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1  |   INTRODUCTION

Neurofibromin, encoded by NF1 gene, is a GTPase activat-
ing protein for RAS with 2818 amino acids. It ubiquitously 
expresses in multiple organ cells and mostly plays down-
regulating role in RAS-related signaling pathway (Cichowski 
& Jacks, 2001; Korf, 2013; Scheffzek & Welti, 2012). The 
human NF1 gene is located on chromosome 17q11.2, con-
sisting of 57 exons and four alternatively spliced exons, span-
ning 282 kb of DNA (Viskochil et al., 1990). Linkage studies 

showed that loss-of-function mutations in the NF1 gene 
are causative of Neurofibromatosis type 1(NF1) (OMIM 
162200), which is an autosomal dominant inherited disease 
and characterized by evolving tumors and nontumor manifes-
tations. The most common and histologically benign tumor is 
neurofibroma, which may affect derm, spine, central nervous 
system (Lisch nodules in iris mostly) or extend along the 
nerve and form the plexiform neurofibromas ultimately. 10% 
adult patients with NF1 have high risks for malignant periph-
eral nerve sheath tumors (MPNSTs), especially in patients 
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Abstract
Background: Neurofibromatosis type 1 is an autosomal dominant inherited dis-
ease and caused by NF1 gene mutation. Its clinical manifestations include multiple 
cafe´-au lait (CAL) spots, skinfold freckling, neurofibroma, bone dysplasia, learning 
disabilities, and an increased risk of malignancy.
Methods and Results: Here, we reported a Chinese patient bearing with a novel 
NF1 mutation (c.2064delGGATGCAGCGG/p.Gly672AsnfsTer24) and complain-
ing mainly about bone phenotype. Functional studies found that this novel mutation 
caused the damage of NF1 mRNA and protein levels, and lost the inhibition on Ras/
Erk signaling.
Conclusion: A novel mutation in NF1 gene was identified and in vitro functional 
studies were performed, which provided a potential molecular mechanism to explain 
the bone maldevelopment of patients with neurofibromatosis type 1.
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with plexiform neurofibromas (Evans, 2002). Nontumor clin-
ical features of NF1 comprise multiple cafe´-au lait (CAL) 
spots, skinfold freckling, skeletal dysplasias, learning disabil-
ities, and vascular dysplasias (Korf, 2013).

Typical skeletal dysplasias contain pseudarthrosis, tibial dys-
plasia, osteoporosis and scoliosis (Crawford, 1989; Crawford 
& Bagamery, 1986; Kuorilehto et al., 2004, 2005; Sbihi et al., 
1980). Murine models with NF1 deficit showed similar skeletal 
abnormity as NF1 patients, including reductive bone mass, tib-
ial bowing and delayed fracture healing (Schindeler et al., 2008; 
Wang et al., 2010). Besides widely recognized bone character-
istics of NF1 described above, short stature (<10th percentile) 
was also noted. It was reported that short stature has affected 
~24% in prepubertal patients and more than 40% at adult height 
(Carmi et al., 1999). A possible and well-established mecha-
nism is Ras-MAPK signaling pathway (Bertola et al., 2005). 
Skeletal deficits have been considered to be the result of defec-
tive osteoclasts (OBLs) differentiation (Schindeler et al., 2008; 
Wang et al., 2010). Activated Ras/MAPK pathway in NF1 is 
known to underlie aberrant proliferation and differentiation of 
OBLs (Yang et al., 2006). Altered extracellular signal-regulated 
kinases (Erk1/2) signaling has been found in several genetic 
diseases with skeletal phenotypes (He et al., 2011). Erk1/2 are 
phosphorylated and activated by Ras-Raf-MEK signaling, then 
further modulate multiple cell lineages in their proliferation, 
survival, differentiation, and protein synthesis, including OBLs 
(Hata et al., 2007; Kono et al., 2007). These experimental evi-
dences support that hyperactive Ras/Erk signaling induced by 
NF1 deficiency may negatively regulate OBLs differentiation, 
which is associated with bone dysplasia in NF1 phenotype.

In this study, the clinical features of a Chinese patient with 
neurofibromatosis type 1 were described, and gene sequenc-
ing discovered a novel mutation in NF1 gene. Further func-
tional studies verified that this specific NF1 gene mutation 
causes hyperactive Ras/Erk signaling, which might partici-
pate in impaired process of bone formation.

2  |   MATERIALS AND METHODS

2.1  |  Editorial policies and ethical

A Chinese patient with a novel NF1 gene mutation was re-
cruited here. This study was approved by the Institutional 
Review Board of the Ruijin Hospital. The informed consent 
was obtained from each participant considerations.

2.2  |  Molecular Investigations

DNA was extracted from peripheral blood leukocytes using 
DNA extraction kit (Qiagen, Hilden, Germany). Custom gene 
panel was designed and used to capture targeted sequence, 

covering all exons and flanking sequence (including the 10 bp 
of introns) of 187 genes which are associated with growth 
and development of children (Table S1). The procedure for 
preparation of libraries was consistent with standard operat-
ing protocols previously described (An et al., 2019; Dai et al., 
2019; Han et al., 2020; Zhang, Chen, et al., 2020). The aver-
age mean depth for the targeted regions was 370, and 84.4% 
of the covered exons had ≥10 reads. Available reads data were 
35.1 M. The candidate mutation was confirmed with Sanger 
sequencing using the following primers: Forward primers: 5’
-CTTGTGAGTTATTGTATGCGGAGAC-3’; Reverse prim-
ers: 5’-CAGGACATGGCAACCAGAAC-3’. The reference 
sequence NM_001042492.3 of NF1 mRNA was used.

2.3  |  Plasmids construction

The full length of NF1 cDNA was synthesized by GENEWIZ 
(Suzhou, China) and inserted into pCDNA3.0 plasmid with N-
terminus flag tagged. Mutation of NF1 (p. Gly672AsnfsTer24) 
was introduced by site-directed mutagenesis as previously re-
ported (Li, Lu, et al., 2020). The shRNAs for NF1 gene were 
designed and inserted into pLKO.1 plasmid which was pur-
chased from SIGMA-ALDRICH (Merck, Germany), and the 
specific sequences for these shRNAs are provided in Table 1.

2.4  |  Cell culture and transfection

Human HEK293T cell line was kindly provided by Professor 
Ronggui Hu (Chinese Academy of Sciences, Shanghai, 
China) and cultured in Dulbecco's modified Eagle medium 
(DMEM, Life Technologies, USA) supplemented with 10% 
fetal bovine serum (FBS), 100 U/ml penicillin and 100 mg/
ml streptomycin (all from Gibco, Layola, USA) in a 37°C 
humidified atmosphere of 5% CO2. Plasmids were trans-
fected into HEK293T cells using a Lipofectamine 2000 (Life 
Technologies, Carlsbad, USA) according to the manufactur-
er's instructions.

2.5  |  Reverse transcription PCR

Total RNA was extracted from cells using a total RNA kit 
(Tiangen). Complementary DNA (cDNA) was synthesized 

T A B L E  1   Sequences of shRNAs for NF1

shRNAs for NF1 Target site sequence

scramble GCGCGATAGCGCTAATAATTT

shNF1-1 CCATGTTGTAATGCTGCACTT

shNF1-2 CTTCGAAGCCTTGCCTAAATT

shNF1-3 CCCAGGGCGCCGGCCCACCCT
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using ReverTra Ace qPCR RT Master Mix (Toyobo). NF1 
and GAPDH were amplified using 2xPCR mixure (Tiangen), 
and detected by DNA gel electrophoresis as previously re-
ported (Zhang, Zhou, et al., 2020). PCR were performed 
using the following primers: NF1, Forward primers: 5′-TC
AATGCAGTCTTTAGTCGCATTTCT-3′, Reverse prim-
ers: 5′-GCCAGCAAGAGCTTTTCGTAGAC-3′; GAPDH, 
Forward primers: 5′-TATGATTCCACCCATGGCAAATT
CC-3′, Reverse primers: 5′-CATGAGTCCTTCCACGATA
CCAAAG-3′.

2.6  |  Immunoblotting

Immunoblotting was done as previously described (Li, Han, 
et al., 2020). Briefly, the lysates of HEK293T cells trans-
fected with plasmids were lysed in RIPA buffer (50  mM 
Tris–HCl (PH 7.6), 150 mM NaCl, 5 mM EDTA, 0.1% so-
dium dodecyl sulfate (SDS), and 1% NP-40) supplemented 
with protease inhibitor cocktails (Roche), subjected to SDS-
PAGE and transferred to a PVDF membrane (Bio-Rad). The 
membranes were incubated with the appropriate antibodies 
against GAPDH (1:5000, 60004–1-Ig, Proteintech), NF1 
(1:500, 27249–1-AP, Proteintech), Flag (1:1000, 20543–1-
AP, Proteintech), pan-Ras (1:2000, MABS195, Millipore, 
Germany), Erk1/2 (1:3000, SAB1305560, Millipore), or 
phospho-Erk1/2 (1:500, E7028, Millipore). Secondary anti-
bodies were labeled with HRP, and the signals were visual-
ized using Tanon 5200 Imaging System (Tanon).

2.7  |  Ras-GTP Assay

Ras-GTP levels were detected as previously described 
(Sharma et al., 2013). Briefly, HEK293T cells were lysed in 
nonionic lysis buffer (20 mM Tris-Cl PH7.6, 137 mM NaCl, 
1  mM EGTA, 1% Triton-X-100, 10% glycerol, 1.5  mM 
MgCl2) supplemented with protease inhibitor cocktails, 
and the Ras activity was determined using a Ras activation 
assay kit (Millipore). Briefly, GTP-bound Ras levels were 
determined by incubating cell lysates with Raf-1 Ras-binding 
domain conjugated to agarose beads followed by an immuno-
blot using an anti-pan-Ras antibody (Millipore) and the total 
Ras was also detected.

3  |   RESULTS

3.1  |  Identification of NF1 gene mutation

Pedigrees of the family with NF1 gene mutation, and the re-
sults of mutation analysis by direct DNA sequencing were 
shown in Figure1a,b respectively. A frame-shift mutation 

(c.2064delGGATGCAGCGG) in exon 18 of the NF1 gene 
was found and this mutation introduce a premature stop 
codon at codon 696 (p. Gly672AsnfsTer24). Although the 
father was unavailable for testing, the same mutation was 
found in the proband and her mother.

3.2  |  Clinical characteristics

The affected girl was born at term following an uncompli-
cated pregnancy and delivery. Her birth weight and length 
were 3.0 kg and 50 cm respectively. Scattered Café-au-lait 
macules (CALMs) were observed since the child was born. 
She had an uneventful infancy. At the age of 7 yr and 8 mo, 
she was admitted to the hospital for short stature (−2.0SD). 
Physical examination showed pectus excavatum, short fin-
gers, widespread café-au-lait spots which were mainly 
located in trunk. Axillary freckling was notable in both 
sides. The numbers of CALMs greater than 0.5 cm was six. 
Symptomatic neurofibroma and subcutaneous nodules were 
not noted. Slit-lamp examination did not perform for the pa-
tient as she had no complaint of vision abnormity. X-ray assay 
revealed scoliosis (Figure 1c) whereas no additional bone ab-
normality was identified in four limbs. Bone age is equal to 
chromosome age (by the Greulich-Pyle method). Ultrasound 
Bone Sonometers detected an imperfect bone strength in 
distal radius with Z score as −1.2. Plasma 25-OHD and 25-
OHD3 were significantly abated. Insulin-like growth factor 
1, thyroid function, and plasma calcium were within normal 
range. The NF1 gene mutation was inherited from her mother 
who showed multiple café-au-lait spots, axillary freckling, 
and a tiny subcutaneous nodule which had been removed by 
dermatologist 9 years ago. Pathological examination of the 
nodule revealed a fibroma whereas the documented diagno-
sis was unavailable. It was said that this subcutaneous nodule 
firstly appeared on left hip during the mothers’ puberty while 
no other nodules were developed. The mother also showed 
an unsatisfied final height of 146 cm (−2.0SD) (Figure 1d).

3.3  |  Mutation of NF1 cause hyperactive 
Ras/Erk signaling

A frameshift mutation of NF1 gene that expressed a trun-
cated NF1 protein (p. Gly672AsnfsTer24) was involved in 
this study (Figure 2a). The eukaryotic expression plasmids 
of wild-type and mutant NF1 (p. Gly672AsnfsTer24) were 
constructed. The mRNA and protein expression of mutant 
NF1 were lower than that of wild-type NF1 as revealing 
by reverse transcription PCR (RT-PCR) and immunoblot-
ting assays (Figure 2b,c). To study the functions of NF1, 
three shRNAs targeted the UTR (untranslated region) of 
NF1 gene were designed, and the knockdown efficiency 
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were detected by immunoblotting. As showed in Figure 2d, 
shNF1-1 and shNF1-2 exhibited high knockout efficiency, 
and were selected for further study. NF1 knockdown signifi-
cantly activates the Ras-GTP and phospho-Erk1/2 signaling 

in HEK293T cells (Figure 2e). Further study demonstrated 
that mutation of NF1 lost the inhibition on Ras/Erk signaling 
compared to that of wild-type NF1 as detected in NF1 knock-
down HEK293T cells (Figure 2f).

F I G U R E  1   Clinical information of patient. (a,b) Pedigree of the family with a novel c.2064delGGATGCAGCGG mutation in NF1 gene, and 
the partial sequencing chromatographs of two family members. (c) X-ray examination showed a scoliosis of the proband. (d) Growth curves of the 
proband showed an unideal growth tendency. Black dots refer to patient, red asterisk (*) refers to bone age by Greulich-Pyle method
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4  |   DISCUSSION

Comparison between several large scale NF1 patient cohorts 
had emphasized that a large DNA change is more likely to 
lead a severe phenotype (Rojnueangnit et al., 2015; Theos 
& Korf, 2006). The truncating protein identified in our pa-
tient had missed the GAP-related domain (GRD), a critical 
domain that negatively regulates the Ras state (Chen et al., 

2005). However, the proband and her mother manifested a 
mild NF1 phenotype characterized by café-au-lait spots and 
short stature. It was previously observed that phenotypic di-
versity of NF1 existed in intra- and inter-families and pos-
sible explanations include different genetic background, 
potential modifier factors, mosaicism in affected patients, 
environmental and stochastic factors (Banerjee et al., 2016; 
Rojnueangnit et al., 2015). Phenotypes of NF1 would emerge 



6 of 8  |      ZHANG et al.

as age progresses (Banerjee et al., 2017). Therefore, we spec-
ulate that other NF1-associated clinical phenotypes may ap-
pear in the proband's later life or even do not arise like the 
asymptomatic condition of her mother.

Growth curve of the proband showed a gradual slowdown 
in the last 3 years (Figure 1d). Laboratory examinations and 
lifestyle survey did not find possible explanations. In addition, 
this patient showed a mild scoliosis. Considering the bone dys-
plasia in this patient, the substandard final height in her mother 
and the prevalence of short stature in NF1 patients, we consid-
ered the loss-of-function variant in NF1 gene was the rational 
mechanism responsible for those bone phenotypes.

Besides empirical evidences described in Introduction part, 
more investigations had exhibited the involvement of Ras/
MAPK and Erk/MAPK pathway in bone pathology of NF1 
patients. For example, Richa had reported that Nf1+/− osteo-
progenitors in vitro exhibited a spectrum of bone phenotypes 
including abnormal proliferation and apoptosis, impaired os-
teoblast differentiation, and decreased matrix synthesis, which 
were similar to those of osteoblasts with induced overexpres-
sion of Ras (Chen et al., 2005). K Nose et al. had proved that in-
creased Ras/MAPK pathway was associated with suppression 
of c-fos, whose up-regulation is required for normal osteoblast 
functions (Nose et al., 1989). Erks (p44/p42 MAP kinase) were 
downstream effectors of Ras-GTP state (Leevers et al., 1994; 
Stokoe et al., 1994). It was proved that Erk/MAPK pathway 
plays a negative role in the regulation of type I collagen gene 
expression in osteoblastic cells (Chaudhary & Avioli, 2000). 
Shin-jiroKono with his colleagues had examined the role of 
Erks in matrix mineralization and finally concluded that Erk 
pathway is a negative regulator of skeletal mineralization both 
in vitro and in vivo (Kono et al., 2007). Richa Sharma et al. 
had reported that phosphorylated Erk1/2 is elevated in Nf1+/− 
and Nf1−/− osteoblast progenitors (pro-OBLs) in comparison to 
wild-type pro-OBLs (Sharma et al., 2013).

Consistent with previous findings, our in vitro studies did 
prove that the NF1 mutant identified from our patient lost the 
inhibition on Ras/Erk signaling, which could negatively reg-
ulate the skeletal growth, providing a more direct evidence to 
exhibit genotype-phenotype correlation.
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