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Simplified mechanistic models of gene regulation are fundamental to systems

biology and essential for synthetic biology. However, conventional simplified

models typically have outputs that are not directly measurable and are based

on assumptions that do not often hold under experimental conditions. To

resolve these issues, we propose a ‘model reduction’ methodology and simpli-

fied kinetic models of total mRNA and total protein concentration, which link

measurements, models and biochemical mechanisms. The proposed approach

is based on assumptions that hold generally and include typical cases in sys-

tems and synthetic biology where conventional models do not hold. We use

novel assumptions regarding the ‘speed of reactions’, which are required for

the methodology to be consistent with experimental data. We also apply the

methodology to propose simplified models of gene regulation in the presence

of multiple protein binding sites, providing both biological insights and an

illustration of the generality of the methodology. Lastly, we show that model-

ling total protein concentration allows us to address key questions on gene

regulation, such as efficiency, burden, competition and modularity.
1. Introduction
Gene regulation is fundamental to how both natural and ‘synthetic’ biological

systems function, determining everything from how cells respond to environ-

mental changes to differentiation of cell type [1]. Owing to the complexity of

gene regulation, model-based approaches are essential for studying all but the sim-

plest genetic networks and simplest observable properties [2–6]. Furthermore,

advances in modelling and model-based design are required to overcome a current

significant bottleneck in the design and implementation of synthetic gene regu-

latory networks comprised of more than a few genes. Models of particular

importance for both analysis and design are mechanistic models derived from bio-

chemical reactions. These mechanistic models enable DNA sequences and

biochemical mechanisms to be related to the observable ‘system’ properties. This

direct link from ‘parts’ to ‘systems’ is important for applications, such as for con-

verting a synthetic gene regulation ‘system’ design into the DNA sequences of the

‘parts’ for genetic transfer into a cell.

In practice, these often highly complicated mechanistic models need to be sim-

plified using a ‘model reduction’ approach. Model reduction decreases the number

of modelled variables and parameters, often significantly, while retaining the

properties and thus advantages of the full mechanistic model. Historically, this

approach has been better known for mechanistic modelling of enzymatic reactions

rather than for gene regulation, e.g. the extensively studied Michaelis–Menten

enzyme kinetics [7]. Model reduction of mechanistic models enables parameter

identification from experimental data, which is otherwise a significant challenge

[5]. Additionally, reduction also improves computational scalability [3] and

enables systems-level analysis and design, including the use of extensive methods

for analysing simple empirical models [3,4].
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Figure 1. Prototypical genetic network modules. The prototypical input – output system (a) with total DNA (gT
L , gT

T ), mRNA (mT
T ) and protein (xT

L , xT
T ) is shown. Dimerization

of monomeric input transcription factor (TF) (xT
L ) and output TF (xT

T ) has been considered as well as operator-binding and lumped transcription, translation and degradation.
The input – output ‘module’ acts as a building block for modelling larger networks. For the case of multiple operators (b), the system also includes the total additional TF
binding sites (OT

L ) and the total protein concentration also includes the TF bound to the second operator. In (b), the additional regulatory element is part of a second promoter,
but the models and methodology are also applicable when additional elements regulate expression of the same gene. (Online version in colour.)
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However, conventional ‘reduced’ kinetic models of gene

regulation use variables that are not experimentally measured

and are based on assumptions that often do not hold under

experimental conditions [8,9]. Most systems and synthetic

biology studies rely on the quantification of mRNA or protein

concentrations through various experimental techniques,

e.g. fluorescent reporters [10], microarrays [5] or RNAseq [11].

Typically, these measurement techniques can only reveal total

mRNA or protein amounts, such as a transcription factor (TF)

in tandem fusion with a fluorescent reporter revealing total

TF concentration. These outputs do not match with the single

form of TF used in conventional kinetic models, e.g. free mono-

meric or free multimeric TF concentrations. In this context,

modelling either the TF’s free monomeric or free multimeric

concentration also introduces a large modelling error when

the protein is not predominantly in the form of the modelled

TF variable [8,9]. Similarly, two forms of TF have been modelled

(e.g. total dimer—bound and free) [12,13], with similar res-

trictive assumptions and measurability issues to previous

approaches involving one form of TF. Some progress has been

made to find reduced monomeric TF models with ‘corrections’

to account for the error [8,9]. However, these ‘corrected’ models

do not have an experimentally measurable output and they use

restrictive assumptions based on the ‘speed’ of reactions, which

often do not agree with experimental data. Furthermore, these

models become highly complex when all required degra-

dation/dilution terms are included. This added complexity

limits understanding of system effects, including the use of

analysis and design methods in existing literature.

Here, we resolve these issues by proposing a reduction

methodology and reduced kinetic models of total mRNA and

total protein concentration, which link measurements, models

and biochemical mechanisms. The proposed methodology

and reduced models are based on assumptions that hold gener-

ally and include typical cases in systems and synthetic biology

where conventional models do not hold. We propose novel

assumptions regarding the ‘speed of reactions’, which are

required for the assumptions to be consistent with known exper-

imental data. However, we do not assume that the TF is in a

particular form and so remove assumptions that restrict the

applicability of conventional models. The direct use of total TF

proposed here contrasts with monomeric TF models with ‘cor-

rections’ that use total TF indirectly [8,9,12]. The approach

presented here also enables practical applications under exper-

imental conditions by removing the above-mentioned hurdles

of measurability, complexity and the use of often unjustified

assumptions. In particular, the simplicity and mechanistic
accuracy of the models are important for modelling in systems

biology while essential for design in synthetic biology.

The different conventional models can be treated as special

cases of the proposed approach and so new criteria are provided

for cases when the different conventional models may be used

or should be avoided. These criteria are based on the reduced

parameters of the biochemical models and so are practical to

use. The reduced models also use approximated terms, such

as the fraction of protein in monomer or dimer form. These

approximations can be selected to be as mechanistically accurate

as required, and there can be a trade-off between simplicity and

accuracy for cases where conventional models do not hold.

We introduce the methodology and simplified models

using prototypical cases, noting that the approach can be

easily extended to large gene regulatory networks and can be

used to incorporate additional mechanistic detail in the simpli-

fied models. As such, the approach has wide applicability and

can be very informative to a range of networks in systems and

synthetic biology. We look at the deterministic case modelled

using ordinary differential equations as this is important for

simplified analysis and design, and is a widely used first step

before analysing the stochastic case. To illustrate the results,

we use standard synthetic biology examples for which the

proposed models are mechanistically accurate, whereas con-

ventional simplified models produce significant qualitative

errors in prediction. We also apply our proposed methodology

to derive simplified models of gene regulation in the presence of

multiple TF binding sites, providing both biological insights

and an illustration of the generality of the methodology. We

use the simplified models to analyse an example of a toggle

switch, which is bistable only in the presence of additional TF

binding sites that do not directly regulate promoter activity.

Finally, we show that modelling total protein concentration

addresses key questions on gene regulation, such as efficiency,

burden, competition, retroactivity and modularity. These con-

cepts are more naturally discussed in terms of total protein,

whereas the proposed reduced models allow us to analyse

and discuss them in a simplified manner. In particular, we

find that adding a downstream module only affects total protein

concentration owing to feedback or degradation/dilution rates

differing between the bound and unbound forms of TF.
2. Results: biochemical model reduction
To illustrate our framework, we use the simple prototypical

gene regulatory network shown in figure 1a in which a dimeric
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TF represses the expression of a second dimeric TF. This case is

used to introduce the gene expression models and model

reduction methodology, noting that the same methodology

and simplified model structure can be used more generally.

This generality is demonstrated in the electronic supplemen-

tary material and subsequent models. The regulating protein

is treated as an input, and the expressed protein as an

output. This input–output ‘module’ acts as a building block

for larger gene regulatory network models. The prototypical

case with added gene regulatory elements (figure 1b) is also

considered both owing to its importance and to illustrate that

the methodology can be used more generally.

Figure 2. A comparison of protein expression in the full and reduced
mechanistic models. There is a close match in protein expression levels
between the full mechanistic model and our proposed reduced model,
whereas there is an error in the existing reduced Hill function models.
(Online version in colour.)
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2.1. Full biochemical model and existing simplified
models

The set of biochemical equations for the prototypical gene

regulatory network is presented in (2.1). Only the expression

and degradation of the expressed protein (output) are

included, as the regulating TF (input) is assumed to have

equivalent expression and degradation reactions modelled

in a separate input–output ‘module’.

Biochemical reactions for prototypical gene expression
dimerization and operator binding (input� regulating TF)

2XL O
a6

a�6

XL2, gL þ XL2 O
a8

a�8

gLXL2

transcription and translation

gL þ P O
a1

a�1

gLP�!a2 gL þ PþmT

mT þ P O
w4

w�4

mTR�!w5 XT þmT þ R

dimerization and operator binding (output� expressed TF)

2XT O
w6

w�6

XT2, gT þ XT2 O
w8

w�8

gTXT2

degradation and dilution of mRNA and TF

XT �!
bt

�, XT2�!
bt2

�, gTXT2�!
btg

gT , mT �!
gt

�, mtR�!
gtr R

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(2:1)

In this model, gL represents both the promoter driving tran-

scription of mRNA, mT, and operator-binding sites for the

dimeric input TF XL2. Also, P is RNA polymerase (RNAP),

R is ribosome, XT is the expressed (output) protein monomer,

XL is the regulating (input) free monomer, XT2 is a dimeric TF,

gT is an operator-binding site for XT2 on the output gene,

whereas combinations of terms are biochemical complexes.

Two XL monomers can reversibly associate to form XL2

dimers. XL2 dimers can reversibly bind to the operator of

the input promoter, which represses transcription of mT by

sequestering the promoter from RNAP. Transcription of mT

is initiated only when RNAP binds to the upstream promoter,

gL, in the absence of bound XL2. Translation occurs when a

ribosome, R, binds to a ribosome binding site on mT, which

then initiates translation of XT monomers. Similar to the

input, XT monomers can reversibly associate to form XT2

dimers, which can subsequently bind to an operator

sequence, gT. The biochemical reactions in (2.1) are used to

represent the kinetic models using ordinary differential

equations derived from the law of mass action [5].

In conventional simplified models, a Hill function is used

to represent the relationship between a regulating TF (input)

and gene expression from the promoter that it regulates. For

empirically derived Hill functions, where the input generic-

ally represents the regulating TF, the model’s constants and
variables cannot be related to the mechanistic model in

(2.1), and hence the system behaviour cannot be related to

biological parts. For Hill functions obtained from the simpli-

fication of mechanistic models [4], where the regulating TF is

either the free monomeric TF XT or the free multimeric TF

XT2, the model operates under assumptions that often do

not hold, introducing an error [8,9]. Examples of this error

can be seen in figure 2.
2.2. Reduced biochemical models and multimerization
efficiency

We introduce a reduced biochemical model, where the input

and output are both total TF concentrations and the model

can be used as a building block for larger gene regulatory net-

work models. Using the two concentrations of total mRNA and

total protein for each gene, we propose the following reduced

biochemical equations:

gT
L �!

ktx gT
L þmT

T , mT
T �!

gT
�,

mT
T �!

ktl mT
T þ xT

T , xT
T �!

bT
�

ktx ¼ VtxF, F ¼ F(xT
L ),

9>>=
>>; (2:2)

where gT
L represents the total number of genes, mT

T is the total

mRNA concentration, xT
T (output) and xT

L (input) are the total

protein concentrations in monomer units, ktx is the total tran-

scription rate normalized per gene, ktl is the translation rate

per mRNA, Vtx is the transcription rate per non-repressed pro-

moter, F is the fraction of promoters that are not repressed and

is a function of xT
L , gT is the effective mRNA degradation rate

and bT is the effective protein degradation rate (electronic sup-

plementary material, S1–3). The biochemical reactions in (2.2)

are used to represent the kinetic models using ordinary differ-

ential equations derived from the law of mass action [5].

The parameters in the reduced model (2.2) can be explicitly

stated in terms of the kinetic parameters of the mechanistic

model (Materials and methods and electronic supplementary

material, S1).

We describe gene expression by splitting the model into

two separate cases, the choice of which is determined by



Table 1. Biological parameters for transcription factors. Experimental parameter values can be used to determine whether regulation is multimer or monomer
dominant in equation (2.3), and when existing models can be used or should be avoided. The monomer-dominant regulation term is used for 1 � 1, whereas
the multimer-dominant expression term is used for 1 � 1. For gT

L ¼ 1 (nM), a mixture of multimer and monomer cases occurs, whereas for gT
L ¼ 30 (nM), a

typical case in synthetic biology [14], only the multimer-dominant case occurs. It should be noted that LacI is a dimer of dimers [4]. Using higher gene copy
numbers as an example, tetR may be modelled as only in multimer form (hm ¼ 1) as 1L� 1, which has previously been used for models fitted to
experimental data [12].

transcription factor 1/B2 (nM) 1/Bg (nM) 1 for gT
L ¼ 1 (nM) 1 for gT

L ¼ 30

LacI [15 – 17] 10 1022 0.16 0.0053

TetR [18 – 21] 1 10 0.14 0.040

AraC [22 – 24] 10 – 1000 10 0.45 – 4.5 0.13 – 1.3
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the biochemical parameters:
:20150312
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ 1

BggT
L

s
�W , if 1 � 1

1

1þ BgB2hxT
L

2
, if 1 . 1

8>>>><
>>>>:

W ¼ hm

4gT
L

xT
L þ

1

2BggT
L
� 1

2
, 1 ¼

ffiffiffiffiffi
Bg

p
2(1þ BggT

L )
ffiffiffiffiffi
B2

p ,

9>>>>>>>>>=
>>>>>>>>>;

(2:3)
where Bg is the effective dimer–operator association constant

for the regulating TF, B2 is the dimerization association

constant for the regulating TF (electronic supplementary

material, S1), hm is the multimerization efficiency, which is

the fraction of the regulating TF that is a fully formed multi-

mer, h ¼ (1 2 hm)2 is used to simplify the description, and W
is used to represent repeated terms in F (electronic sup-

plementary material, S2). The two cases are the multimer

(1 � 1) and monomer (1 . 1) dominant regulation (table 1).

If the TF is mostly multimeric when a fraction of the promo-

ters are expressing, then the multimer-dominant case occurs.

Conversely, if the TF is mostly monomeric when a fraction of

the promoters are expressing, then the monomer-dominant

case occurs.

The multimerization efficiency used to describe expression

in the model is estimated, as closely as required, with initial esti-

mates of h and hm in (2.3) ofhm0 ¼ 1 for 1 � 1 or h0 ¼ 1 for 1 . 1

(electronic supplementary material, S2). Without using esti-

mates, the model is described using more variables in a

difficult-to-apply ‘implicit’ form or only described for special

cases (electronic supplementary material, S1). The initial

approximation is accurate when the system is in a strongly mul-

timer (1� 1) or monomer dominant (1� 1) case (table 1). For

cases where there is roughlyan equal mixture of monomeric and

multimeric TF (1 � 1), there is a modelling trade-off between

simplicity and accuracy, where multimerization efficiency is a

constant for initial approximations, whereas more complicated

functions can be used for increased mechanistic accuracy.

Using a simple initial approximation followed by a more

complicated, but more accurate model allows a step-by-step

process of building understanding or completing designs for

what can otherwise be difficult-to-analyse models. We can esti-

mate the multimerization efficiency using perturbation theory,

where an initial estimate is used to make successively better

approximations. Using the initial approximations above, the
first iterations of the approximations are

hm1 ¼
xT

L

xT
L þ 1=

ffiffiffiffiffiffiffiffiffiffi
B2Bg

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�1

0 � 1
q

and

h1 ¼
xT

L

xT
L þ 4(gT

L (1� F0)þ 1=Bg
� �

(F�1
0 � 1))

,

9>>>>>>>>=
>>>>>>>>;

(2:4)

for the multimer and monomer-dominant cases, respectively,

which can be used with (2.3) to obtain the first iteration of the

regulation function approximation F1. The error in (2.3) is

small for all values of 1 when using the first iteration F1 (elec-

tronic supplementary material, S2). We can alternatively use

interpolation to find the approximations of hm and h, where

the approximation is ‘calibrated’ for a few particular values of

F in (2.3). The interpolation approach results in simpler

‘higher-order’ terms, but with an increased error for these

approximations (electronic supplementary material, S2). To

ensure that (2.4) is well defined, we also need to set hm1 ¼ 0

and h1 ¼ 1 for xT
L ¼ 0, which is only required when xT

L ¼ 0 is

an initial condition.

If uniform degradation occurs, where different forms of

the TF, such as monomer or free multimer have the same

degradation rate, we model TF degradation (bT) as a con-

stant. If non-uniform degradation occurs [25], we (closely)

approximate the degradation rate as it varies with the

output TF concentration xT
T by splitting the model into mul-

tiple cases in a similar manner to the regulation term in

(2.3) (electronic supplementary material, S3). Uniform degra-

dation is both biologically reasonable in a large number of

cases (e.g. the dilution only case) and is a useful first approxi-

mation. It should be noted that this definition of uniform

degradation does not require two distinct proteins to degrade

at the same rate.

We can also model activators (electronic supplementary

material, S4), and as is typical in other gene regulation

models, only protein concentration is required in the model if

the RNA degradation rate is much higher than the protein

degradation rate (electronic supplementary material, S5).

Furthermore, the models are easily generalizable, where we

can include inducers (electronic supplementary material, S7),

basal expression (electronic supplementary material, S6), and

we can also easily incorporate effects owing to competition for

polymerase or ribosomes (electronic supplementary material, S1).

We can compare the full and reduced mechanistic

models in terms of their predicted expression levels (as a
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fraction of the maximum) for varying regulating (input) TF

(figure 2). It can be seen that there is a close match in terms

of the predicted expression levels between the full and our

reduced mechanistic models with different levels of regulat-

ing TF. Similarly, it can be seen that our reduced models

are qualitatively similar to traditional simplified models,

although they can incur a significant quantitative difference.

As such, figure 2 also provides examples that show the errors

introduced by conventional Hill function models.
 .org
J.R.Soc.Interface

12:20150312
2.3. Relation to existing models
For the simplest representation of expression in (2.3), the

regulation term F is a first-order Hill function for the multi-

mer-dominant case and a second-order Hill function for

the monomer-dominant case, similar to the forms of tradi-

tional models. This can be seen by noting that if the gene

concentration is much smaller than the operator binding

dissociation constant (gT
L � 1=Bg), then we have

F¼

1

1þ
Bghm

2
xT

L

, if Bg � 4B2

1

1þ BgB2hxT
L

2
, if Bg . 4B2

8>>>><
>>>>:

(2:5)

(see electronic supplementary material, S8 for derivation). We

note the factor 2 in the denominator for the case Bg � 4B2 as

there are two monomer units in a dimer, and that h1 in (2.4)

also simplifies as the term involving gT
L in the denominator

can be removed. The repressor regulation in (2.5) reduces to

existing simplified models if hm ¼ 1 or h ¼ 1, the initial

approximations. The proposed conditions under which these

models hold allow us to determine when we can use the differ-

ent traditional models, and if not, when they may be used as an

initial coarse approximation. From this, we can also see that the

mechanistic models differ most significantly from traditional

models when there is a mixture of TF forms. For this ‘mixed’

case where more complicated expressions for multimerization

efficiency are used, the proposed models are related to empiri-

cal Hill function models with non-integer orders. Example of

the modelling error of conventional Hill function for these

mixed cases can be seen in figure 2. Both (2.5) and a Hill func-

tion model with a non-integer order contain the same number

of variables and parameters. However, when operator occu-

pancy is important as in (2.3), the reduced models require an

extra parameter (gT
L ) to describe regulation.

Interestingly, gene concentration is often high in synthetic

biology experiments, as the artificial genetic material for

in vivo prokaryotic implementation is often encoded on plas-

mids, which can be at much higher numbers per cell than

chromosomally integrated genes [14]. Thus, the proposed

model for multimer-dominant regulation in (2.3) is essential

for synthetic biology, but also highly useful for systems

biology, where the assumption regarding gene copy

number may not hold.

The proposed reduced kinetic models can also be con-

trasted with complementary thermodynamic equilibrium

models, which have also used total TF as a variable [26–30].

Thermodynamic equilibrium models are complementary

to kinetic models as they can relate parameters to genetic

sequences [31]. We describe gene regulation in a simpler expli-

cit form, which removes the need for difficult-to-apply implicit

forms containing more variables or the restrictive assumptions
commonly used in equilibrium models. As will be shown

in §2.4, the combined use of kinetic and equilibrium models

has also been enhanced by deriving conditions under which

equilibrium models are valid for use in combination with

kinetic models.

2.4. Assumptions: speed of reactions
We find that the proposed reduced models are a close

approximation of the full mechanistic model when the degra-

dation rates are the time-limiting steps in the biochemical

network, the typical case (electronic supplementary material,

S1). By this, we mean that the lifetimes of the proteins and

mRNA, determined by the degradation rates, provide the

‘natural’ time scale of the dynamics, and that the degradation

rates are much ‘slower’ than multimerization, operator-

binding, transcription and translation rates [4,32] (electronic

supplementary material, S1). This is important to state, as a

common unjustified assumption made for ‘quasi-steady

state’ reduced models is that the binding rates have to be

faster than the transcription and translation rates. The

assumption that the degradation rates are the time-limiting

steps can be quantitatively written

bTn, gTn�(w4Rnþw�4þw5þgtr), (a1Pnþa�1þa2),

(w8XT2nþw8gTnþw�8þbtg), (4w6XTnþw�6þbt2),

(2:6)

where Rn, Pn, XTn, XT2n, gTn are the typical maximum conc-

entrations of the biochemical species, bTn is the effective

protein degradation at the typical maximum total TF con-

centration XT
Tn, and gTn is the typical maximum of the

effective mRNA degradation rate (electronic supplementary

material, S1). If required, the typical maximum concen-

trations can be calculated from the kinetic rates (electronic

supplementary material, S1). Equivalent assumptions to

(2.6) can be stated for the regulating protein and other tran-

scription/translation reactions. We also require further

assumptions to ensure that the time scales of the various

fast reactions are not strongly coupled (electronic sup-

plementary material, S1), which typically hold when (2.6)

holds. The reduced model ‘loses’ information about the ‘fast’

dynamics owing to the ‘time-limiting’ assumption, but this

time scale is not typically relevant for experiments and can

be modelled separately if required. In cases where the time-

scale separation assumption only holds weakly then the

reduced model still provides a ‘coarse’ approximation. The

reduction step from an implicit to explicit model can also

result in a ‘coarse’ approximation, but only if simplicity is

selected over mechanistic accuracy in the multimerization effi-

ciency approximation.

The novel ‘time-limiting’ assumptions generalize those in

existing literature, and are required for the methodology to

be consistent with known experimental data. The process of

transcription and translation initiation is typically much

faster than degradation [32,33]. However, validating the

assumptions regarding multimerization and operator binding

experimentally is not easy. The reverse rate of TF binding has

previously been used to determine the speed of the ‘fast’ reac-

tion in monomeric TF models with ‘correction factors’ [8,9].

However, for the example of LacI, the reverse rate of operator

binding (time scale of 5–10 min [32]) is often slower than

mRNA degradation (approx. 5 min [4]), and is not significantly

faster than the full range of protein degradation/dilution rates.
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In this case, only the speed of the forward rate of operator bind-

ing (approx. 30 s [32]) is much faster than mRNA and protein

degradation. Unlike previous methods, the assumptions pro-

posed here hold if the forward or the reverse rate are much

faster, consistent with experimental data. The methodology

also generalizes the number of biochemical reactions to be

taken into account when analysing time-scale separation.
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toggle switch—high initial TF concentration
(one TF concentration shown)

toggle switch—low initial TF concentration
(one TF concentration shown)

repressilator (one TF concentration shown)

Figure 3. Simulation comparisons of the full and reduced mechanistic
models for the toggle switch (a,b) and repressilator (c). The simulations
show that our reduced model matches closely to the full mechanistic
model for both simulated networks whilst the Hill function models present
both quantitative and qualitative errors. A close match of the reduced models
with the detailed mechanistic models is required in order to relate biological
parts to systems behaviour. (Online version in colour.)

lishing.org
J.R.Soc.Interface

12:20150312
2.5. Examples: the toggle switch and the repressilator
We demonstrate the application and mechanistic accuracy of

our reduced model by comparing simulations of the full

and reduced mechanistic models, along with cases that

show the errors introduced by Hill function models.

A close match of a reduced model with a detailed mechanis-

tic model is required in order to relate DNA sequences and

biological parts to systems behaviour for analysis and

design. We compare simulations (figure 3) of the toggle

switch [34] and the repressilator [35], two standard genetic

circuits in synthetic biology.

The proposed model for a genetic toggle switch (figure

3a,b and Materials and methods) is created by connecting

two repressor modules together, where each TF represses

expression of the other TF [34] (see figure 1a for one

module). For the simulations of the reduced models, the

reduced parameters in (2.2) and (2.3) are determined by the

individual kinetic rates of a full mechanistic model (see

Materials and methods for parameter values and equations).

Calculating reduced parameters in this way is carried out to

compare the full mechanistic model with the proposed

reduced models. However, when using the reduced model

with experimental data, the parameters in the reduced

models can be determined directly, while still allowing pre-

dictions of the effects of changes in individual kinetic rates.

The value of parameter 1 is next calculated using (2.3) for each

TF to select between the multimer- (1 � 1) and monomer-domi-

nant (1 � 1) cases of F in (2.3). For the toggle switch simulated in

figure 3, one TF is dimer-dominant (1¼ 0.14� 1), whereas the

second TF is weakly monomer-dominant (1¼ 1.35� 1). First-

order approximations of hm and h were used as described in

(2.4), although using hm ¼ 1 to model the effect of the TF with

1¼ 0.14� 1 is also a reasonable approximation. In the simu-

lations, degradation is assumed to be uniform, and the free

polymerase and ribosome concentrations are assumed constant

for simplicity, although these assumptions are not necessary

for the methodology to be applied.

The proposed model for a repressilator (figure 3c and

Materials and methods) is produced by connecting three

repressor modules together in a loop [35]. The process of

creating the reduced model for the repressilator is similar

to the toggle switch. For the repressilator modelled here,

there is weakly dimer-dominant regulation for all three TFs

(1 ¼ 0.78 � 1).

We can see a close match between our reduced model

and the full mechanistic model for the genetic toggle switch

(figure 3a,b) and the repressilator (figure 3c), whereas the

Hill function models introduce a significant qualitative error.

This close match between the mechanistic and reduced

model shows that we have retained mechanistic accuracy in

our reduced model. We can also see that the predictions of

the Hill function models do not match with the mechanistic

model for both the repressilator and toggle switch. Further-

more, the Hill function models predict the wrong qualitative
systems behaviour given the parameters for the biological

parts, incorrectly predicting oscillations in the repressilator

and predicting no memory in the toggle switch. For the

toggle switch, the two Hill function models even predict

different qualitative behaviour from each other, with the

second-order model predicting an ‘always off’ switch, whereas

the first-order model predicts an ‘always on’ switch.

The reduced simplified models have the advantage of

requiring fewer biological parameters than the full mechanis-

tic model to complete in silico analysis. For example, only the

effective dimer–operator association constant is required

instead of the individual operator binding and unbind-

ing kinetic rates. This is crucial for in silico analysis as it is

typically difficult or even impossible to obtain values of
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individual kinetic rates. The proposed methodology and sim-

plified models also allow simplified analysis compared with

the full mechanistic model.

Therefore, our proposed methodology and models have

the advantages of mechanistic accuracy compared with con-

ventional reduced models, while allowing practical in silico
analysis when compared with the full mechanistic models.
lishing.org
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2.6. Multiple gene regulatory elements
We also apply the methodology to mechanistic models

that allow TF to bind to DNA at sites other than the primary

operator (figure 1b). Modelling multiple TF binding sites is

important for understanding how the different operators that

bind the same TF are indirectly coupled, both when the

operators affect the same and different promoters. It is also cru-

cial for understanding generic effects, such as non-specific

binding. Additional ‘sequestering’ gene regulatory elements

can be included in the model to determine the effect on

the primary operator (electronic supplementary material, S9).

The added regulatory element can be modelled using the

biochemical reactions

OL þ XL2 O
a9

a�9

OL þ XL2, (2:7)

where OL represents the number of free binding sites owing to

added regulatory elements.

For monomer-dominant regulation, there is typically only

a small effect from added operators (electronic supplemen-

tary material, S9). For multimer-dominant regulation, we

split the model into three separate cases, where the binding

affinity of the added operator is higher than, approximately

equal to or lower than the original binding affinity. Adding

higher affinity operators effectively decreases the total protein

(xT
L ) ‘seen’ by the primary operator in (2.3) by sequestering a

fraction of the TF; adding approximately equal affinity oper-

ators effectively increases the gene copy number (gT
L ) in the

regulation term in (2.3) (fraction of promoters expressing),

but not in (2.2) (total promoters); while adding lower affinity

operators effectively weakens the binding affinity (Bg) of the

primary operator (2.3) (electronic supplementary material,

S9). These sequestering effects have more impact for higher

gene copy numbers and higher operator-binding association

constants. The modification to (2.3) owing to added binding

sites can be described quantitatively as

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ 1

B̂gĝT
L

s
�W , if 1 � 1

1

1þ BgB2hxT
L

2
, if 1 . 1

8>>>><
>>>>:

W ¼ hm

4ĝT
L

x̂T
L þ

1

2B̂gĝT
L

� 1

2
, 1 ¼

ffiffiffiffiffi
Bg

p
2(1þ BggT

L þ BoOT
L )

ffiffiffiffiffi
B2

p ,

9>>>>>>>>>=
>>>>>>>>>;

(2:8)

where Bo is the effective dimer–operator association constant

of the TF to the additional binding site, OT
L represents the

total number of binding sites owing to added regulatory

elements and B̂g, ĝT
L , x̂T

L are the modified effective values of
Bg, gT
L , xT

L in (2.8), and are described by

B̂g ¼
Bg

1þ BoOT
L

if Bo �
1

3
Bg

Bg otherwise

8<
:

ĝT
L ¼

gT
L þ

Bo

Bg
OT

L if
1

3
Bg � Bo � 3Bg

gT
L otherwise

8<
:

x̂T
L ¼

xT
L � xo if Bo � 3Bg

xT
L otherwise

�
xo ¼ 2OT

L (1� FO) � 2OT
L ,

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(2:9)

where xo estimates the concentration of TF (in monomer units)

bound to OL, FO is evaluated using F in (2.8), modified by swap-

ping parameters OT
L with gT

L and Bo with Bg, and xo � 2OT
L is a

coarse approximation when xT
L � 2OT

L : The values of B̂g, ĝT
L , x̂T

L

are determined in a similar manner to the multimerization effi-

ciency or non-uniform degradation described above (electronic

supplementary material, S9). The initial approximation is

shown in (2.9), whereas higher-order approximation can also

be used (electronic supplementary material, S9). Also, the

higher-order approximation of hm is unchanged for the multi-

mer-dominant case, but changes for the monomer-dominant

case (electronic supplementary material, S9).
2.7. An example: the toggle switch with competitive
transcription factor binding sites

In this case study, we demonstrate the simplified in silico
analysis of models with additional biochemical mechanisms

through simulations and graphical analysis of a toggle switch

(figure 4 and Materials and methods). We model a toggle

switch with and without an additional ‘competitive’ TF bind-

ing site for one of the TFs. The approach used to produce a

simplified model for this case is similar to the approach used

to produce the model without additional TF binding sites

described above. However, in this case, we determine both 1

in (2.8), as well as the relative values of Bg and Bo. In the case

simulated in figure 4, the regulation is dimer dominant for

both TFs (1 ¼ 0.32, 0.34 without and 1 ¼ 0.32, 0.01 with

additional sites) and the dimer–operator association constant

is much higher for the additional binding site (Bo� Bg). The

relationship Bo � 3Bg implies that effective total protein

x̂T
L ¼ xT

L � xo in (2.9) is reduced, whereas B̂g ¼ Bg and ĝT
L ¼ gT

L

remain unchanged. The significantly higher dimer–operator

association constant (Bo� Bg) allows the initial approximation

in (2.9) to be used. In contrast, if for example Bo � 3Bg, then

higher-order approximations of xo in (2.9) would typically be

required (electronic supplementary material, S9).

The simulations and phase plane (figure 4) show that with-

out the additional binding site the toggle switch is monostable,

whereas the additional TF binding site can cause bistability

in the toggle switch. For this case, there is once again a close

match between the full and reduced mechanistic models (elec-

tronic supplementary material, S9). This example shows the

importance of the methodology and simplified models for

cases with multiple TF binding sites. Here, we complete our

in silico analysis with additional mechanisms without the

need to know all biochemical kinetic rates of the full mechanis-

tic model. The reduced model is also particularly suited for

exhibiting the effects of these additional mechanisms using

phase plane graphical analysis (figure 4c), as well as generally

for simplified analysis.
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Figure 4. Simulations (a,b) and phase plane analysis (c) for a toggle switch
with and without additional TF binding sites. The simulations show that the
additional TF binding site can cause bistability in the toggle switch. (Online
version in colour.)
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3. Discussion
We have presented a new model reduction methodology and

reduced models of total mRNA and total protein concen-

trations, which can be directly related to both experimental

outputs and the underlying biochemical mechanisms. As

different mechanistic models can easily be incorporated into

our reduced models using the developed methodology and

the models can easily be extended to large networks, we

now discuss questions that are relevant for a range of

mechanistic models and gene regulatory networks. Using

the proposed reduced models, we find that we can gain key

insights into gene regulatory efficiency, burden, competition

and modularity by modelling total protein and mRNA,

while the reduced models enable a simplified analysis.
3.1. Regulatory efficiency
An efficient gene regulatory network can potentially reduce

burden on the cell or allow a faster response [27]. Therefore,

we start with the characterization of an efficient TF, given that

regulatory efficiency is an important concept in gene regu-

lation. Using the model in (2.1), we define the efficiency of

the TF to be the fraction of the total TF concentration, in

monomer units, which is bound to the operator (electronic

supplementary material, S10), as this is the only form of the

protein in the prototypical example which has a functional

effect on gene regulation. We can also estimate the efficiency

of regulation using (2.3) (electronic supplementary material,

S10). A completely efficient TF is one in which all molecules

are bound to an operator until all operators are occupied. For

gene regulation, neither free monomers nor free dimers have

a functional effect, and so the operator-bound protein can be

viewed as an alternative output variable to the total protein

concentration. In terms of efficiency, the total concentration

of free monomeric and free multimeric TF can be viewed as

a measure of the inefficiency of the system. Interestingly,

regulatory efficiency is important both by itself, and in

determining trade-offs with robustness [36,37]. For example,

a concentration drop in a highly efficient repressor can

unnecessarily turn on gene expression while an inefficient

repressor may act as a buffer.

3.2. Loading and retroactivity
Another important question for both synthetic and natural

systems is to determine the effect of connecting a single

‘downstream module’ on an ‘upstream module’. This ques-

tion can be framed in terms of loading and retroactivity

[9,12,38–40], where retroactivity describes the connection of

a ‘downstream’ network module affecting the ‘upstream’

module’s output, which in previous studies has been the

free monomeric TF [9].

However, when using the total protein concentration

as the module output, adding a downstream operator does

not introduce retroactivity unless there is either non-uniform

degradation or feedback. This can be seen in the prototypical

example with uniform degradation (electronic supplemen-

tary material, S3), where the addition of an operator

binding to the output TF has no effect on its dynamics,

assuming that the output TF does not affect the regulating

TF through feedback. Thus, retroactivity is a system property

that is dependent upon the choice of output, which in our

case is the experimentally measurable output. This depen-

dence on the choice of output has also been seen for

stochastic effects [40]. Interestingly, using the total protein

concentration allows a simplified identification and analysis

of module interconnections when dilution is dominant over

degradation and no feedback occurs.

When there are multiple genes regulated by the same TF

(figure 1b), then the different operators ‘compete’ for the

available TF. This ‘parallel loading’ can be predicted by our

reduced models with sequestering operators as described

above (electronic supplementary material, S9), noting that

the effect is typically much stronger for multimer-dominant

regulation. In fact, a TF with a higher regulatory efficiency

(electronic supplementary material, S10) will typically have

a larger parallel loading effect, a loading/efficiency trade-off.

The case of multiple genes regulated by one TF has been exam-

ined experimentally and with a mechanistic model [12]. Here,
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we can analyse a TF regulating multiple genes with more mech-

anisms using a simpler framework and an experimentally

measurable output. Similar to the single operator case, parallel

loading does not cause a retroactivity effect without either feed-

back or non-uniform degradation. For this case, the competition

between operators only affects the operator-bound concen-

trations, and does not affect the total protein concentration

‘output’. If one of the competing operators is part of a feedback

mechanism, then parallel loading does become a type of

retroactivity, or more generally, a network loading effect.
J.R.Soc.Interface
12:20150312
4. Conclusion
We have presented a new model reduction methodology and

the resulting simplified mechanistic models using total

mRNA and total protein concentrations as variables, which

link the simplified models with experimental outputs and

the underlying biochemical mechanisms. The proposed

methodology and models have allowed us to overcome

important challenges in using conventional simplified

models for applications in systems and synthetic biology.

The proposed methodology and models use assumptions

that hold generally, and also provide new criteria for when

the different conventional models may be used or should

be avoided. We provided biological examples where pro-

posed models are mechanistically accurate, whereas the

conventional models make significant qualitative errors in

prediction. We also applied the methodology to propose sim-

plified models of gene regulation in the presence of multiple

TF binding sites. Finally, describing gene regulation using the

total protein concentration led to a number of enlightening

interpretations, such as regulatory efficiency, while using

the proposed reduced model allows for simplified analysis

and design of gene regulatory networks.
5. Material and methods
Simulation and calculations were completed using Matlab. The

function ODE45 was used to simulate reduced ODE models,

whereas the function ODE15s was used to simulate reduced

differential-algebraic equation (DAE) models (electronic sup-

plementary material, S1) and full mechanistic models.
The reduced parameters are related to kinetic parameters in

the full mechanistic models using

ktl ¼
w5w4R

w4Rþ w5 þ w�4 þ gtR
,

Vtx ¼
a2a1P

a1Pþ a�1 þ a2
,

gT ¼ gt þ (gtR � gt)
ktl

w5
,

B2 ¼
a6

a�6 þ bl2

and Bg ¼
a8

a�8 þ blg

a�1 þ a2

a1Pþ a�1 þ a2
:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(5:1)

The parameter values used to generate the simulation results pre-

sented in figure 2 are gT
L ¼ 100, 1/Bg ¼ 15, 1/B2 ¼ 1 (molecules

per cell).

The parameter values used to generate the simulation results

presented in figure 3a,b are P ¼ 100, R ¼ 100, a4 ¼ 0.1, a24 ¼ 1,

a5 ¼ 1, a6 ¼ 0.01, am6 ¼ 2, a8 ¼ 1, a28 ¼ 0.001, a1 ¼ 0.01, a21 ¼ 1,

a2 ¼ 1, bt1 ¼ bt2 ¼ btg ¼ bl1 ¼ bl2 ¼ blg¼ 0.025, gtr¼ gt ¼ gtr¼

gl ¼ 0.2, w4 ¼ 0.02, w24 ¼ 0.2, w5 ¼ 0.2, w6 ¼ 1, w26 ¼ 2, w8 ¼ 1.2,

w28 ¼ 0.01, w1 ¼ 0.01, w21 ¼ 1, w2 ¼ 1, where the two TFs are XT

and XL. The initial conditions are chosen as mT
T(0) ¼ mT

L (0) ¼ 0,

gT
L ¼ gT

T ¼ 1: The two initial conditions (high and low) are chosen

as XL1(0) ¼ 30, XT1(0)¼ 1 (high) and XL1(0) ¼ 1, XT1(0) ¼ 3 (low)

with other initial conditions set at quasi-steady state (electronic

supplementary material, S1). XT
L is plotted in figure 3.

The parameter values used to generate the simulation results

presented in figure 3c are P ¼ 1000, R ¼ 1000, a4 ¼ 0.01, a24 ¼ 1,

a5 ¼ 1, a6 ¼ 0.1, a26 ¼ 1, a8 ¼ 0.5, a28 ¼ 0.1, a1 ¼ 0.01, a21 ¼ 1,

a2 ¼ 1, bL1 ¼ 0.05, bL2 ¼ 0.05, bLg ¼ 0.05, gLR ¼ 0.1, gLu ¼ 0.1, with

identical parameters for all three genes. The initial conditions are

chosen as mT
T(0) ¼ mT

Y(0) ¼ mT
L (0) ¼ 0, XL1(0) ¼ XT1(0) ¼ 10,

XY1(0)¼ 20, gT
L ¼ gT

Y ¼ gT
T ¼ 1, and other initial conditions set at

quasi-steady state (electronic supplementary material, S1).

The parameter values used to generate the simulation results

presented in figure 4 are gT
L ¼ 1, gT

T ¼ 1, Vtx,T ¼ 1, Vtx,L ¼ 1,

ktl,T¼ 0.8, ktl,L ¼ 1, gL ¼ gT ¼ 0.2, BLg ¼ 0.9, BTg ¼ 0.4, BL2 ¼ 0.5,

BT2 ¼ 0.5, bT ¼ 0.025, bL ¼ 0.025. The perturbed system uses the

additional parameter values BLo ¼ 5, OT
L ¼ 10: The initial con-

ditions are chosen as mT
L (0) ¼ 0, xT

L (0) ¼ 100, mT
T(0) ¼ 1, xT

T(0) ¼ 1:
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