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Abstract

During the COVID-19 pandemic, US populations have experienced elevated rates of finan-

cial and psychological distress that could lead to increases in suicide rates. Rapid ongoing

mental health monitoring is critical for early intervention, especially in regions most affected

by the pandemic, yet traditional surveillance data are available only after long lags. Novel

information on real-time population isolation and concerns stemming from the pandemic’s

social and economic impacts, via cellular mobility tracking and online search data, are

potentially important interim surveillance resources. Using these measures, we employed

transfer function model time-series analyses to estimate associations between daily mobility

indicators (proportion of cellular devices completely at home and time spent at home) and

Google Health Trends search volumes for terms pertaining to economic stress, mental

health, and suicide during 2020 and 2021 both nationally and in New York City. During the

first pandemic wave in early-spring 2020, over 50% of devices remained completely at

home and searches for economic stressors exceeded 60,000 per 10 million. We found large

concurrent associations across analyses between declining mobility and increasing

searches for economic stressor terms (national proportion of devices at home: cross-corre-

lation coefficient (CC) = 0.6 (p-value <0.001)). Nationally, we also found strong associations

between declining mobility and increasing mental health and suicide-related searches (time

at home: mood/anxiety CC = 0.53 (<0.001), social stressor CC = 0.51 (<0.001), suicide

seeking CC = 0.37 (0.006)). Our findings suggest that pandemic-related isolation coincided

with acute economic distress and may be a risk factor for poor mental health and suicidal

behavior. These emergent relationships warrant ongoing attention and causal assessment

given the potential for long-term psychological impact and suicide death. As US populations

continue to face stress, Google search data can be used to identify possible warning signs

from real-time changes in distributions of population thought patterns.
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Introduction

The SARS-CoV-2 pandemic and resulting illness and death related to COVID-19 are associ-

ated with deleterious effects on population mental health in the US [1–8]. There are several

potential mechanisms through which the pandemic may affect mental health and suicide risk,

including loss and bereavement of loved ones [9, 10], social isolation and loneliness due to

quarantine and public health recommendations limiting mobility [11–13], diminished access

to mental healthcare and treatment within an increasingly overwhelmed medical system [14–

16], reduced ability of existing safety nets to mitigate abuse [17, 18], and unemployment and

financial instability due to restrictions on business activity [19, 20]. Available data indicate

increased rates of psychiatric disorders, such as depression [2, 7, 8], and exacerbated existing

mental health disorders among COVID-19 patients in the first waves of the pandemic [21, 22].

Contrary to many hypotheses, however, provisional death data suggest that suicide mortality

in the US did not increase during the initial pandemic outbreak [23, 24], yet there is wide-

spread concern that rising financial insecurity and deteriorating mental health could lead to

subsequent increases [25–29]. Increased suicide rates have been observed after previous pan-

demics [30] and recessions [31], and in other areas of the world during 2020 [32]. Using con-

temporary information to monitor the dynamic medium- and long-term impacts of the

pandemic on economic, mental health, and suicide-related concerns is critical to guiding pre-

vention efforts.

Accurate assessment of the evolving effects of the pandemic on economic stress, mental

health, and suicide risk requires a fluid measure of population behavior over time, such as

mobility (e.g. leaving one’s home or neighborhood). While cities and states passed stay-at-

home orders on specific dates that can be tracked, the psychological impacts of these policies

remain unclear [13] and mobility declines often preceded their passage [33, 34]. The politiciza-

tion of the pandemic also spurred divisiveness over these mandates, precipitating variation in

adherence to stay-at-home orders [35]. Real-time metrics of mobility can provide better

insight into population movement throughout the pandemic period than can be inferred from

policy implementation alone.

Estimating the near-real-time effects of COVID-19 mobility restrictions on population

mental health and suicide-related concerns is challenging given long delays in the availability

of survey, administrative, and vital records data. Accordingly, use of alternate sources of sur-

veillance information such as Google search volumes has increased during the initial phases of

the pandemic. Several studies have examined Google search terms as an indicator of trends in

mental health outcomes and suicidal behavior, both in the US and elsewhere [36–41]. Notably,

attempts to validate search volumes for suicide-related terms using suicide deaths have found

heterogeneous associations [40, 41], suggesting that search volumes also capture general

inquires beyond acute suicidal crises that may reflect media coverage or anomalous search

trends [42–44].

Nevertheless, since the beginning of the pandemic, many studies have assessed trends in

economic, mental health, and suicide-related Google search volumes across countries [26, 45–

55]. Overall, search volumes for specific terms related to mental health and suicide declined in

the US and elsewhere during the period in which COVID-19 cases and restrictions on gather-

ing increased. Relative search volumes for economic stressors possibly linked to suicide risk

(e.g., unemployment), however, exponentially increased in the US during the early pandemic

period of March through mid-April 2020 [26]. To our knowledge, studies of search volumes in

the US have not incorporated data for longer periods despite additional waves of COVID-19.

Further, exploring the impact of the pandemic on Google search volumes in the US has been

hindered by methodological limitations, such as selecting a single time point (e.g., date of stay-
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gcR0U&r=RSUMhliArNvjr4JmfG5vN4-kWnvPJ37K

953kq38kqpw&m=4n2qQ28Ga7KPxRAaVoo9cmx

u2O7hybiFBNCUdDdYKTY&s=3m42NmVAERHJ9s

EYJEUg-fFydwEaofOSU27zzHlKeRE&e=). Search

volume data cannot be shared publicly because

they are owned by third parties and the authors do

not have permission to share the data. Search

volume data are available from Google Health

Trends API (Google Health Trends API access may

be requested by filling out this form https://docs.

google.com/forms/d/e/1FAIpQLSenHdGiGl1YF-

7rVDDmmulN8R-ra9MnGLLs7gIIaAX9VHPdPg/

viewform or emailing trends-api-support@google.

com).
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at-home order) to define complex exposures [46–48] or resorting to descriptive analyses or

correlations [26, 49–51]. To date, no study has implemented time-series analyses (TSA) to

explore the relationship between a dynamic proxy of the personal impacts of the pandemic,

such as mobility, and economic, mental health, or suicide-related search volumes [46, 48, 54,

55].

Trends in national mental health and economic concerns may also obscure the heterogene-

ity in pandemic experiences in specific areas. New York City (NYC) experienced especially

high case and death rates early in the pandemic, with concomitant restrictions and stay-at-

home orders that led to rising unemployment rates [56–58]. It is therefore important to under-

stand the degree to which mobility restrictions influenced search volumes within such highly

affected areas where stress and trauma are anticipated to be most pronounced.

The present study investigates the relationship between cell phone mobility data and Goo-

gle Health Trends (GHT) search volumes related to social and economic stress, mental health,

and suicide both nationally and in the NYC designated market area (DMA) from January 2020

through January 2021, capturing the emergence and evolution of the COVID-19 pandemic

across the US [59]. We conducted TSA using transfer function models [40, 60, 61] to estimate

associations between mobility and search volumes in two aims. First, given that stark increases

in unemployment during the past year coincided with COVID-19 lockdowns across the

nation, we examined the association between trends in mobility and trends in search volumes

for economic stressors as a proof of principle to establish whether a signal could be detected.

We anticipated that restricted mobility would portend increases in search volumes for eco-

nomic stressors, which importantly may have lasting negative effects on mental health [19, 20,

31]. Second, we assessed the impact of mobility on search volumes for mental health and sui-

cide-related terms. If, as predicted, search volumes for economic stressors were correlated

with mobility, we postulated that search volumes for mental health or suicide seeking terms

might then serve as valid indicators of mental health and suicidal behavior risk. We expected

mild associations between mental health and suicide-related search volumes and mobility

given prior heterogenous findings on the psychological effects of lockdowns [13].

Materials and methods

Economic stress, mental health, and suicide-related search volumes

We extracted weekly data from the GHT application programming interface from January 6,

2019 through January 23, 2021 for primary and extended sensitivity analyses (see below for

details). GHT provides the likelihood for a specified term to be queried from a location, during

a period [62, 63]. This is estimated as the number of searches for the term per 10 million

searches from the specified period and location. We selected a weekly, rather than daily, time

resolution in order to ensure that we had sufficient search volumes across term categories. In

addition to documenting national trends in search volumes, we used search volumes from the

NYC DMA. DMAs correspond to geographic areas that comprise the catchment area of local

television viewing [64], and are the smallest geographic unit for which GHT data are available.

Search terms

We utilized the search term strategy outlined by Lee (2020) [41]. Terms covered a wide range

of mental health and suicide-related categories including suicide neutral (e.g., “suicides”), sui-

cide seeking (e.g., “how to kill myself”), suicide prevention (e.g., “suicide hotline”), mood and

anxiety disorders (e.g., “depressed”), and psychosis (e.g., “delusion”). In order to ascertain the

financial impact of the pandemic on search volumes, we divided Lee’s stressors and trauma

term category into two mutually exclusive groups: economic stressors (e.g., “unemployed”)
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and social stressors (e.g., “lonely”, “posttraumatic stress disorder”), the latter of which we clas-

sified with mental health-related categories. Lee (2020) provides an overview of the association

between these categories of search terms and suicide mortality in the US from January 2004 to

December 2017 at 1 to 3-month time lags, finding heterogenous associations between search

volumes and suicide mortality with further evidence of both positive and negative associations

and sex differences. Given that some associations emerged for each category of searches, we

used the Lee (2020) terms as they are comprehensive (S1 Table).

Mobility metrics

Daily data on mobility both nationally and by DMA were drawn from SafeGraph [65, 66].

These data include a panel of global positioning system pins from millions of mobile devices

that are measured daily and available at the census-tract level. We aggregated these data by

county that we then matched to the geographic area of the NYC DMA (see S2 Table). We used

two measures from SafeGraph to estimate mobility: the median time (in minutes) mobile

devices were at home on a given day and the proportion of devices in a given area that did not

leave their home on a given day. SafeGraph estimates ‘home’ by the common nighttime loca-

tion of a device within a 153x153 meter area. We restricted the end of our study period to

exclude subsequent anomalous mobility datapoints.

Statistical analysis

We followed the methods described by Tran et al. (2017) on transfer function models [40, 61].

These methods permit assessment of the impact of our explanatory time series, mobility indi-

cators, on our dependent time series, search volumes, while controlling for potential spurious

correlations between the two. To do so, we first modeled our explanatory time series using

autoregressive integrated moving average (ARIMA) models based on Box and Jenkins meth-

ods [60]. Daily mobility indicator data were averaged to match the weekly resolution of GHT

data. We auto-selected the best fitting and most parsimonious models with the forecast pack-

age in R [67], which uses a variation of the Hyndman-Khandakar algorithm, returning the best

model according to corrected Akaike information criterion. This method tests the benefit of

including a seasonal component in the models using a Seasonal and Trend decomposition

using Loess [67]. None of the optimal model forms selected by this method had a seasonal

component. We then applied these models to the dependent time series and assessed if the two

models’ residuals were correlated using the TSA package in R [61]. This process is termed pre-

whitening and any remaining correlations between models’ residuals indicate that changes in

the dependent time series may be attributable to changes in the explanatory time series and

vice versa.

For the primary analyses, we calculated correlations between the residuals of prewhitened

explanatory and dependent time series at various time lags from January 5, 2020 through Janu-

ary 23, 2021 using the cross-correlation function. We visually inspected the residuals of the

prewhitened time series to ensure that they met the assumptions of the normalized cross-cor-

relation function, which approximates a time-dependent Pearson correlation coefficient [68],

finding them to be independent, homoscedastic, and normally distributed [69]. Cross-correla-

tions were assessed between time series at -14 to +14 week lags, including a 0-week lag. This

range was auto-calculated based on the number of observations and time series in the data

[61] and allowed for assessment of trends over several months, as recommended by Tran et al.

(2017) [40]. Cross-correlation coefficients were categorized as small (.10� |r|< .30), medium

(.30�|r| < .50), or large (.50� |r|)) effect sizes [70]. P-values were calculated to quantify the

strength of association against the null hypothesis; however they are susceptible to bias and
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should not be interpreted as a threshold for meaningful effects [71, 72]. A cross-correlation

coefficient at a negative weekly lag (e.g. -10) indicates that changes in the explanatory time

series lead changes in the dependent time series 10 weeks later. If a cross-correlation coefficient

is at a positive time lag (e.g. 10), however, then it can be inferred that changes in the dependent
time series lead changes in the explanatory time series 10 weeks later. A positive cross-correla-

tion coefficient indicates that there is a direct correlation between the time series and a nega-

tive cross-correlation coefficient indicates that there is an inverse correlation between the time

series. We anticipated, for example, to find larger positive cross-correlation coefficients at neg-

ative time lags between mobility indicators (explanatory) and economic stressor search vol-

umes (dependent), meaning that decreased mobility predicted increased search volumes for

terms related to economic stressors in future weeks. Cross-correlation coefficients at the

0-week lag suggest that changes in both time series were concurrent and could not be tempo-

rally disentangled.

Sensitivity analyses

We conducted TSA sensitivity analyses using data from January 6, 2019, the earliest available

month of mobility data, through January 23, 2021, in order to assess whether findings were

robust to the inclusion of pre-pandemic data. Because of the extended time period, cross-cor-

relations were auto-assessed for a broader range of weekly time lags than in primary analyses,

ranging from -17 to 17 weeks.

All statistical analyses were completed in in R version 4.0.3 [73]. Data were anonymized

and exempt from human subjects approval.

Results

Mobility metrics

As illustrated in Fig 1, the proportion of devices completely at home rose sharply during

March of 2020 to a daily peak in April of nearly 50% nationally and nearly 60% in the NYC

DMA. During this period, the median daily amount of time that devices spent at home spiked

to just over 18 hours (1,089 minutes, Interquartile Range (IQR): 859–1,245) nationally and

over 21 hours (1,283 minutes, IQR: 936–1,409) in the NYC DMA. Both mobility measures

declined over the course of the summer. Time at home reached its stable pre-pandemic levels,

while the proportion of devices completely at home stabilized at slightly higher than its early-

2020 levels. Results for the NYC DMA mirrored national trends, featuring more extreme

peaks in the spring of 2020.

Economic stress, mental health, and suicide-related search volumes

Fig 2 shows that search volumes (normalized per 10 million searches in a given area during a

given week) for economic stressor terms rose both nationally and in the NYC DMA during

March of 2020 from less than 5,000 searches per 10 million in early March to over 60,000 in

late March nationally and nearing 80,000 in the NYC DMA. Search volumes for economic

stressor terms then declined through the end of October, at which point they began to rise

again through the beginning of 2021, coinciding with the fall and winter wave of new COVID-

19 cases.

Fig 3 highlights results for suicide seeking, mood and anxiety, and social stressor term cate-

gories (S1 Fig includes results for all other search term categories). Trends remained relatively

stable during the study period for terms in the suicide seeking, suicide neutral, suicide preven-

tion, psychosis, and mood and anxiety categories both nationally and in the NYC DMA.
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Similarly, social stressor terms were generally consistent over time. Temporal fluctuations in

search volumes for these term categories were minor compared to those of the economic

stressor terms, although all term categories exhibited a dip during the emergence of the pan-

demic in the middle of March 2020.

Time series analyses (TSA)

We created heatmaps to depict TSA cross-correlation coefficients, for which numerical values

and corresponding p-values can be found in S3 and S4 Tables. The algorithm selected best fit

ARIMA models for each explanatory mobility time series in both primary and sensitivity anal-

yses. Details on model parameters can be found in S5 Table. Values are reported below as

(cross-correlation coefficient, p-value).

Economic TSA

Fig 4 presents the association between mobility and search volumes for economic stressor

terms (e.g., “lost job”) that we examined as a proof of principle, given that we know that there

was a strong connection between the onset of pandemic-related mobility limitations and

Fig 1. Mobility indicators over time nationally and in the NYC DMA: 2020–2021. Note: Mobility data was

aggregated to the weekly-level for time-series analyses.

https://doi.org/10.1371/journal.pone.0260931.g001
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economic stress. Larger positive cross-correlation coefficients for economic stressor terms

were found at the -1 and 0-week lags for mobility indicators nationally (0.30, 0.027 to 0.60,

<0.001), demonstrating that as mobility restrictions increased, search volumes for economic

stressor terms increased both concurrently and one week later. Additionally, there were

medium positive cross-correlation coefficients at weekly lags -11 (0.34, 0.011) and -6 (0.32,

0.018) and medium to large negative cross-correlation coefficients for weekly lags -9 (-0.35,

0.01) and -8 (-0.51,<0.001) for time at home nationally. In the NYC DMA, economic stressors

were positively cross-correlated with time at home at a 1-week (0.29, 0.029) and with propor-

tion of devices completely at home at -2 (0.27, 0.049) and 0-week (0.49, <0.001) lags.

The largest cross-correlation coefficient occurred with proportion of devices at home

nationally at a 0-week lag (0.6,<0.001). This was also the largest cross-correlation coefficient

across all analyses, indicating that severe mobility restriction and economic stressor search vol-

umes during the pandemic period were strongly correlated but temporally inextricable. Find-

ings of some larger negative cross-correlation coefficients complicated trend interpretation;

however, overall, coefficients were predominantly positive and were strongest at the 0-week

lag, suggesting that search volumes for economic stressors rose concurrently with pandemic

mobility restrictions both nationally and in the NYC DMA.

Mental health and suicide TSA

Fig 5 presents heatmaps of primary analyses cross-correlation coefficients for suicide seeking,

mood and anxiety, and social stressor search volumes. S2 Fig features suicide neutral, suicide

prevention, and psychosis search volumes. Trends for these search term categories diverged by

location, with stronger and more consistent national associations. Nationally, a series of

medium to large positive cross-correlation coefficients at a 0-week lag for time at home

emerged across term categories (0.37, 0.006 to 0.53, <0.001), excluding suicide neutral, and

were buffered by smaller positive associations at adjacent time lags. These results broadly indi-

cate that as mobility decreased (i.e. more time at home), search volumes for terms within these

categories increased at the same time. Similarly, for proportion of devices completely at home

nationally, smaller positive cross-correlation coefficients were found at the -9-week lag for sui-

cide seeking, mood and anxiety, and suicide prevention search volumes (0.28, 0.041 to 0.35,

Fig 2. Google Health Trends search volumes for economic stressor terms over time nationally and in the NYC

DMA: 2020–2021.

https://doi.org/10.1371/journal.pone.0260931.g002
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Fig 3. Google Health Trends search volumes for suicide seeking, mood and anxiety, and social stressor terms over

time nationally and in the NYC DMA: 2020–2021.

https://doi.org/10.1371/journal.pone.0260931.g003
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0.01); however, these findings were flanked by smaller negative cross-correlation coefficients

which obfuscated trend interpretation. Despite differences across mobility indicators, these

results suggest the declining mobility prompted increased searches for mental health and sui-

cide-related terms during the pandemic.

Within the NYC DMA, however, there were few discernable patterns in cross-correlation

coefficients for mental health and suicide-related terms across mobility indicators. Larger

cross-correlation coefficients were irregularly distributed across negative and positive weekly

lags and vacillated in direction. For time at home, only suicide seeking terms exhibited larger

cross-correlation coefficients which alternated between positive and negative coefficients at

weekly lags -3,-2, and 0 (-0.35, 0.009 to 0.42, 0.002). An analogous pattern also arose for suicide

seeking search terms with proportion of devices completely at home at the -7 (-0.41, 0.002)

and -6-week lags (0.3, 0.024). These alternating findings denote an inexplicable and potentially

immaterial relationship between mobility and searches for suicide-seeking terms in the NYC

DMA.

Sensitivity analyses

S3 Fig includes all heatmaps for sensitivity analyses with an extended study period of 2019

through 2021. As in primary analyses, we found larger, predominantly positive cross-correla-

tion coefficients between economic stressor search volumes and mobility indicators across

locations (0.21, 0.028 to 0.51, <0.001). These findings, however, spanned negative and positive

weekly lags, signaling a bidirectional relationship between economic stress and mobility dur-

ing this period.

Cross-correlation coefficients in sensitivity analyses were smaller and somewhat matched

trends in primary analyses for mental health and suicide-related terms. Nationally, relatively

larger positive cross-correlation coefficients for all search term categories except for suicide

neutral and suicide seeking occurred at the -1-week lag between proportions of devices

Fig 4. Heatmaps of cross-correlation coefficients for mobility indicators and Google Health Trends search volumes for economic stressor terms nationally and in

the NYC DMA: 2020–2021. P-values listed within cells. Note on interpretation: A cross-correlation coefficient at a negative weekly lag indicates that changes in the

explanatory time series lead changes in the dependent time series that number of weeks later. A cross-correlation coefficient at a positive weekly lag indicates that

changes in the dependent time series lead changes in the explanatory time series that number of weeks later. Correlations at the 0-week lag suggest that changes in both

time series were concurrent. A positive cross-correlation coefficient indicates that there is a direct correlation between the time series and a negative cross-correlation

coefficient indicates that there is an inverse correlation between the time series.

https://doi.org/10.1371/journal.pone.0260931.g004
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completely at home (0.19, 0.045 to 0.28, 0.004). As in primary analyses, however, these positive

coefficients were immediately followed by smaller negative coefficients at the 0-week lag. Simi-

larly, a string of negative cross-correlation coefficients for time at home at a 4-week lag were

bound by positive correlations at adjacent lags. Ultimately, relationships, were mixed within

term categories, especially between suicide seeking terms and time at home. Within the NYC

DMA, findings were similarly ambiguous with no clear trends in cross-correlation

coefficients.

Overall, the majority of analyses revealed positive concurrent associations between

restricted mobility and search volumes for economic stressors. From 2020 through 2021

nationally, positive relationships were found between mobility restriction and mental health

and suicide-related search volumes, excluding suicide neutral, and were strongest at the

0-week lag. Similar trends were not apparent within the NYC DMA.

Discussion

We employed mobility data documenting the proportion of cellular devices at home and time

at home during the COVID-19 pandemic in the US and in New York City to assess whether

restricted movement was associated with economic stress, mental health, and suicide as

Fig 5. Heatmaps of cross-correlation coefficients for mobility indicators and Google Health Trends search volumes for suicide seeking, mood and anxiety, and

social stressor terms nationally and in the NYC DMA: 2020–2021. P-values listed within cells. Note on interpretation: A cross-correlation coefficient at a negative
weekly lag indicates that changes in the explanatory time series lead changes in the dependent time series that number of weeks later. A cross-correlation coefficient at a

positive weekly lag indicates that changes in the dependent time series lead changes in the explanatory time series that number of weeks later. Correlations at the 0-week

lag suggest that changes in both time series were concurrent. A positive cross-correlation coefficient indicates that there is a direct correlation between the time series

and a negative cross-correlation coefficient indicates that there is an inverse correlation between the time series.

https://doi.org/10.1371/journal.pone.0260931.g005
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measured by Google Health Trends search volumes. Our research yielded two main findings.

First, we found that pandemic mobility restrictions were contemporaneously linked to trajec-

tories of online searches for terms related to economic distress across locations. Second, we

found positive associations between declining mobility and mental health and suicide-related

search volumes nationally during the pandemic. These results underscore the pervasiveness of

pandemic-induced economic hardship and prompt further consideration of the relationships

between isolation and mental health and suicide risk.

While Google data on mental health and suicide-related search volumes have been used as

interim proxies for delayed epidemiological data during the pandemic [26, 45–55], to our

knowledge, no studies have assessed a time-variant indicator of population behavior, such as

mobility, as an exposure. Cellular mobility data provide real-time information on actual mobil-

ity restrictions [33, 34], a likely important driver of pandemic-related negative mental health

outcomes [74, 75]. We found that mobility declines were most notable during the early spring

of 2020 when NYC became a global center of the pandemic [76] and stay-at-home orders and

social distancing recommendations were first established [77]. We also found that search vol-

umes for economic stressor terms rapidly increased during the early stages of the pandemic, in

accordance with other studies [26, 49], and in line with evidence documenting high rates of

unemployment and financial hardship in response to pandemic-related economic shut-downs

[78, 79]. Moreover, declining mobility was strongly correlated with concurrent and future rises

in search volumes for economic stressor terms across locations, especially from 2020 through

2021, confirming our hypothesis that mobility restrictions due to travel limitations and quaran-

tine orders would predict economic distress due to consequent economic adversity and job loss.

Having established a proof of principle, we found that search volumes for mental health

and suicide-related terms declined slightly during the pandemic onset in early 2020, matching

existing research [26, 46–51], and that mobility restrictions during January 2020 through Janu-

ary 2021 were associated with increased search volumes for these terms nationally, but not in

the NYC DMA. Nationally, we identified strong concurrent relationships between mental

health and suicide-related search volumes with time at home, which may be a more sensitive

indicator of pandemic-induced isolation as it relates to declining psychiatric wellbeing. These

findings align with longitudinal and cross-sectional studies in the US indicating that the preva-

lence of mental disorders and psychological distress increased during the early stages of the

pandemic [1–8]. Findings of smaller correlations at heterogenous time lags that dissipated in

geographically specific analyses and with the inclusion of pre-pandemic data are also consis-

tent with evidence that lockdowns themselves have minor or mixed effects on population men-

tal health [13, 80]. Further, provisional CDC estimates indicate that age-adjusted suicide rates

during the first half of 2020 declined from those in 2019 [23]; however, emergency department

visits related to suicide attempts for girls significantly increased over the course of the pan-

demic into 2021 [81], possibly explaining the inconsistent relationship between pandemic

mobility restrictions and suicide seeking search volumes.

Foremost, our findings for economic stressor search volumes clarify the importance of

financial concerns during the pandemic and highlight an opportunity to help those potentially

vulnerable to medium- and long-term deteriorating mental health and increasing suicidal risk

[31, 82]. Robust social safety net policies can mitigate the harms of prolonged financial distress

[83, 84] and may contribute to ameliorating suicide risk [19]. Struggling individuals psycho-

logically benefited from additional funds issued by the national government during the pan-

demic [85, 86] and, given the political will, governments can continue to grow and fortify the

social safety net in the US [78].

The pandemic has presented many challenges to psychiatric epidemiology data collection,

especially when administrative clinical service data and mortality records are lagged in their
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release. Our findings also contribute to the ongoing discussion surrounding the utility of Goo-

gle search volumes in estimating mental health and suicide-related outcomes. Results for eco-

nomic stressor, mental health, and, to some extent, suicide seeking terms matched trends in

survey data. Yet attempts to assess the validity of Google search volumes, particularly in fore-

casting suicide deaths, [36–41] have concluded that search volumes for suicide-related terms,

even when surveying granular term categories, are noisy and inconsistent indicators of suicide

rates. Knipe et al. (2021, preprint) [45] analyzed the relationship between search volumes for

mental health terms and mental health outcomes in the United Kingdom during the pan-

demic, also finding that the time series did not generally align. Ultimately, searches within the

Google platform, with over 267 million unique users in the US [87], do not exactly measure

population mental health outcomes and are not comparable with survey data, but instead may

serve as a useful barometer for real-time population thoughts and concerns.

The extent to which Google search volumes are useful for mental health and suicide risk

surveillance purposes remains unclear. For instance, search volumes for suicide-related terms

often spike after a celebrity suicide death [37], which may indicate news story interest rather

than increased psychological distress. Suicide deaths, however, also increase after a celebrity

dies by suicide [88]. This is an example of the “Werther effect” which postulates that such

increases in emulative or imitative suicide deaths among the public result from heightened

news media coverage and personal identification with the celebrity [89]. Notably, Google

search volumes cannot be disaggregated by social groups, such as race, although minority

racial groups emerged as at growing risk of suicide mortality during the early phases of the

pandemic [90, 91]. Yet despite their coarseness, spikes in search volumes for suicide-related

terms may serve as early indicators of actual increases in local suicidal behavior risk, making

continued surveillance warranted for public health efforts.

This study included several limitations; foremost that both cellular mobility and GHT

search volumes are imperfect proxies for actual population behavior and mental health. Nota-

bly, other factors, including rates of COVID-19 illness, hospitalizations, and deaths or height-

ened attention to mass media, may be strongly related to mental health and suicide-related

search volumes and should be explored in future analyses. Further, GHT search volumes could

not be stratified by key at-risk demographic groups or adjusted for other potentially contem-

poraneous events that may have affected time series. We also may have been able to model and

assess long-term trends and seasonality more rigorously if protracted pre-pandemic mobility

data were available. Due to a lack of contemporaneous suicide mortality data, we were unable

to assess the validity of suicide-related search volumes and our results may not be generalizable

beyond the US.

In conclusion, we found that GHT search volumes captured real-time increases in economic

distress that were temporally linked to COVID-19 pandemic mobility restrictions in the US and

in New York City. Associations were also found between declining mobility and rising mental

health and suicide-related search volumes nationally. Our results align with pandemic-period

research exploring Google search volumes in the US and available data on unemployment,

mental health, and suicide risk. As epidemiological studies strive to keep pace with the psycho-

logical impacts of the pandemic, we believe that Google search volumes may be a useful interim

data source for monitoring population mental health when carefully considered.

Supporting information

S1 Fig. Google Health Trends search volumes for suicide neutral, suicide prevention, and

psychosis terms over time nationally and in the NYC DMA: 2020–2021.

(TIF)
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S2 Fig. Heatmaps of cross-correlation coefficients for mobility indicators and Google Health

Trends search volumes for suicide neutral, suicide prevention, and psychosis terms nationally

and in the NYC DMA: 2020–2021. P-values listed within cells. Note on interpretation: A cross-

correlation coefficient at a negative weekly lag indicates that changes in the explanatory time series

lead changes in the dependent time series that number of weeks later. A cross-correlation coeffi-

cient at a positive weekly lag indicates that changes in the dependent time series lead changes in

the explanatory time series that number of weeks later. Correlations at the 0-week lag suggest that

changes in both time series were concurrent. A positive cross-correlation coefficient indicates that

there is a direct correlation between the time series and a negative cross-correlation coefficient

indicates that there is an inverse correlation between the time series.

(TIF)

S3 Fig. Heatmaps of cross-correlation coefficients for mobility indicators and Google

Health Trends search volumes for all search term categories nationally and in the NYC

DMA: 2019–2021. P-values listed within cells. Note on interpretation: A cross-correlation

coefficient at a negative weekly lag indicates that changes in the explanatory time series lead

changes in the dependent time series that number of weeks later. A cross-correlation coefficient

at a positive weekly lag indicates that changes in the dependent time series lead changes in the

explanatory time series that number of weeks later. Correlations at the 0-week lag suggest that

changes in both time series were concurrent. A positive cross-correlation coefficient indicates

that there is a direct correlation between the time series and a negative cross-correlation coeffi-

cient indicates that there is an inverse correlation between the time series.

(TIF)

S1 Table. Google search terms sourced from Lee (2020) [41].

(PDF)

S2 Table. Counties matched to the New York City designated market area. FIPS = Federal

Information Processing Standards.

(PDF)

S3 Table. Cross-correlation coefficients and p-values for mobility indicators Google

Health Trends search volumes for all search term categories at weekly lags: 2020–2021. P-

value in parenthesis.

(PDF)

S4 Table. Cross-correlation coefficients and p-values for mobility indicators and Google

Health Trends search volumes for all search term categories at weekly lags: 2019–2021. P-

value in parenthesis.

(PDF)

S5 Table. Fitted model parameters to mobility indicators nationally and in the NYC DMA.

ARIMA = autoregressive integrated moving average model. Non-seasonal ARIMA parameters = (p,

d,q). p = autoregressive model order, d = degree of differencing, q = moving average model order.

(PDF)

S1 Dataset.

(CSV)
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