-

tional Library of Medicine (NLM) at the National Institutes of

Health. DSLD provides users the access to the full label derived in-

formation from DS products marketed in the United States. DSLD

also provides a list of alternate names or synonyms for the ingre-

dients. For each selected DS, two domain experts manually reviewed

the information on other names available on NMCD and DSLD to

be used in the search queries. The names were restricted to English

and Latin names and the names used to be sold in the US market.

We used the word embedding expanded queries and external source

expanded queries to identify clinical notes through NLP-PIER and

compared the number of identified clinical notes and patients. Simi-

lar to task 1, the number of additional notes and patients found by

expanded queries and percentage increase were calculated.

RESULTS

A total of 26 531 085 clinical notes containing 66 214 049 847

tokens were used to train the word embedding models in this study.

The vocabulary size is 635 176. The Cohen’s kappa score between

the two annotators was 0.869, which indicates high reliability. The

number of semantically similar terms identified by word2vec and

human annotators for each of the 14 DS based on the 40 top-ranked

terms from corpus with varied sizes was shown in Table 1. The

MAP scores for 7 corpora are also shown in this table. The general

trend shows that as the corpus size (vocabulary size) increases, the

total number of semantically similar terms annotated by human

experts from the 40 top-ranked terms increases. While the size of the

corpus is increasing, more misspellings were found within the top 40

terms, but the number of semantical variants and brand names

reaching the peak when the corpora were created using 6 months’

and 12 months’ notes, respectively. However, we found that these

terms found by different corpora with varying sizes have some over-

lapped terms while containing some new terms. To include more se-

mantically similar terms, we chose to use all the available notes (21

months) to train the final word embedding models and tuned the

hyperparameters. We trained CBOW and skip-gram with the default

parameter settings. We found that the words returned by CBOW

and skip-gram were the same, so we used CBOW in the final model

training. After the hyperparameter tuning, the optimal window size

was set as 8 and the optimal vector size as 200 for word2vec CBOW

model. For GloVe model, we tried different parameters and the opti-

mal window size was also set as 8 and the optimal vector size as

200.

The word embedding expanded terms (semantic variants, brand

names, and misspellings) for 14 DS were shown in Supplementary

Table S1. In total, the word2vec model has detected 35 semanti-

cally similar terms for 14 DS. For cranberry, its semantic variants,

brand names, and misspellings were detected. The word2vec model

has identified the various forms of misspellings for DS such as cal-

Table 1. The number of semantically similar terms identified by human experts based on 40 top-ranked terms by word2vec for each 14 DS

from 7 corpora

Time span of clinical notes for 7 corpora

3 months 6 months 9 months 12 months 15 months 18 months 21 months

Vocabulary size 214 948 312 557 388 891 454 459 520 127 577 362 635 176

Semantic variants 12 14 13 13 11 10 9

Brand names 7 9 8 9 6 7 5

Misspellings 4 8 10 14 13 14 21

Total 23 31 31 36 30 31 35

MAP 0.313 0.294 0.356 0.247 0.242 0.280 0.263

MAP: mean average precision; DS: dietary supplements.
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cium and glucosamine. The word2vec model also detected several

brand names for DS that are commonly purchased over the coun-

ter, such as calcium. For some DS, such as calcium, lavender, and

ginkgo, their expert-annotated terms appear in the top 10 words

on the returned list. The MAP score for expanding DS terms using

word2vec is 0.263. A total of 17 semantically similar terms were

identified by GloVe and human annotators. Compared with

word2vec model, GloVe model is less capable of detecting mis-

spellings, as only two misspellings were found by GloVe. For lav-

ender and ginger, Glove has found their semantic variants which

the word2vec model failed to detect. The MAP score for expanding

DS terms using GloVe is 0.236, which is close to that for the

word2vec generated terms.

We further applied the word embedding expanded terms in two

clinical notes identification tasks. The results of the comparison be-

tween the baseline and word embedding expanded queries in terms

of the number of notes and the number of distinct patients were

shown in Table 2. From the table, we can see that for all the DS, the

number of notes and distinct patients identified by word embedding

expanded queries has increased with a range from 14 to 93 308 and

from 5 to 20 086, respectively. For ginger and dandelion, the in-

crease is relatively small. However, as for ginkgo and turmeric, the

inclusion of semantic variants, brand names, and misspellings has

increased the number of identified notes and patients by a large

amount. For glucosamine and valerian, incorporating the baseline

term with only detected misspellings has led to an increase in the

notes number, indicating that misspellings have great value in identi-

fying patients taking DS.

The word embedding expanded terms and terms from two exter-

nal DS databases are shown in Supplementary Table S2. The results

Table 2. Results of comparison between word embedding expanded queries and baseline queries (task 1) for 14 dietary supplements

Queries Number of clinical notes Number of patients

Dietary

supplements

Number of word

embedding

expanded terms

Base

query

Word

embedding

query

Additional

records

found

Percentage

increase (%)

Base

query

Word

embedding

query

Additional

patients

found

Percentage

increase

(%)

Calcium 12 7 450 261 7 543 569 93 308 1.25 1 000 561 1 002 211 1650 0.16

Chamomile 3 5221 6120 899 17.22 3504 4146 642 18.32

Cranberry 3 196 862 198 625 1763 0.90 76 664 77 327 663 0.86

Dandelion 2 4468 4564 96 2.15 2377 2419 42 1.77

Flaxseed 2 104 007 169 343 65 336 62.82 25 136 45 222 20 086 79.91

Garlic 1 92 803 93 941 1138 1.23 31 273 31 400 127 0.41

Ginger 1 96 438 96 452 14 0.01 59 693 59 698 5 0.01

Ginkgo 3 20 259 28 093 7834 38.67 5854 7791 1937 33.09

Ginseng 2 9926 11 277 1351 13.61 4023 4469 446 11.09

Glucosamine 5 466 617 467 758 1141 0.24 70 842 70 938 96 0.14

Lavender 3 18 793 20 667 1874 9.97 11 855 13 011 1156 9.75

Melatonin 1 753 511 753 753 242 0.03 118 846 118 896 50 0.04

Turmeric 3 33 573 48 749 15 176 45.20 8379 13 486 5107 60.95

Valerian 2 15 883 16 219 336 2.12 7051 7207 156 2.21

Table 3. Results of comparison between word embedding expanded queries and external source expanded queries (task 2) for 14 dietary

supplements

Queries Number of clinical notes Number of patients

Dietary

supplements

Number of

external source

terms

Number of word

embedding

expanded terms

External

source

query

Word

embedding

query

Additional

records

found

Percentage

increase (%)

External

source

query

Word

embedding

query

Additional

patients

found

Percentage

increase

(%)

Calcium 15 12 7 453 873 7 543 569 89 696 1.20 1 000 906 1 002 211 1305 0.13

Chamomile 5 3 6193 6120 �73 �1.18 4243 4146 �97 �2.29

Cranberry 21 3 196 944 198 625 1681 0.85 76 697 77 327 630 0.82

Dandelion 15 2 4509 4564 55 1.22 2383 2419 36 1.51

Flaxseed 10 2 169 349 169 343 �6 0.00 45 229 45 222 �7 �0.02

Garlic 6 1 92 913 93 941 1028 1.11 31 328 31 400 72 0.23

Ginger 15 1 96 499 96 452 �47 �0.05 59 719 59 698 �21 �0.04

Ginkgo 6 3 20 275 28 093 7818 38.56 5855 7791 1936 33.07

Ginseng 21 2 10 158 11 277 1119 11.02 4151 4469 318 7.66

Glucosamine 7 5 466 617 467 758 1141 0.24 70 842 70 938 96 0.14

Lavender 5 3 18 798 20 667 1869 9.94 11 856 13011 1155 9.74

Melatonin 3 1 753 513 753 753 240 0.03 118 847 118 896 49 0.04

Turmeric 18 3 35 719 48 749 13 030 36.48 8962 13 486 4524 50.48

Valerian 10 2 15 886 16 219 333 2.10 7051 7207 156 2.21
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of the number of clinical notes and patients found by word embed-

ding expanded queries and external source queries are shown in

Table 3. Comparing to the external source queries, the word embed-

ding expanded queries has found more clinical notes for most of 14

DS, except for chamomile, flaxseed, and ginger. The terms from two

external sources are mainly scientific names or some other names of

DS. Even though DSLD contains some brand names for DS sold in

the US market, it does not provide sufficient coverage on the com-

plete information on brand names. Our finding demonstrates that

the terms identified by word embedding models have very well cap-

tured their semantic variants in clinical notes and meanwhile con-

tained some brand names and misspellings which the external

sources failed to cover. On the other hand, for chamomile, flaxseed,

and ginger, the fact that the external source queries have found a

larger number of clinical notes indicate that the external resources

can be good complementary source on the terminology of DS, espe-

cially in terms of scientific names.

The selected example sentences mentioning the semantic var-

iants, brand names, and misspellings for DS were shown in Table 4.

DISCUSSION

Accessing information on DS in clinical notes can help us to under-

stand its use on the individual level and related safety problems.

Without a standard terminology, our ability is very limited to iden-

tify comprehensive information on DS in clinical notes, which might

lead to biased knowledge. In this study, we attempted to apply word

embedding models to overcome this limitation and tried to generate

relatively comprehensive terms for commonly used DS. We trained

two word embedding models on clinical notes to detect and identify

semantically similar terms for DS. The terms identified by word em-

bedding models and human experts were applied in two clinical

note identification tasks for further evaluation. Our results support

the hypothesis that semantic variants, brand names, and misspellings

of DS appear in similar context in our clinical note corpus and that

applying the word embedding models based on distributional se-

mantics can help detect such syntactic and semantic variants.

We conducted a set of comprehensive experiments on the corpus

size and hyperparameters. We found out that when the corpus size is

small, a relatively small number of semantically similar terms were

Table 4. Selected example sentences with mentions of semantic variants, brand names, and misspellings for dietary supplements

Dietary supplements Examples

Calcium Increase calicum carb (tums) to 3 times a day.

Stop Citracal but continue vitamin D.

Patient was taking Calcarb D 600/200.

I stopped the Oysco, and put in Rx for cholecalciferol for her.

Chamomile Recommend chamomile tea for sleep.

A product called No Jet Lag contains homeopathic remedies leopard’s bane

(Arnica montana), daisy (Bellis perennis), and wild chamomile (Matricaria chamomilla).

She will try the camomille.

Cranberry Continue to increase fluids and cran juice.

Restart the methenamine and Ellura a couple of days before you complete your course of atibiotics.

She started craberry tabs.

Dandelion Ok to take dandilion root but needs to keep taking Lasix and needs follow up appt.

He is taking some dandilion for its potassium sparing effects as well.

Flaxseed Start flax seed oil 1000 mg daily.

She should stop fish oil and start flaxseed.

You may try linseed for constipation.

Garlic Pt states she is going to try “Garlique” for 6 months.

She is on Garlique.

Ginger Zingiber officinale rhizome is also known as ginger.

Ginkgo Okay to start gingko.

Can begin multivitamin and ginko and calcium now.

She had been taking Ginkoba and Vitamin C but she stopped taking them.

Ginseng Sent my chart message telling her to discontinue the ashwagandha.

Pt states he takes ginsing and has for a couple of years.

Glucosamine Questions about discontinuing glucosomine.

Please ask her to resume arimidex and us OTC glucosmaine prn for acheness.

Recommended medication clucosamine and eye drops for allergies.

She would like to take glucosame, fish oil, and folic acid.

Lavender She could try melatonin or lavendar and ginger scents to help you relax and decrease your nausea.

She used lavander oil and super glue on it.

Ok to add a few drops of essential oil to of lavender (Lavandula angustifolia) in milk.

Melatonin Patient is still having problems sleeping even while taking the melotonin.

Patient wants to know if it’s okay to take melotonin and if she can have an RX for this medication.

She is not sleeping well even on the melotonin.

Turmeric Stop her curcumin and fenugreek.

Pt is allergic to tumeric.

I would recommend not starting tumeric at this time.

Valerian Try valarian root for sleep.

Falling asleep better with valarian.

Take the volarian root every night for a few weeks.
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found. Another finding is that a larger corpus can only help detect

more misspellings. Unfortunately, continuously increasing the corpus

size cannot generate more semantic variants and brand names. How-

ever, the limitation is that we only evaluated the 40 top-ranked terms.

In the future, we could potentially extend to evaluate more terms.

Our future work will also include investigating new ranking systems.

We also evaluated some hyperparameters, including window size and

vector size. We tested 5 values of the window size and 4 values of the

vector size. We found that these 2 parameters have a large impact on

the model performance and that it should be cautious to use default

settings, especially for the GloVe model, which failed to generate any

valuable semantically similar words when the default settings were

applied. One limitation is that we did not test other parameters such

as the number of iterations and the number of negative samples,

which might also affect the model performance. For CBOW and

skip-gram, there was limited and inconclusive evidence available on

which model has higher performance. We tested both models and

found that they did not differ in this term expansion task.

When comparing the performance of the word2vec and GloVe

model, we found that GloVe model is more efficient than word2vec.

However, since these 2 models differed in the way of training word

vectors: word2vec trained the vectors using contextual information

in a predictive method and GloVe trained the word vectors through

constructing a co-occurrence matrix using the global information in

a “count-based” method,32 the word vectors they trained also dif-

fered. We found out that word2vec model has a better performance

in this word similarity task, particularly that word2vec model is

more capable of detecting misspellings.

When reviewing the word lists returned by the trained word em-

bedding models, we found that the returned lists for some DS can

contain the variants for other DS. For example, “ginkgo” appeared

in the word list for ginseng. We believe this is due to the fact that DS

share very similar contexts and expression patterns. We also found

that the list for some DS contain some related diseases, symptoms,

and medications with similar pharmacological effects associated

with this DS. For example, the list of terms for “melatonin” contains

related symptoms of “insomnia” and also contains the brand name

“Lunesta” and its corresponding generic name “Eszopiclone,”

which is a commonly prescribed medication often used to treat in-

somnia. This finding also demonstrates that the words in the list

cannot be included arbitrarily as additional search terms since a

varying number of false positives might be introduced in the query

results. Human annotation is significantly necessary for excluding

the false positive terms.

There are several limitations in this study. We only tested one-

word DS terms in this study. In the future, we would apply this

method on multiword DS terms for further investigation and evalua-

tion. Additionally, we only focus on the comparison of word embed-

ding models on the task of DS terminology development. We will

further explore other count-based methods (eg, PMI) and compare

the performance of such models with the word embedding models

to gain further insights in our future study. Motivated by one study

using the task-orientated additional resources,33 we would also in-

troduce other data resources such as biomedical literature, Wikipe-

dia articles, and social media data into the training corpus for

expanding DS terminology in the future.

The method used in this study can potentially be applied to a

wider range of DS, and ultimately contribute to the construction of

a terminology on DS based on clinical notes. The results also indi-

cate that two external sources have less coverage on brand names

and misspellings; however, providing rather complete information on

scientific names. Therefore, the syntactic or lexical variants for DS ex-

panded using the EHR data through word embedding models can be

further standardized and integrated with online resources including

knowledge databases, open-access biomedical publications, and social

media data to construct a comprehensive terminology for DS.

CONCLUSION

Word embedding models trained on clinical notes are feasible for

expanding DS terminology by identifying the semantically similar

terms in clinical notes. The expanded query terms help identify more

clinical notes and unique patients. The results of our study show

that distributional methods serve as a potential way for automati-

cally detecting semantically or syntactically similar terms for DS.

The query terms identified by word embedding models have very

well captured the semantic variants of DS in clinical notes. The gen-

erated terms of DS can also support further information extraction

of DS use information and potentially support the development of

DS safety surveillance system.
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