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ABSTRACT

Summary: The application of protein–protein docking in large-scale

interactome analysis is a major challenge in structural bioinformatics

and requires huge computing resources. In this work, we present

MEGADOCK 4.0, an FFT-based docking software that makes exten-

sive use of recent heterogeneous supercomputers and shows power-

ful, scalable performance of497% strong scaling.

Availability and Implementation: MEGADOCK 4.0 is written in C++

with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to

all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/

megadock.

Contact: akiyama@cs.titech.ac.jp

Supplementary information: Supplementary data are available at

Bioinformatics online
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1 INTRODUCTION

Protein–protein interactions can provide valuable insights for
understanding the principles of biological systems and for

elucidating causes of incurable diseases. Although many struc-
tures of interacting proteins have been determined by X-ray crys-
tallography and Nuclear Magnetic Resonance spectroscopy, the

structures of many protein complexes have still not been deter-
mined experimentally because of cost and technical limitations.
Protein–protein docking, a computational method for predicting

the structure of a protein complex from known component struc-
tures, is a powerful approach that facilitates the discovery of
otherwise unattainable protein complex structures.

A number of fast Fourier transform (FFT)-based rigid-body
initial protein–protein docking tools have been developed for
predicting protein complex structures (Cheng et al., 2007;

Pierce et al., 2011; Ritchie and Venkatraman, 2010). However,
faster docking tools are still required to perform large-scale inter-

actome predictions. Some applications also require a huge
number of dockings, such as ensemble docking techniques
using multiple conformations for flexible docking (Gr €unberg

et al., 2004; Kr �ol et al., 2007), cross-docking for identification

of protein interaction partners (Lopes et al., 2013; Matsuzaki

et al., 2009; Wass et al., 2011; Zhang et al., 2014) and multiple

docking (Karaca and Bonvin, 2011). To achieve these large-scale

analyses, use of the supercomputing environment has become

absolutely necessary.
On the other hand, 35% of computing performance of super-

computers ranked in top500.org (June 2014) is currently achieved

by hardware accelerators, such as graphics processing units

(GPUs), and this percentage is increasing. Therefore, tools that

can be used with such ‘heterogeneous’ supercomputers are ne-

cessary. While some docking tools are accelerated by GPUs on a

node (Ritchie and Venkatraman, 2010; Sukhwani and Herbordt,

2009), ‘heterogeneous’ supercomputers, which have massive

numbers of nodes including multiple CPU cores and GPU

cards, have not yet been used for acceleration of docking tool

performance.
Here, we present ultra–high-performance docking software,

‘MEGADOCK 4.0’, which makes extensive use of supercom-

puters equipped with GPUs.

2 IMPLEMENTATION

2.1 MEGADOCK scheme

MEGADOCK uses a Katchalski-Katzir algorithm known as a

traditional FFT-based rigid-docking scheme (Katchalski-Katzir

et al., 1992). Its original scoring function, based on shape

complementarity, electrostatics and desolvation free energy, is

calculated by only one correlation function (Ohue et al., 2012,

2014). This is advantageous for faster calculation because

multiple correlation functions and thus multiple FFT calcula-

tions are used to evaluate multiple effects in previous methods

(Kozakov et al., 2006; Pierce et al., 2011). (see Supplementary

Text S1 for details)

2.2 GPU implementation

MEGADOCK has been implemented on multiple GPUs using

the CUDA library (Shimoda et al., 2013). A previous study

(Sukhwani and Herbordt, 2009) mapped only FFT processes

onto a GPU, and its implementation could not use multiple

GPUs. We mapped the whole docking process (voxelization,
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ligand rotation, FFTs and finding solutions) onto GPUs, and

our implementation was able to use multiple GPUs and CPU

cores (Shimoda et al., 2013).

2.3 Hybrid CUDA, MPI and OpenMP parallelization

For extensive execution of docking jobs, an implementation that

can be performed among many computing nodes is required.

We previously parallelized the calculation of each docking

processes using MPI and OpenMP with the master/worker

model (Matsuzaki et al., 2013). On cluster computers, a master

process acquires a list of protein pairs and distributes the docking

jobs to worker processes on available nodes. This implementa-

tion guarantees fault tolerance in that the master process surveys

all docking jobs.
The proposed software, MEGADOCK 4.0, is implemented by

hybrid CUDA, MPI and OpenMP parallelization. Reducing the

usage of memory space is important with systems that have

many CPU cores, multiple GPUs per node and relatively little

memory (e.g. there is only 6 GB memory on an NVIDIA Tesla

K20X GPU). We assigned one docking job to each node and

then distributed the calculations of ligand rotation by thread

parallelization with CPU cores and GPUs. This implementation

model manages one node as the master and the other nodes as

workers. The master node distributes the docking jobs to worker

nodes, and a worker node executes distributed docking jobs with

multiple GPUs by CUDA and all CPU cores by OpenMP thread

parallelization. This implementation also guarantees fault toler-

ance similar to the CPU version.

3 RESULTS AND DISCUSSION

To check the performance of MEGADOCK 4.0, we used the

ZLAB benchmark 4.0 dataset (Hwang et al., 2010). Speed meas-

urement experiments were conducted on the TSUBAME 2.5

supercomputing system (Tokyo Institute of Technology,

Japan). We used its ‘thin nodes’ with a reservation service

of exclusive use (up to 420 nodes). Each ‘thin’ node contained

two Intel Xeon X5670 (six cores, 2.93GHz) and three NVIDIA

Tesla K20X (GK110) GPUs. The specifications of the environ-

ment are shown in Supplementary Text S2 and Table S1.

Figure 1 shows the average of five measurements of compu-

tation time and the parallel scalability of MEGADOCK 4.0 on

30 976 protein pairs from combinations between 176 receptors

and 176 ligands, assuming a cross-docking study. The observed

calculation acceleration was close to ideal. Strong scaling values

from 35 nodes were497% for all numbers of nodes measured

here (Supplementary Table S2). Notably, a high scalability

(98%) was obtained with the largest number of nodes (420

nodes).
We also measured docking time on a half million and a

million protein pairs for simulation of large-scale interactome

analyses using averaged-sized proteins (FFT size of 108, see

Supplementary Table S3). In this simulation, a half million dock-

ing jobs required 5.71h, while a million jobs required 11.51 h.

The epidermal growth factor receptor-related pathway, which

we are studying in non–small-cell lung cancer, required approxi-

mately a quarter million dockings. This analysis could be com-

pleted in only 3 h with MEGADOCK 4.0 using 420 nodes,

whereas solving the same problem requires several days with

an older version of MEGADOCK.

4 CONCLUSIONS

MEGADOCK 4.0 is a docking software for heterogeneous

supercomputing environments and shows excellent scalability.

Heterogeneous supercomputers equipped with hardware acceler-

ators, such GPUs, will become common in the future. Fully

using such computers is crucial for bioinformatics research,

which must analyze massive amounts of data. MEGADOCK

4.0 can serve as a tool to promote analysis of the whole inter-

actome within a reasonable time.
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