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Current attempts to probe general relativistic effects in quantum mechanics focus on precision 
measurements of phase shifts in matter–wave interferometry. Yet, phase shifts can always be 
explained as arising because of an Aharonov–Bohm effect, where a particle in a flat space–time 
is subject to an effective potential. Here we propose a quantum effect that cannot be explained 
without the general relativistic notion of proper time. We consider interference of a ‘clock’—a 
particle with evolving internal degrees of freedom—that will not only display a phase shift, but 
also reduce the visibility of the interference pattern. According to general relativity, proper 
time flows at different rates in different regions of space–time. Therefore, because of quantum 
complementarity, the visibility will drop to the extent to which the path information becomes 
available from reading out the proper time from the ‘clock’. such a gravitationally induced 
decoherence would provide the first test of the genuine general relativistic notion of proper 
time in quantum mechanics. 
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In the theory of general relativity, time is not a global background 
parameter but flows at different rates depending on the space– 
time geometry. Although verified to high precision in various 

experiments1, this prediction (as well as any other general relativistic 
effect) has never been tested in the regime where quantum effects 
become relevant. There is, in general, a fundamental interest in 
probing the interplay between gravity and quantum mechanics2. The 
reason is that the two theories are grounded on seemingly different 
premises and, although consistent predictions can be extrapolated 
for a large range of phenomena, a unified framework is still missing 
and fundamentally new physics is expected to appear at some scale.

One of the promising experimental directions is to reveal,  
through interferometric measurements, the phase acquired by a par-
ticle moving in a gravitational potential3,4. Typically considered is 
a Mach–Zehnder type interferometer (Fig. 1), placed in the Earth’s 
gravitational field, where a particle travels in a coherent superposi-
tion along the two interferometric paths γ1, γ2 that have different 
proper lengths. The two amplitudes in the superposition acquire dif-
ferent, trajectory-dependent phases Φi, i = 1, 2. In addition, the parti-
cle acquires a controllable relative phase shift ϕ. Taking into account 
the action of the first beam splitter and denoting by |ri〉 the mode 
associated with the respective path γi, the state inside the Mach– 
Zehnder setup |ΨMZ〉, just before it is recombined, can be written as 

| = 1
2

| | .1
1

2
2Ψ Φ Φ

MZ
i i iie r e r〉 〉 + 〉( )− − + j

Finally, the particle can be registered by one of the two detectors  
D ±  with corresponding probabilities P ± : 

P± ± +( )= 1
2

1
2

,cos ∆Φ j

where ∆Φ:= Φ1 − Φ2. The phase Φi is proportional to the action 
along the corresponding (semiclassical) trajectory γi on which the 
particle moves. For a free particle on an arbitrary space–time back-
ground, the action can be written in terms of the proper time τ that 
elapsed during the travel, S mci i= 2− ∫g td . This might suggest that 
the measurement of ∆Φ is an experimental demonstration of the 
general relativistic time dilation.

There is, however, a conceptual issue in interpreting experiments 
measuring a gravitationally induced phase shift as tests of the rela-
tivistic time dilation. The action Si above can be written in terms of 
an effective gravitational potential on a flat space–time. Thus, all 
the effects resulting from such an action are fully described by the 
Schödinger equation with the corresponding gravitational potential 
and where the time evolution is given with respect to the global time. 
Note that a particle in a field of arbitrary nature is subject to a Hamil-
tonian where the potential energy is proportional to the field’s charge 
and a position-dependent potential. Therefore, even in a homogene-
ous field, the particle acquires a trajectory-dependent phase although 
the force acting on it is the same at any point—the phase arises only 
because of the potential. For a homogeneous electric field, this rela-
tive phase is known as the electric Aharonov–Bohm effect5. The case 
of Newtonian gravity is directly analogous—the role of the particle’s 
electric charge and of the Coulomb potential are taken by the par-
ticle’s mass and the Newtonian gravitational potential, respectively 6. 
All quantum interferometric experiments performed to date (see for 
example, refs 7–9) are fully explainable by this gravitational analogue 
of the electric Aharonov–Bohm effect. Moreover, even if one includes 
non-Newtonian terms in the Hamiltonian, this dichotomy of interpre-
tations is still present. Again, one can interpret the phase shift ∆Φ as 
a type of an Aharanov–Bohm phase, which a particle moving in a flat 
space–time acquires because of an effective, non-Newtonian, gravita-
tional potential (at least for an effective gravitational potential arising 
from the typically considered Kerr or Schwarzschild space–times).

(1)(1)

(2)(2)

Here we predict a quantum effect that cannot be explained with-
out the general relativistic notion of proper time and thus show how 
it is possible to unambiguously distinguish between the two inter-
pretations discussed above. We consider a Mach–Zehnder interfer-
ometer placed in the gravitational potential and with a ‘clock’ used 
as an interfering particle. By ‘clock’ we mean some evolving internal 
degree of freedom of the particle. If there is a difference in proper 
time elapsed along the two trajectories, the ‘clock’ will evolve into 
different quantum states for the two paths of the interferometer.  
Because of quantum complementarity between interference and 
which-path information the interferometric visibility will decrease 
by an amount given by the which-way information accessible from 
the final state of the clock10–12. Such a reduction in the visibility is a 
direct consequence of the general relativistic time dilation, which 
follows from the Einstein equivalence principle. Seeing the Ein-
stein equivalence principle as a corner stone of general relativity, 
observation of the predicted loss of the interference contrast would 
be the first confirmation of a genuine general relativistic effect in 
quantum mechanics.

One might sustain the view that the interference observed with 
particles without evolving degrees of freedom is a manifestation of 
some intrinsic oscillations associated with the particle and that such 
oscillations can still be seen as the ticking of a clock that keeps track 
of the particle’s time. If any operational meaning was to be attributed 
to this clock, it would imply that which-way information is, in prin-
ciple, accessible. One should then either assume that proper time is 
a quantum degree of freedom, in which case, there should be a drop 
in the interferometric visibility, or that the quantum complementa-
rity relation (between which-path information and interferometric 
visibility) would be violated when general relativistic effects become 
relevant. Our proposed experiment allows to test these possibilities. 
The hypothesis that proper time is a degree of freedom has indeed 
been considered in various works13–15.

The above considerations are also relevant in the context of 
the debate over ref. 16 (determination of the gravitational redshift 
by reinterpreting interferometric experiment9 that measured the  
acceleration of free fall). It was pointed out in refs 17–20 that only 
states non-trivially evolving in time can be referred to as ‘clocks’. In 
ref. 18, the interference in such a case was discussed, however, the 
role of the interferometric visibility as a witness of proper time in 
quantum mechanics and as a tool to test new hypotheses has not 
been previously considered.
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Figure 1 | Mach–Zehnder interferometer in the gravitational field. 
The setup considered in this work consists of two beam splitters (Bs), a 
phase shifter (Ps) and two detectors D ± . The Ps gives a controllable phase 
difference ϕ between the two trajectories γ1 and γ2, which both lie in the x − y 
plane. A homogeneous gravitational field (g) is oriented antiparallel to the 
x direction. The separation between the paths in the direction of the field is 
∆h. General relativity predicts that the amount of the elapsed proper time is 
different along the two paths. In our approach, we will consider interference 
of a particle (which is not in free fall) that has an evolving internal degree 
of freedom that acts as a ‘clock’. such an interference experiment will 
therefore not only display a phase shift, but also reduce the visibility of the 
interference pattern to the extent to which the path information becomes 
available from reading out the proper time of the ‘clock’.
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In the present paper, we discuss an interferometric experiment 
in the gravitational field where the interfering particle can be opera-
tionally treated as a ‘clock’. We predict that as a result of the quan-
tum complementarity between interference and which-path infor-
mation the general relativistic time dilation will cause the decrease 
in the interferometric visibility. The observation of such a reduction 
in the visibility would be the first confirmation of a genuinely gen-
eral relativistic effect in quantum mechanics, in particular, it would 
unambiguously probe proper time as predicted by general relativ-
ity. The proposed experiment can also lead to a conclusive test of 
theories in which proper time is treated as a quantum degree of 
freedom.

Results
Which-way information from proper time. Consider an 
interferometric experiment with the setup as in Fig. 1, but in a 
situation where the particle in superposition has some internal 
degree of freedom that can evolve in time. In such a case, state (1) is 
no longer the full description of the system. Moreover, if this degree 
of freedom can be considered as a ‘clock’, according to the general 
relativistic notion of proper time it should evolve differently along 
the two arms of the interferometer in the presence of gravity. For a 
trajectory γi, let us call |τi〉 the corresponding state of the ‘clock’. The 
superposition (1) inside the interferometer now reads 

| = 1
2

| | | | .1
1 1

2
2 2Ψ Φ Φ

MZ
i i iie r e r〉 〉 〉 + 〉 〉( )− − +t tj

In general, the state (3) is entangled and according to quantum 
mechanics interference in the path degrees of freedom should 
correspondingly be washed away. The reason is that one could 
measure the ‘clock’ degrees of freedom and in that way read out the 
accessible which-path information. Tracing out the ‘clock’ states in 
equation (3) gives the detection probabilities 

P± ± 〈 〉 + +( )= 1
2

1
2

| | | ,1 2t t a jcos ∆Φ

where 〈τ1|τ2〉 = |〈τ1|τ2〉|eiα. When the ancillary phase shift ϕ is varied, 
the probabilities P ±  oscillate with the amplitude V , called the 
visibility (contrast) of the interference pattern. Formally 

V :=
Max P Min P
Max P Min P

j j

j j

± ±

± ±

−
+

.

Whereas without the ‘clock’ the expected contrast is always maximal 
(equation (2) yields V = 1), in the case of equation (4) it reads 

  
V =| | | .1 2〈 〉t t

The distinguishability D  of the trajectories is the probability to 
correctly guess which path was taken in the two-way interferometer 
by measuring the degrees of freedom that serve as a which-way 
detector12 (in mathematical terms it is the trace norm distance 
between the final states of the detectors associated with different 
paths). In our case, these are the ‘clock’ degrees of freedom and 
we obtain D = 1 | | |1 2

2− 〈 〉t t . The amount of the which-way 
information that is potentially available sets an absolute upper 
bound on the fringe visibility and we recover the well-known duality 
relation10–12 in the form V D2 2 = 1+ , as expected for pure states.

The above result demonstrates that general relativistic effects  
in quantum interferometric experiments can go beyond previously 
predicted corrections to the non-relativistic phase shift. When 
proper time is treated operationally we anticipate the gravitational 
time dilation to result in the reduction of the fringe contrast. This 
drop in the visibility is expected independently of how the proper 
time is measured and which system and interaction are used for  

(3)(3)

(4)(4)

(5)(5)

the ‘clock’. Moreover, when the information about the time elapsed 
is not physically accessible, the drop in the visibility will not occur. 
This indicates that the effect unambiguously arises because of the 
proper time as predicted by general relativity, in contrast to measure-
ments of the phase shift alone. The gravitational phase shift occurs 
independently of whether the system can or cannot be operationally 
treated as a ‘clock’, just as the phase shift acquired by a system in the 
electromagnetic potential. Therefore, the notion of proper time is 
not probed in such experiments.

Massive quantum ‘clock’ in an external gravitational field. In 
the next paragraphs, we present how the above idea can be real-
ized when the ‘clock’ degrees of freedom are implemented in inter-
nal states of a massive particle (neglecting the finite-size effects). 
Let H  be the Hamiltonian that describes the internal evolution. 
In the rest reference frame, the time coordinate corresponds to the 
proper time τ, and the evolution of the internal states is given by 
i H ( )∂ ∂t = . Changing coordinates to the laboratory frame, the 
evolution is given by i t H ( )∂ ∂ = t , where t t= d dt  describes 
how fast the proper time flows with respect to the coordinate time. 
For a general metric gµν, it is given by   t mn

m n= −g x x , where we 
use the signature ( −  +  +  + ) and summation over repeated indices 
is understood. The energy–momentum tensor of a massive particle 
described by the action S can be defined as the functional deriva-
tive of S with respect to the metric, that is, T S gmn

mnd d:=  (see, 
for example, ref. 21). Since the particle’s energy E is defined as the 
T00 component, it reads E = g0 µg0νTµν. In the case of a free evolution  
in a space–time with a stationary metric (in coordinates such that 
g0j = 0 for j = 1, 2, 3), we have 

E mc g

g x x
= ,2 00−

− mn
m n 

where m is the mass of the particle. Space–time geometry in the 
vicinity of Earth can be described by the Schwarzschild metric.  
In isotropic coordinates (x, θ, ϑ) and with d d dΩ2 2 2 2≡ +q q Jsin  it 
takes the form21

c
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 + ddΩ2( ) ,

where f( ) =x GM x−  is the Earth’s gravitational potential (G 
denotes the gravitational constant and M is the mass of Earth). We 
consider the limit of a weak field and of slowly moving particles. 
In the final result, we therefore keep up to quadratic terms in the 
kinetic and potential energy. In this approximation, the metric 
components read21 
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The total Hamiltonian in the laboratory frame is given by 
H H HLab = 0 + t , where the operator H0 describes the dynamics 
of the external degrees of freedom of the particle and is obtained 
by canonically quantizing the energy (6), that is, the particle’s 
coordinate x and kinematic momentum p mx=   become operators 
satisfying the canonical commutation relation ( )[ , ] =x p i . Thus, 
approximating up to the second order also in the internal energy, 

(6)(6)
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HLab reads

H mc H E x
c

mc H Ek
GR GR

Lab corr 2
2

2( ) ,+ + + + +( )f

where 

E p
m

p
mc mc

Hk
GR =

2
1 3

2
12 2

2+ 








− 
  

and

 E m x p
m

GR
corr = 1

2
( ) 3

2

2
f −  . 

We consider a semiclassical approximation of the particle’s motion 
in the interferometer. Therefore, all terms in HLab, apart from the 
internal Hamiltonian H  , appear as purely numerical functions 
defined along the fixed trajectories.

In a setup as in Figure 1, the particle follows in superposition 
two fixed non-geodesic paths γ1, γ2 in the homogeneous gravita-
tional field. The acceleration and deceleration, which the particle 
undergoes in the x direction, is assumed to be the same for both 
trajectories, as well as the constant velocity along the y axis. This 
assures that the trajectories have different proper length, but there 
will be no time dilation between the paths stemming from special 
relativistic effects. The particle inside the interferometer will thus 
be described by the superposition | = 1

2
| |1 2Ψ Ψ ΨMZ i ei〉 〉 + 〉( )j ,  

where the states |Ψi〉 associated with the two paths γi are given by 
applying the Hamiltonian (7) to the initial state, which we denote by 
|xin〉|τ in〉. Up to an overall phase, these states read 

| = | | .

( )
2

2

Ψi

i

i
t x

c
mc H E

e x
GR

〉 〉 〉
− + +( )∫ g

f

t
d corr

in in

For a small size of the interferometer, the central gravitational 
potential φ(x) can be approximated to linear terms in the distance 
∆h between the paths: 

f f( ) = ( ) ( ),2R h R g h h+ + +∆ ∆ ∆O

where g GM R= 2  denotes the value of the Earth’s gravitational 
acceleration in the origin of the laboratory frame, which is at dis-
tance R from the centre of Earth.

For a particle having two internal states |0〉, |1〉 with correspond-
ing energies E0, E1, the rest frame Hamiltonian of the internal 
degrees of freedom can be written as 

H E E= | 0 0 | |1 1|0 1〉〈 + 〉〈

and if we choose the initial state of this internal degrees to be 

| = 1
2

(| 0 |1 )t in 〉 〉+ 〉

the detection probabilities read 

P m E V T E V T
c

mc H

E

± ± 








+(
+

( , , , , ) = 1
2

1
2 2 2

2j ∆ ∆ ∆ ∆ ∆ ∆cos cos


corrr
GR V T

c) + + 


∆ ∆
 2 j ,

where ∆T is the time (as measured in the laboratory frame) for 
which the particle travels in the interferometer in a superposition 
of two trajectories at constant heights, ∆V: = g∆h is the difference 
in the gravitational potential between the paths, EGR

corr  represents 

(7)(7)

(8)(8)

(9)(9)

(10)(10)

(11)(11)

(12)(12)

the corrections EGR
corr from equation (7) averaged over the two tra-

jectories and ∆E: = E1 − E0. The expectation value 〈H 〉 is taken with 
respect to the state (11). The corresponding visibility (5) is 

V =
2

.2cos ∆ ∆ ∆E V T
c







The introduction of the ‘clock’ degrees of freedom results in two 
new quantum effects that cannot be explained without including 
general relativity: the change of the interferometric visibility and the 
extra phase shift proportional to the average internal energy (Fig. 2; 
equation (12)). The drop in the visibility is a consequence of a direct 
coupling of the particle’s internal degrees of freedom to the potential 
in the effective Hamiltonian (7). Such a coupling is never found in 
Newtonian gravity, and it is the mathematical expression of the pre-
diction that the ‘clock’ ticks at different rates when placed in different 
gravitational potentials. This coupling can directly be obtained from 
the Einstein equivalence principle. Recall that the latter postulates 
that accelerated reference frames are physically equivalent to those 
in the gravitational field of massive objects. When applied within 
special relativity, this exactly results in the prediction that initially 
synchronized clocks subject to different gravitational potentials will 
show different times when brought together. The proposed experi-
ment probes the presence of such a gravitational time dilation effect 
for a quantum system—it directly shows whether the ‘clock’ would 
tick at different rates when taken along the two possible trajecto-
ries in the interferometer. On the other hand, to obtain the correct 
phase shift, it is sufficient to consider a semiclassical coupling of 
the average total energy of the system to the gravitational poten-
tial. With such a coupling, the time displayed by the ‘clock’ used in 

(13)(13)

1

–1

P+ – P–

π ∆T (s)

Figure 2 | Visibility of the interference pattern and the phase shift in the 
cases with and without the ‘clock.’ The plot of the difference between 
the probabilities P ± (ϕ, m, ∆E, ∆V, ∆T), equation (12), to find the particle 
in the output path of the mach–Zehnder interferometer as a function 
of the time ∆T for which the particle travels in a superposition of two 
trajectories at constant heights (this corresponds to changing the length of 
the interferometric arms). The term proportional to the particle’s mass is 
the phase originating from the newtonian potential energy m∆V. General 
relativistic corrections stemming from external degrees of freedom are 
given by EGRcorr , see for example, ref. 3. Without the ‘clock’ degrees of 
freedom, only these terms are present in the result (dashed, black line 
in the plot). In the situation with the ‘clock’ (blue line), we expect two 
new effects: the change of the interferometric visibility given by the 
absolute value of the first cosine (thick red line) and an extra phase shift 
proportional to the average internal energy of the ‘clock’. The values for the 
energy gap ∆E and the gravitational potential difference ∆V between the 
interferometric paths are chosen such that ∆ ∆E V c2 = 12 Hz . Whereas the 
phase shift alone can always be understood as an Aharonov–Bohm phase 
of an effective potential, the notion of general relativistic proper time is 
necessary to explain the decrease of the visibility.
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the experiment will not depend on the path taken. This means that 
a gravitationally induced phase shift can probe general relativistic 
corrections to the Newtonian gravitational potential but is always 
consistent with having an operationally well-defined notion of  
global time, that is, with a flat space–time.

The effect described in our work follows directly from the  
Einstein equivalence principle, which is itself crucial for the formu-
lation of general relativity as a metric theory22. Thus, the drop in the 
fringe contrast is not only genuinely quantum mechanical but also a 
genuine general relativistic effect that in particular unambiguously 
probes the general relativistic notion of proper time.

General ‘clocks’ and gravitational fields. Let us call t the orthog-
onalization time of a quantum system, that is, the minimal time 
needed for a quantum state to evolve under a given Hamiltonian 
into an orthogonal one23,24. For the initial state (11) subject to the 
rest frame Hamiltonian H  given by equation (10) we obtain 

t
E⊥ = p

∆
.

A system with finite t can be seen as a clock that ticks at a rate 
proportional to t

−1. Thus, the orthogonalization time gives also the 
precision of a considered ‘clock’. From the expression for t  in the 
approximation (9), it follows that the total time dilation ∆τ between 
the trajectories is 

∆ ∆ ∆t = .2
V T
c

We can, therefore, phrase the interferometric visibility V  solely in 
terms of t and ∆τ: 

V =
2

.cos ∆t p
t⊥







The total time dilation ∆τ is a parameter capturing the relevant infor-
mation about the paths, and t grasps pertinent features of the ‘clock’. 
It is only their ratio that matters for the fringe visibility. Equation (16)  
is a generalization of the result (13) to the case of an arbitrary initial 
state, ‘clock’ Hamiltonian and a non-homogeneous gravitational field: 
whenever the time dilation ∆τ between the two trajectories through 
the Mach–Zehnder interferometer is equal to the orthogonalization 
time t of the quantum mechanical system that is sent through the 
setup, the physically accessible proper time difference will result 
in the full loss of fringe contrast. There are several bounds on the 
orthogonalization time based on energy distribution moments23,25,26. 
Such bounds can through equation (16) give some estimates on the 
gravity-induced decoherence rates in more general situations. As an 
example, for mixed states one generally has26:

(14)(14)

(15)(15)

(16)(16)

1 2 ( )

1
1

t
H Egr

⊥
≤ 〈 − 〉

a
a a

p
,

α > 0 (provided the initial state is in the domain of (H − Egr)α) 
where H denotes the internal Hamiltonian and Egr the energy of 
its ground state.

Discussion
Current approaches to test general relativistic effects in quantum 
mechanics mainly focus on high precision measurements of the  
phase induced by the gravitational potential. Although such 
experiments would probe the potential and thus could verify 
non-Newtonian corrections in the Hamiltonian, they would not 
constitute an unambiguous proof of the gravitational time dila-
tion, because they are also explainable without this concept by the  
Aharonov–Bohm effect: a trajectory-dependent phase acquired by 
a particle moving in a flat space–time in the presence of a position-
dependent potential.

In our proposed experiment, the effects arising from general 
relativistic proper time can be separated and probed independently 
from the Aharonov–Bohm type of effects. Unlike the phase shift, 
which occurs independently of whether the interfering particle can 
be treated as a ‘clock’, the change of the interferometric visibility 
(equation (13)) is a quantum effect that arises if and only if gen-
eral relativistic proper time has a well defined operational mean-
ing. Indeed, if one prepares the initial state |τin〉 as an eigenstate of 
the internal energy Hamiltonian H , only the phase of such a state 
would change during the time evolution and, according to equation 
(16), interferometric visibility would be maximal. This ‘clock’ would 
not ‘tick’ (it has orthogonalization time t = ∞) so the concept of 
proper time would have no operational meaning in this case. More-
over, reasoning that any (even just an abstract) frequency which 
can be ascribed to the particle allows considering proper time as 
a physical quantity would imply that interference should always be 
lost, as the which-path information is stored ‘somewhere’. This once 
again shows that, in quantum mechanics, it makes no sense to speak 
about quantities without specifying how they are measured.

The interferometric experiment proposed in this work can also 
be used to test whether proper time is a new quantum degree of 
freedom. This idea was discussed in the context of, for example, the 
equivalence principle in refs 13,14 and a mass–proper time uncer-
tainty relation15. The equations of motion for proper time treated 
dynamically, as put forward in refs 13–15, are in agreement with 
general relativity. Therefore, the predictions of equation (5) would 
also be valid, if the states |τi〉, introduced in equation (3), stand for 
this new degree of freedom. Already performed experiments, like 

Table 1 | Discussion of possible outcomes of the proposed interferometric experiment.

Experimental visibility Possible explanation Current experimental status

 Vm = 0 Proper time: quantum d.o.f., sharply defined Disproved in, for example, refs 7,9

 0 V V< <m QM
Proper time: quantum d.o.f. with uncertainty στ Consistent with current data for 

st t> | | 8 (1 )∆ ∆− −ln V
    

 V Vm QM= Proper time: not a quantum d.o.f. or has a very broad uncertainty Consistent with current data

 V Vm QM> Quantum interferometric complementarity does not hold when 
general relativistic effects become relevant

not tested

The measured visibility Vm  is compared with the quantum mechanical prediction VQM given by equation (13). Depending on their relation, different conclusions can be drawn regarding the possibility 
that proper time is a quantum degree of freedom (d.o.f.). Assuming that the distribution of the proper time d.o.f. is a Gaussian of the width στ, current interferometric experiments give bounds on  
possible στ in terms of the proper time difference ∆τ between the paths and the experimental error ∆V  of the visibility measurement.
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in refs 7,16, which measured a gravitational phase shift, immedi-
ately rule out the possibility that the state of proper time was sharply 
defined in those tests, in the sense of 〈τ1|τ2〉 = δ(τ1 − τ2). However, 
such experiments can put a finite bound on the possible uncer-
tainty in the state of proper time. The phase shift measured in those 
experiments can be phrased in terms of the difference in the proper 
time ∆τ between the paths. Denote by ∆V  the experimental error 
with which the visibility of the interference pattern was measured 
in those tests. As a result, a Gaussian state of the proper time degree 
of freedom of width στ such that s tt >| | 8 (1 )∆ ∆/ ln− − V , is con-
sistent with the experimental data. An estimate of the proper time 
uncertainty can be based on the Heisenberg uncertainty principle 
for canonical variables and the equation of motion for the proper 
time. In such an analysis, the rest mass m can be considered as a 
canonically conjugated momentum to the proper time variable τ, 
that is, one assumes [ , ] =2t mc i 13–15. In Table 1, we discuss what 
can be inferred about proper time as a quantum degree of freedom 
from an experiment in which the measured visibility would be Vm 
and where VQM  is the visibility predicted by quantum mechanics, as 
given by equation (13).

In conclusion, we predicted a quantum effect in interferometric 
experiments that, for the first time, allows probing general relativis-
tic proper time in an unambiguous way. In the presence of a gravita-
tional potential, we showed that a loss in the interferometric visibility  
occurs, if the time dilation is physically accessible from the state 
of the interfered particle. This requires that the particle is a ‘clock’ 
measuring proper time along the trajectories, therefore revealing 
the which-way information. Our predictions can be experimen-
tally verified by implementing the ‘clock’ in some internal degrees 
of freedom of the particle (see Methods). The proposed experiment 
can also lead to a conclusive test of theories in which proper time is 
treated as a quantum degree of freedom. As a final remark, we note 
that decoherence due to the gravitational time dilation may have 
further importance in considering the quantum to classical transi-
tion and in attempts to observe collective quantum phenomena in 
extended, complex quantum systems because the orthogonaliza-
tion time may become small enough in such situations to make the  
predicted decoherence effect prominent.

Methods
Systems for the implementation of the interferometric setup. Here we briefly 
discuss various systems for the possible implementation of the interferometric 
setup. Interferometry with many different massive quantum systems has been 
achieved, for example, with neutrons7,8, atoms16,27, electrons28,29 and molecules30,31. In 
our framework, further access to an internal degree of freedom is paramount, as to 
initialize the ‘clock’ which measures the proper time along the interferometric path. 
Therefore, the experimental requirements are more challenging. To observe full loss 
of the interferometric visibility, the proper time difference in the two interferomet-
ric arms needs to be ∆τ = t. For a two level system, the revival of the visibility due 
to the indistinguishability of the proper time in the two arms occurs when ∆τ = 2t.

The best current atomic clocks operate at optical frequencies ω around 1015 Hz. 
For such systems, we have t = π /ω, and one would therefore require an atomic 
superposition with ∆h∆T~10 ms to see full disappearance of the interferometric 
visibility. For example, the spatial separation would need to be of the order of 1 m, 
maintained for about 10 s. Achieving and maintaining such large superpositions of 

atoms still remains a challenge, but recent rapid experimental progress indicates  
that this interferometric setup could be conceivable in the near future. For 
neutrons, a separation of ∆h~10 − 2 m with a coherence time of t~10 − 4 s has been 
achieved8. To implement our ‘clock’ in neutron interferometry, one can use spin 
precession in a strong, homogeneous magnetic field. However, such a ‘clock’ could 
reach frequencies up to ω~109 Hz (for a magnetic field strength of order of 10T 
(ref. 32)), which is still a few orders of magnitude lower than necessary for the 
observation of full decoherence owing to a proper time difference. Improvements 
in the coherence time and the size of the interferometer would still be necessary. 
Other systems, such as molecules, could be used as well and Table 2 summarizes 
the requirements for various setups (note again that the particles are assumed to 
travel at fixed height during the time ∆T).

The effect we predict can be measured even without achieving full orthogonali-
zation of the ‘clocks’. Note that even for ∆τ  t the small reduction of visibility  
can already be sufficient to prove the accessibility of which-path information due 
to the proper time difference. With current parameters in atom interferometry, 
an accuracy of the measurement of the visibility of ∆V = 10 − 6 would have to be 
achieved for the experimental confirmation of our predictions. A very good  
precision measurement of the interferometric visibility and a precise knowledge 
about other decoherence effects would therefore make the requirements for the 
other parameters less stringent. 
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