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With the improvement in neonatal rescue technology, the survival rate of critically

ill preterm infants has substantially increased; however, the incidence of brain injury

and sequelae in surviving preterm infants has concomitantly increased. Although the

etiology and pathogenesis of preterm brain injury, and its prevention and treatment

have been investigated in recent years, powerful and effective neuroprotective strategies

are lacking. Caffeine is an emerging neuroprotective drug, and its benefits have been

widely recognized; however, its effects depend on the dose of caffeine administered,

the neurodevelopmental stage at the time of administration, and the duration of

exposure. The main mechanisms of caffeine involve adenosine receptor antagonism,

phosphodiesterase inhibition, calcium ion activation, and γ-aminobutyric acid receptor

antagonism. Studies have shown that there are both direct and indirect beneficial

effects of caffeine on the immature brain. Accordingly, this article briefly reviews the

pharmacological characteristics of caffeine, its mechanism of action in the context

of encephalopathy in premature infants, and its use in the neuroprotection of

encephalopathy in this patient population.

Keywords: caffeine, premature infants, brain damage, encephalopathy, neurological

INTRODUCTION

With the improvement in rescue technology, the survival rate of critically ill newborns has
substantially increased. It is estimated that 9 million (60%) of the 15 million premature babies born
each year will experience lifelong physical or neurological disabilities (1–3). Premature infants have
short gestational age and relative immature development of various organs compared to full-term
infants, and are thus more susceptible to unfavorable perinatal environments, which may lead to
the damage of some organs, especially the brain. In recent years, some scholars have proposed
that brain damage related to premature birth can be collectively referred to as “encephalopathy of
prematurity (EP)” (4). The term EP signifies that brain injury in premature infants is not limited
to brain white matter, but also involves the gray matter and cerebellum. The main pathological
features of EP include myelin sheath reduction, oligodendrocyte-maturation disorder, axonopathy,
and neuroinflammation; moreover, fractional anisotropy and cortical volume appear to be reduced
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on magnetic resonance imaging. This plays a role in the
impairments that are frequently seen in the very preterm
population (in cognition, language, behavior, and the motor
system) (4, 5). Although the etiology and pathogenesis of EP
and its prevention and treatment have been important topics of
discussion in recent years, powerful and effective neuroprotective
strategies have so far not been established. Animal experiments
have confirmed that drugs such as magnesium sulfate and
melatonin or methods such as recombinant erythropoietin
administration and breastfeeding play a certain role in the
prevention and treatment of brain injury in premature infants
(6, 7). Additionally, caffeine as a potential treatment has also been
suggested, which it is considered a promising drug for improving
perinatal brain-injury outcomes (8).

As a methylxanthine drug, caffeine has been used in
neonatal intensive care units for the treatment of neonatal
apnea for over 30 years (9, 10). Clinical studies have shown
that caffeine has neuroprotective effects in premature infants
by alleviating hypoxia-induced white matter damage, and
improving ventilation function and brain self-regulation (11, 12).
In addition, caffeine has been shown to reduce the apoptosis of
developing brain neurons, ventricular enlargement, and white
matter loss caused by hypoxia (13–15) and myelination disorders
(16). However, few studies have examined the molecular
mechanisms implicated in the neuroprotective effect conferred
by caffeine treatment. This article reviews the pharmacological
characteristics of caffeine, its mechanism of action in the
context of encephalopathy in premature infants, and its
use in EP.

PHARMACOLOGICAL CHARACTERISTICS
OF CAFFEINE

Pharmacological Effects of Caffeine
Caffeine (1,3,7-trimethylxanthine, C8H10N4O2) is a
methylxanthine drug. When consumed, it is distributed
throughout the body, including the brain, heart, blood vessels,
and kidneys. In the brain, it stimulates the respiratory center,
increases respiratory frequency and tidal volume, improves
pulmonary blood flow, increases the body’s sensitivity to carbon
dioxide, enhances diaphragm function, and stimulates the
respiratory center (17–19); it also acts as a central nervous
system stimulant and hypnotic. Previous studies have shown
that caffeine antagonizes the adenosine receptor (ARs)
and mainly functions by non-specifically antagonizing the
adenosine A 1 receptor (A1R) and adenosine A2a receptor
(A2aR) (20). Blockade of A1R and A2a indirectly affects other
neurotransmitters in the brain, such as dopamine, serotonin,
norepinephrine, acetylcholine, and γ-aminobutyric acid (GABA)
(17). In addition, caffeine can stimulate the heart muscle and
increase the heart rate, cardiac output, and mean arterial blood
pressure by promoting the release of catecholamines. In blood
vessels, caffeine can expand vascular smooth muscle cells by
increasing the nitric oxide concentration (20, 21). In the kidneys,
caffeine can increase the glomerular filtration rate and produce
diuretic effects by antagonizing adenosine A1Rs (22).

Route of Administration,
Pharmacokinetics, Dosage, and
Time-Course of Caffeine
Route of Administration and Pharmacokinetics of

Caffeine
Caffeine is medically available as caffeine citrate, and the
clinically commonly used routes of administration are oral
and intravenous. Previously, caffeine was also administered as
an intramuscular injection in the form of caffeine benzoate.
However, because this impairs the ability of newborn albumin
to bind bilirubin, this formula has become unpopular (23). In
adults, the time for an oral dose to reach its peak is 30min to
2 h (24). Within 45min, 99% of caffeine will be absorbed, most
of which by the small intestine (25). Caffeine reversibly binds
to plasma proteins, and caffeine citrate is equivalent to 50%
of caffeine. Therefore, a load of caffeine citrate will produce a
relatively predictable serum concentration (26). In most preterm
infants, the plasma caffeine concentration is maintained at 5–
20 mg/ml after a loading dose of 20 mg/kg and a maintenance
dose of 5 mg/kg/day (18). Caffeine, being highly fat-soluble,
can enter the cerebrospinal fluid (CSF) through the blood-brain
barrier and quickly distribute into the brain tissue. The drug
concentration in the neonatal CSF is similar to that in the
plasma. However, the liver enzyme system and kidney function
of premature infants are immature, and compared with adults,
metabolism in the body is very limited and the clearance rate is
slow; most active drugs are excreted in the urine. In premature
infants, the primary metabolic pathway of caffeine involves the
process of 7-N-demethylation.

Dosage of Caffeine

Treatment of Apnea Using Caffeine
Early administration of high-dose caffeine is recommended for
the treatment of apnea of prematurity (AOP). Experimental
research trials testing caffeine for the treatment of AOP (caffeine
for apnea of prematurity; CAP) have revealed that caffeine
treatment started within 3 days after birth has themost significant
effect (27). A retrospective study showed that, compared with the
use of caffeine after 3 days, its use within 3 days is associated
with a reduction in the incidence of bronchopulmonary dysplasia
and improved prognosis (28, 29). Although some studies have
shown that the use of caffeine at different times in the early and
late stages has no effect on mortality, there are indeed studies
confirming that the reduced incidence of AOP is related to the
early use of caffeine (30–33). In short, it is beneficial to start
caffeine treatment within 3 days after birth. The dose of caffeine
citrate used for the treatment of AOP, as prescribed by the
U.S. Food and Drug Administration, is a 20 mg/kg load and 5
mg/kg/day maintenance dose; this standard-dose concentration
allows more than 70% of newborns to reach therapeutic levels of
8–20 mg/L (23, 25). However, in the past, many hospitals have
used maintenance doses ranging from 5 to 10 mg/kg.

Many studies have shown that higher doses of caffeine are
more effective than the standard maintenance dose, and no
increase in side effects has been reported (34, 35). A randomized
controlled trial showed that different maintenance doses of
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caffeine citrate (3, 15, 30 mg/kg) showed no difference in
the extubation failure rate among groups of newborns with
a gestational age of <32 weeks. However, the incidence of
AOP in the two high-dose groups was significantly reduced
compared with the incidence in the lowest-dose group (35).
Another study compared neonates with a gestational age of
<28 weeks at birth who were administered different doses
of caffeine citrate (20 mg/kg/day vs. 5 mg/kg/day) during
extubation, and the failure rate in the high-dose group was
significantly reduced [15 vs. 29.8%; relative risk 0.51 (0.31–0.85)]
(25). Subsequently, a 1–2-year follow-up of these cohort studies
revealed that these neonates did not show significant differences
in neurodevelopment (36).

A recent trial compared high-dose (loading 40 mg/kg,
maintenance 20 mg/kg/day) and standard-dose (loading
20 mg/kg, maintenance 10 mg/kg/day) caffeine citrate
administration. The failure rate of extubation, frequency of
apnea, and number of days of apnea in the high-dose group
were significantly lower than those in the standard-dose group
(34). In addition, studies have shown that when the loading dose
of caffeine citrate reaches 50 mg/kg and the maintenance dose
reaches 20 mg/kg/day, it is more effective in reducing apnea
episodes and promoting extubation (37). A recent systematic
review and meta-analysis of caffeine in the treatment of AOP
showed that high maintenance doses of caffeine citrate were
more effective and safer than low maintenance doses during
treatment (33). The positive results of these tests, coupled with
the minimal side effects of the high-dose regimen, have led to
the routine use of caffeine citrate maintenance doses of up to
20 mg/kg/day.

Neuroprotection of Encephalopathy Using Caffeine
There is currently no uniform caffeine dosage or administration
timing for the neuroprotection of EP. Several long-term
randomized controlled trials have studied the effects of caffeine
administration timing on the nervous system of premature
infants. A study of very premature infants with a gestational age
of <29 weeks showed that the early caffeine group (within 2 h, 20
mg/kg) in the early postnatal period showed greater circulatory
improvement (i.e., improved blood pressure and systemic blood
flow) than the conventional caffeine group (within 12 h, 20
mg/kg) (38). The latest study suggested that early caffeine
treatment is associated with better neurodevelopmental results
(39). A study compared preterm infants with a gestational age
of <29 weeks who were treated with caffeine early (medication
received within 2 days from birth) and late (medication
received after 2 days of birth). The incidences of cerebral
palsy hearing damage and a Bayley scale cognitive score for
infant development of <85 were decreased in the early-caffeine
group (39) compared to the late-caffeine group. These data
indicate that early use of caffeine could lead to more beneficial
neurodevelopmental outcomes.

In premature infants with a gestational age of <30 weeks,
a study compared neonates who received high-dose caffeine
citrate (80 mg/kg, for longer than 36 h) and the standard dose of
caffeine citrate (30 mg/kg, for longer than 36 h). The incidence of
cerebellar hemorrhage (CBH) in the high-dose group increased

(36 vs. 10%, p = 0.03), as did the incidence of epilepsy
and neurobehavioral abnormalities at full-term (corrected for
gestational age) (40, 41). However, a more recent study showed
no difference in the incidence of CBH between high-dose
(80 mg/kg/d) and standard-dose (20 mg/kg/d) caffeine citrate
administration in very preterm infants with gestational age <28
weeks. In addition, there was no difference between the two
groups at the age of 2 years according to the Neurosensory
Motor Development Assessment and Bayley Infant Development
Scale III (Bayley III) (42). Although these results have allayed
concerns regarding the use of high-dose caffeine in early preterm
infants, it is notable that no study has reported the advantages and
disadvantages of using high-dose caffeine in preterm infants with
small gestational age. Therefore, early high-dose caffeine and
its effects on brain injury, such as intraventricular hemorrhage
and on long-term neurodevelopmental outcome, need to be
determined on a larger scale.

The Time-Course of Caffeine
Discontinuation of conventional caffeine treatment is usually
after the apnea symptoms disappear, that is, at a corrected
gestational age of 33–35 weeks. The median time to the last
dose in the CAP trial (9) was 34.4 weeks corrected gestational
age (IQR, 33.0–35.9). Although intermittent hypoxia persists
after caffeine treatment is stopped, caffeine reduces the degree
of intermittent hypoxia (43, 44). A recent study showed that
(45) premature infants with a birth weight ≤1,250 g should be
treated with caffeine within 1 week after birth, while the length
of treatment had no effect on the long-term neurodevelopmental
outcome at 3 years of age. As there is no clinical evidence
that caffeine can continuously improve intermittent hypoxia,
acute injury, or long-term prognosis, the current routine clinical
withdrawal time remains at 33–35 weeks corrected gestational
age (18).

In conclusion, for the neuroprotection of EP, early use
of caffeine could lead to more beneficial neurodevelopmental
results. However, despite the short-term benefits of high-dose
caffeine in the prevention and treatment of apnea, the long-
term efficacy and safety of these regimens for the nervous system
have not been evaluated. The current standard dose of caffeine
is considered safe and reliable. In addition, the time-course of
caffeine can only be increased after it is proven that caffeine can
improve the long-term prognosis and that this is not associated
with adverse reactions.

NEUROPROTECTIVE MECHANISM OF
CAFFEINE

The drug action of caffeine involves three basic mechanisms:
it is an AR antagonist, a phosphodiesterase inhibitor, and an
active intracellular calciummobilizer (46). In addition, it can also
interfere with GABA-A receptors, change GABA transport (47,
48), and inhibit the production and activation of prostaglandins
(19). Because caffeine has a series of molecular targets in the
central nervous system, it is difficult to determine its exact
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molecular and cellular mechanisms in preventing and treating
encephalopathy in premature infants.

Neuroprotective Mechanism of Caffeine
and the Expression and Regulation of
Adenosine Receptors
Adenosine is a neuromodulator of which metabolism depends
on the synthesis, release, and decomposition of adenosine
triphosphate. Known as adenine nucleoside, it exists in all
cells and is a component of nucleic acid and energy-carrying
molecules (49, 50). In brain tissue, adenosine is mainly produced
by neurons and plays an important role in the development of
brain injury in immature infants, such as periventricular white
matter injury (51). Following increased tissue activity, hypoxia, or
ischemia, the adenosine levels in brain tissue increase, triggering
the activation of ARs (52, 53). All ARs are G-protein coupled
receptors, including A1R, A2aR, A2bR, and A3R. A1R and A2aR
may be the main targets of caffeine. The A1R receptors inhibit
cyclic adenosine monophosphate (cAMP) production, whereas
A2aR receptors stimulate cAMP production by adenylate cyclase.
The distribution of A1RmRNA inmature brain tissue is the most
extensive, mainly concentrated in the hippocampus, cerebellum,
and cerebral cortex. The content of A2aR mRNA in the striatum
and globus pallidus is high, and it is also found in astrocytes,
microglia, and blood vessels. A3R is distributed in cortical
nerve endings, hippocampal cells, astrocytes, and microglia
(54). Caffeine and adenosine have similar molecular structures;
therefore, caffeine plays a role in all types of ARs. When caffeine
acts as an AR antagonist, it can compete against ARs, which
has multiple potential effects on the developing brain (33, 51).
A3R and a2bR need high concentrations of adenosine to activate,
while A1R and A2aR can be activated at lower concentrations. As
such, most research has focused on A1R and A2aR.

Expression and Regulation of A1R
Caffeine’s inhibition of A1R has opposite effects on embryonic
and newborn brains. In the embryonic stage, inhibition of
A1R renders cells more susceptible to hypoxia, which adversely
affects fetal neurodevelopment and long-term behavior (55).
However, postnatal inhibition of A1R in neonatal brains exerts
a neuroprotective effect against hypoxic-ischemic white matter
damage (16, 51). Activation of A1R results in increased adenosine
levels in the body, causing damage to the developing brain
(56). Therefore, postnatal application of caffeine can improve
the development of neonatal white matter by antagonizing
A1R (57), which is considered beneficial for the long-term
neurodevelopment of premature infants. Studies have shown that
in perinatal brain injury models, overactivation of A1R can lead
to premature white matter damage by changing the development
of oligodendrocytes (58), while caffeine antagonizing A1R can
reduce ventricular enlargement and white matter loss caused by
hypoxia, increase the proportion of immature oligodendrocytes,
and protect against periventricular white matter injury and
hypoxic-ischemic encephalopathy (13). Recent studies have
shown that in vitro (59), the expression of A1R is significantly
upregulated and the expression of transcription factors of
oligodendrocytes is significantly decreased under hypoxia.

Caffeine can promote the differentiation and maturation of
oligodendrocytes and the expression of myelin-related proteins
in vitro by antagonizing A1R.

The above-described experiments have confirmed that
caffeine antagonizing A1R may reverse hypoxia-induced
white matter injury in premature infants. In addition, the
neuroprotective effect of caffeine against A1R may be related to
its anti-apoptotic effect. Adenosine synthesis and decomposition
are unbalanced during hypoxia-ischemia. When the energy
demand exceeds the energy supply, the concentration of
extracellular adenosine increases, and brain cells are at a risk
of death. By blocking A1R in cord blood monocytes, caffeine
increases the production of cAMP, reduces the production
of pre-transcriptional TNF-α (60), inhibits the inflammatory
response, and reduces cell apoptosis. Inhibition of TNF-α
may be one of the mechanisms through which caffeine causes
anti-hypoxic-ischemic brain injury-induced cell apoptosis.
Studies have shown that the number of apoptotic cells in the
hippocampus and parietal cortex of neonatal rats significantly
decreased after caffeine treatment in a hypoxic-ischemic brain
injury model through A1R antagonism (14). These data indicate
that the neuroprotective effect of caffeine may also be related to
its anti-apoptotic effect. Research by Li et al. (61) showed that the
use of caffeine in the early postnatal period (P4-P7) of newborn
rats can reduce CoCl2-induced cell death and inhibit the
accumulation of HIF-1α in the nucleus by blocking A1R, thereby
reducing the damage caused by hypoxia in developmental
neurons. Additionally, as an A1R antagonist, caffeine can affect
synaptic transmission in the hippocampus (62), and increase the
release of neurotransmitters (63) (Figure 1).

Expression and Regulation of A2R
Previously, the ability of caffeine to induce central nervous
system excitation was mainly attributed to its effect on A1R
because the A1R receptor protein is expressed in the brainstem.
In addition, adenosine-induced A1R activation was found to have
an inhibitory effect on neurons (64). However, recent studies have
shown that A2aR may also be involved. Caffeine-induced central
nervous system arousal has been shown to be associated with
A2aR (65). In rats, caffeine promotes wakefulness by inhibiting
the expression of A2aR.When A2aR is removed from the nucleus
accumbens or other A2aR positive regions of the basal ganglia,
wakefulness is blocked. In addition, the activation of A2aR also
contributes to the repair of ischemic tissue damage (66, 67). There
may be a link between the effects of caffeine, adenosine levels,
perinatal inflammation after delivery, and imbalance between
pro-inflammatory and anti-inflammatory signaling in preterm
infants (68). Studies have shown that the AR most relevant to
neuroinflammation is A2aR (69). Although its expression in
microglia is usually low, it significantly increases after brain
injury. In microglia, activation of A2aR can promote the release
of cytokines and changes in amoebic morphology (70). In
contrast, A2aR antagonists can inhibit the activation of microglia
(71, 72). As an A2aR antagonist, caffeine prevents this change,
as well as neuroinflammation (72). This protective effect may be
exerted through A2aR by regulating the activation of microglia
and the secretion of brain-derived neurotrophic factor (71).
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FIGURE 1 | Mechanism of action of caffeine. This illustration depicts the three basic mechanisms of caffeine within the central nervous system. Caffeine acts as an

adenosine receptor antagonist, phosphodiesterase inhibitor, and intracellular calcium mobilizer. A1R and A2aR can be activated at low concentrations of adenosine,

while A3R and A2bR require higher concentrations of adenosine to become activated. Therefore, A1R and A2aR are the main targets of caffeine in the nervous

system. As an adenosine receptor blocker, caffeine can reduce neuronal apoptosis and weaken the synaptic activity inhibited by hypoxia, increase the proportion of

immature oligodendrocytes after hypoxia, and promote the differentiation and maturation of oligodendrocytes. It also blocks A2aR and inhibits microglia activation.

Caffeine is an inhibitor of phosphodiesterase, which can prevent the breakdown of cAMP. As an internal calcium mobilizer, caffeine can be combined with calcium

channels to release calcium from cells, while inhibiting voltage-sensitive calcium channels and neurotransmission, and mobilize the transmission of intracellular calcium

(Ca2+) through the inositol triphosphate receptor (IP3R). In addition, caffeine can interfere with GABA transport by blocking ARs and can affect the release of a variety

of neurotransmitters. A1R, A2aR, A2bR, and A3R, adenosine receptors; cAMP, cyclic adenosine monophosphate; AC, adenylate cyclase; PDE, phosphodiesterase;

AMP, adenosine monophosphate; GTP, guanosine triphosphate; IP3R, inositol triphosphate receptor; GABA, γ-aminobutyric acid.

Colella et al. (73) revealed that A2aR agonist CGS-21680 can
cause increase in the level of the CD73 protein and in the
expression of M1 (pro-inflammatory) cytokines (IL-1β, IL-6,
iNOS, and TNF-α) in rat and primary microglia models of acute
and chronic brain neuroinflammation. Therefore, antagonizing
A2aR can be used as a treatment strategy for neonatal brain injury
(Figure 1).

In short, caffeine can improve dysfunction in the central
nervous system, which may be related to its anti-ARs effect.

Neuroprotective Mechanism of Caffeine
and the Inhibitory Effect on
Phosphodiesterase
Caffeine is an inhibitor of phosphodiesterase. This can prevent
the breakdown of cAMP. An increase in cAMP availability
can stimulate the central nervous system. In addition, cAMP
can stimulate lipolysis by triggering the activity of hormone
sensitive lipase (HSL), which plays a crucial role in the adrenaline
cascade (74). It also activates protein kinase A to phosphorylate
several enzymes involved in the glucose and lipid metabolisms
(75). Increased lipolysis leads to decreased dependence on
glycogen use (76). Caffeine switches the substrate preference

from glycogen to lipids by stimulating HSL activity and by
inhibiting glycogen phosphorylase activity (77) and increases
fatty acid oxidation. However, as a weak phosphodiesterase
inhibitor, caffeine exerts its effect at much higher concentrations,
and it is unlikely that caffeine mediates this effect at standard
doses in newborns (17).

Neuroprotective Mechanism of Caffeine
and the Regulation of Intracellular Calcium
Caffeine can bind to calcium channels to release calcium
from cells, while inhibiting voltage-sensitive calcium channels
and thereby inhibiting neurotransmission. However, the dosage
required for these effects may be at a toxic level. In addition,
A1R can mobilize intracellular calcium (Ca2+) transmission
through the inositol triphosphate receptor (IP3R) (78). Under
physiological conditions, sleep deprivation induces forebrain
basal cholinergic release to stimulate A1R, leading to IP3R
activation and transcription factor changes (78, 79). Under
pathological conditions such as hypoxia, abnormal adenosine
increasemay lead to excessive activation of A1R and a subsequent
imbalance of IP3R and Ca2+ signals. Excessive Ca2+ release can
directly lead to Ca2+ overload during hypoxia (80, 81) and is
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considered another important mechanism affecting the activity
of astrocytes, microglia, and oligodendrocytes. Early studies
reported that A1R reduces Ca2+ by inhibiting voltage-gated Ca2+

channels in excitable cells, including motor neurons (82) and
retinal ganglion cells (83). This effect substantially inhibits the
release of excitatory neurotransmitters such as glutamate during
hypoxia. However, the latest study showed that A1R promotes
Ca2+ overload during oligodendrocyte formation in a chronic
hypoxia-induced periventricular white matter-injury model (59),
which is considered an important mechanism of hypoxic injury
due to poor differentiation of oligodendrocytes and impaired
myelination (16). Caffeine can promote the differentiation
and maturation of hypoxic oligodendrocytes by regulating the
balance of Ca2+, thereby exerting a protective effect in neonatal
hypoxic injury. A recent study reported that caffeine can regulate
the intracellular Ca2+ of oligodendrocytes during hypoxia by
antagonizing A1R and maintain intracellular Ca2+ homeostasis.
Therefore, caffeine can inhibit adenosine-induced Ca2+ activity
and prevent calcium overload damage (59) (Figure 1).

Neuroprotective Mechanism of Caffeine
and Interference With the GABA Receptor
In addition to antagonizing AR, inhibiting phosphodiesterase,
and promoting intracellular calcium release, caffeine also has
other biological effects, such as interfering with the GABA-A
receptor and changing GABA transport (19, 48, 49). Conversely,
caffeine affects the release of various neurotransmitters by
blocking ARs, such as norepinephrine, dopamine, acetylcholine,
serotonin, glutamate, and GABA (17). Other studies have shown
that the migration and entry of GABA neurons into the
hippocampal circuits of caffeine-administered mouse offspring
during pregnancy and lactation are delayed in the 1st week
after birth. The adult offspring of these mice showed decreased
GABA neurons, increased excitability of the neural network,
susceptibility to epilepsy, and some cognitive deficits (32). These
effects suggest that rodents exposed to caffeine during pregnancy
and lactation may produce offspring with neurodevelopmental
deficits. Animal models of fetal drug exposure to caffeine have
consistently revealed impaired GABA neurodevelopment (84).

However, the inhibition of phosphodiesterase requires a
20 times higher concentration of caffeine, blocking the
GABA receptor requires a 40 times higher concentration, and
Ca2+ release requires a 100 times higher concentration (85,
86). Therefore, these caffeine effects are rarely discussed in
more detail.

USE OF CAFFEINE FOR ITS
NEUROPROTECTIVE EFFECT IN
PREMATURITY

The neuroprotective strategies for premature infants with
encephalopathy include administration of neuroprotective and
functional recovery agents. Caffeine is considered to have
direct neuroprotective effects in rodents (57) and direct and
indirect neuroprotective effects in preterm infants, including

decreasing apnea, reducing brain damage, and promoting brain-
function recovery. Therefore, we believe that caffeine can exert
neuroprotective effects in premature infants and that it is a
candidate drug for the promotion of encephalopathy recovery in
this patient population.

Effect of Caffeine on the
Neurodevelopment of Rodents
A vast number of animal studies support that caffeine has a
direct neuroprotective effect on the developing brain (57, 87, 88).
Caffeine may improve brain damage after hypoxia-ischemia by
reducing nerve-cell apoptosis and exert a protective effect on
the brain. Bona et al. (89) added low-dose caffeine (0.3 g/L)
to the drinking water of neonatal rats in the 1st week of life
(P1–P7) and found that caffeine can reduce neuronal necrosis
and reduce brain hypoxic damage. In addition, studies have
found that caffeine can affect neurodevelopment in newborn
rats. Interestingly, exposure to a high dose of caffeine citrate
(50 mg/kg/day) from the 1st day (P1) to the 12th day after
birth can increase the prefrontal cortex volume. The total length
and tree-like structure of the dendrites of pyramidal neurons is
increased in the third layer of the cortex at P35, and this effect can
continue until puberty (90). Alexander et al. (91) demonstrated
that administering a single dose of caffeine (10 mg/kg/day) to
rats with hypoxic-ischemic brain injury can reduce damage to
the ligation side of the cortex and reduce the obvious expansion
of the ventricular volume. The most recent study reported that,
at clinically relevant doses, caffeine can promote primary neuron
survival after hypoxic injury, and inhibit hypoxia-induced HIF-
1α in primary cultures (100µm caffeine) and in newborn mouse
pups (63).

Caffeine also promotes the development of immature brain
tissue and helps improve long-term behavior. Back et al. (16)
exposed neonatal mice to hypoxia, causing changes in brain
tissue volume, secondary ventricular dilatation, and reduction in
myelin basic protein expression, and then administered caffeine
(300 mg/L), which improved the formation of myelin, increased
the proportion of immature oligodendrocytes, and reduced
ventricle enlargement. Thomson et al. (92) also conducted animal
experiments in premature baboons to further confirm that
caffeine facilitated the development of immature brain tissue. A
study by Kumral et al. (93) showed that methylxanthines (10
mg/kg/day) can improve the performance of neonatal rats with
hypoxic-ischemic brain damage in the Morris water maze task,
and improve the long-term learning and memory ability of rats.

These studies indicate that caffeine treatment is beneficial
to the structural and functional recovery of perinatal hypoxic-
ischemic brain injury. Furthermore, the latest research suggests
that the neuroprotective effect of caffeine on the developing brain
may be related to its anti-oxidation and anti-neuroinflammation
effects (94, 95). A recent study showed that caffeine administered
to newborn mice under normoxia can produce neuroprotective
effects even at high doses (first dose 80 mg/kg; maintenance
20 mg/kg/day for 14 days), manifesting as decreased oxidative
stress, myelin hyperplasia, and increased Golgi apparatus (96).
However, a retrospective study showed that although caffeine is
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beneficial to the respiratory system of premature infants, it may
have adverse molecular and cellular effects on the developing
brain (68). During a brain growth spurt period (P2–P6), the
risk of AR-related behavioral dysfunction, such as hyperalgesia
and gait disorder, is significantly increased in neonatal SD rats
treated with caffeine (15–20 mg/kg/day) by gavage (97). A
risk of adenosine receptor-related behavioral dysfunction may
exist in preterm newborns treated with caffeine for apnea.
However, these negative results may be related to the test
species, caffeine dose used, neurodevelopmental stage at the
time of administration, and exposure time. In addition, animal
models cannot fully explain the interaction between caffeine and
other treatments in the neonatal intensive care unit that affect
neurodevelopmental outcomes (68).

Effect of Caffeine on the
Neurodevelopment of Premature Infants
Potential Direct Effect
Clinical studies have also confirmed that caffeine has a protective
effect on the development of the nervous system of premature
infants and can promote functional recovery after injury.
Although the CAP trial did not assess the direct effects of
caffeine on neurodevelopment, reduction of AOP-related events
and of intermittent hypoxia can help improve neurodevelopment
(43, 44, 98, 99), suggesting that caffeine has a positive effect on
neurodevelopment. The CAP trial found that caffeine treatment
in premature infants with apnea can confer neurodevelopmental
benefits (cognitive delay and cerebral palsy) in the early stages
of development (27) but also has a beneficial impact on long-
term neurological development. In a long-term study conducted
by Schmidt et al. early administration of caffeine to premature
infants with apnea improved the survival rates and decreased the
incidence of cerebral palsy and cognitive delay during a 18- to 21-
month follow-up period (10). Although the neurodevelopmental
advantage was not statistically significant at 5 years of age (100),
during follow-up at 11–12 years, motor impairment was reduced
in relation to caffeine treatment (101). These results reflect the
potential long-term neurodevelopmental benefits of caffeine in
preterm infants (102).

Two studies using magnetic resonance imaging to evaluate
the effects of early preventive caffeine treatment on white matter
development in preterm infants found that caffeine can reduce
white matter damage and improve white matter development.
The researchers found that caffeine exposure was associated
with decrease in the apparent diffusion coefficient (ADC)
and a decrease in both axial and lateral ADCs representing
more mature white matter tissue. ADC changes are related to
caffeine-induced improvement in white matter microstructure
development in premature infants (103, 104). Therefore, this
suggests that caffeine has a direct neuroprotective effect other
than the indirect effect of respiratory stimulation. A study on
white matter injury in very preterm infants during the perinatal
period showed beneficial effects of longer caffeine treatment
at term-corrected age (105). For premature infants with birth
weight ≤1,250 g, early administration of caffeine citrate can
improve and correct the microstructure of white matter, but

at the age of 11 years, when brain volume and white matter
microstructure were compared to those of the placebo group,
there was almost no difference. This shows that although caffeine
may have a long-term effect on the development of the corpus
callosum, any benefit to the brain structure of premature infants
will diminish over time (106).

A prospective study by Hassanein et al. (107) revealed
that in preterm infants younger than 34 weeks who were
administered intravenous caffeine (20 mg/kg) after birth,
cerebral cortex activity (conventional and amplitude-integrated
electroencephalography) was increased at 36 weeks after
corrected gestational age, but this did not increase seizure
activity. In addition, studies by Doyle et al. (108) showed that
premature infants who received early caffeine treatment for
apnea had a significantly lower incidence of developmental
coordination disorder at the age of 5 years, which may be
another important benefit of caffeine. In addition, a studies
by Maitre et al. showed that the use of caffeine (above the
recommended daily doses of 5–10 mg/kg/day) can improve
the audiovisual function of premature infants (109). A recent
study showed that caffeine can increase the extraction of oxygen
and have a short-term stimulating effect on brain metabolism;
but, it does not reduce cerebral blood flow or affect brain
activity (110).

Potential Indirect Effect
Long term mechanical ventilation itself is a strong risk
factor for adverse neurodevelopmental outcome (cerebral palsy
and a Bayley scale cognitive score for infant development
of < 85) at 18 months of age (111). In the CAP trial,
infants with a shorter duration of positive pressure ventilation
days had less dyskinesia (101). In very preterm infants who
survived to 36 weeks of corrected gestational age, prolonged
hypoxemia episodes in the first 2–3 months after birth
were associated with adverse outcomes at 18 months (112).
Prolonged caffeine treatment can reduce recurrent hypoxemia
events in these preterm infants (44). Studies have shown that
administering caffeine within 48–72 h after birth can reduce
the occurrence of physiological patent ductus arteriosus (31,
113) and the demand for surgery (9). Therefore, caffeine can
normalize cerebral blood flow by stabilizing the fluctuation
of systemic blood pressure, thus conferring a neuroprotective
effect in premature infants. In conclusion, the beneficial
effects of caffeine on cardiopulmonary physiology in stabilizing
systemic and cerebral hemodynamics and its ability to alleviate
hypoxic respiratory depression may play an indirect role
in neuroprotection.

CONCLUSION

This article reviewed the data available on the effects of caffeine
on encephalopathy in prematurity. Clinical studies have shown
that caffeine has a beneficial effect on the immature brain;
this effect depends on the age at start of administration, the
regular dose of caffeine administered, the neurodevelopmental
stage at the time of administration, and the duration of
exposure. Caffeine has a beneficial effect on the premature
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infant. Although animal experiments have suggested that higher
doses of caffeine may be more beneficial, these results should
still be cautiously considered. Therefore, in future preclinical
studies, more attention must be paid to assessing the effects of
different doses of caffeine on the structure and function of the
developing brain and to determine the maximum dose and the
best administration window for neuroprotection in premature
infants. Regarding the mechanism of action of caffeine, the
current focus is on its antagonism of ARs. Few studies have
examined the exact molecular and cellular mechanisms of
caffeine in preventing and treating encephalopathy in premature
infants, and some neuroprotective effects cannot be explained by
changes in A1 and A2a receptors alone. Whether caffeine has
other mechanisms of action that aid in the neuroprotective effect
of encephalopathy in premature infants requires further research
and discussion.
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