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Abstract

The average sowing date of crops in temperate climate zones has been shifted forwards by

several days, resulting in a changed photoperiod regime at the emergence stage. In the

present study, we performed a global transcriptome profiling of plant development genes in

the seedling stage of root and shoot apical meristems of a photoperiod-sensitive species

(barley) and a photoperiod insensitive species (tomato) in short-day conditions (8h). Variant

expression indicated differences in physiological development under this short day-length

regime between species and tissues. The barley tissue transcriptome revealed reduced dif-

ferentiation compared to tomato. In addition, decreased photosynthetic activity was

observed in barley transcriptome and leaf chlorophyll content under 8h conditions, indicating

a slower physiological development of shoot meristems than in tomatoes. The photomor-

phogenesis controlling cryptochrome gene cry1, with an effect on physiological differentia-

tion, showed an underexpression in barley compared to tomato shoot meristems. This

might lead to a cascade of suspended sink-source activities, which ultimately delay organ

development and differentiation in barley shoot meristems under short photoperiods.

1. Introduction

Flowering plants are divided into two major classes—monocotyledons and dicotyledons. Sig-

nificant diversification of these plants endured about 200 million years ago [1]. In spite of a

protracted evolutionary divergence, most cultivated crops are a member of these major catego-

ries. Barley and tomato are genomic models for crops representing monocots and dicots,

respectively. In addition, these species reveal characteristic differences in their development

and growth habits, especially in the root and shoot forms. Thus, genomic dissection of this
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variation provides an opportunity to address critical biological questions behind the evolution-

ary and developmental divergence.

Roots are programmed in the root apical meristem and part of the elongation zone where

the lateral root arises [2]. Shoots develop in the shoot apical meristem and its peripheral loca-

tion, where leaf primordial arises successively. A major factor determining the development

rate is the phyllochron, which ultimately regulates branching [3]. Besides the temperature as a

significant factor determining the phyllochron [4], the photomorphogenesis is light-mediated

[5]. In Barley and Tomato, three orthologous cryptochrome-mediated light response genes

were characterized and described (Cry1a, Cry1b, Cry2) [5]. All of these have the function of

photoreceptors in common [6], where Cry1a was described to significantly influence the parti-

tioning of photoassimilates between roots and shoots in tomato [7]. This underlines that

although root and shoot develop and grow at different spots, active communication and

exchange between both organs determines specific plant architecture [8,9].

Many photoperiod-regulated genes in barley have been described to affect development.

The effect of photoperiod-sensitive alleles on the phyllochron and the prior-anthesis develop-

mental phases in barley has been described before [10]. This also highlights the high relevance

of fast canopy and root establishment in Mediterranean climates. Little impact of photoperiod

sensitive allele Ppd-H1 compared to reduced sensitive allele ppd-H1 regarding the pre-awn

primordium stage developmental time variation was found [11].

Contrasting to barley, cultivated tomato is characterized by a day-length neutral growth

habit [12]. So far, the effect of photoperiod on the generative development and yield formation

in crops has been illustrated [13,14]. Still, little research was performed concerning vegetative

development in early growth stages. The growing season extended by up to 20 days in the past

decades [15,16], but little gains in biomass production were reported for photoperiod-sensitive

species [17,18]. The missing adaptation to these changed growth conditions might cause yield

reductions or counteract yield increases in new spring-type varieties. Especially with more fre-

quent drought events observed, unproductive growth habits determined by the photoperiod

are undesired [10]. By comparing a photoperiod-dependent and independent species, develop-

mental variations in root and shoot tissues should expose the effect of photoperiodic regulation

in a short day length regime of 8h.

2. Materials and methods

Plant material and experimental design for transcriptome analysis

Spring barley cultivar Scarlett and tomato cultivar Moneymaker were used as genotypes in the

presented study. Seeds were pre-germinated and sown in soil in 96-cell plant growing trays.

Plants were grown inside a growth chamber at 22˚C for 8 hours light and 18˚C for 16 hours

night regime for ten days at 60% humidity. Root and shoot apices were harvested the following

day, pooling 50 individuals of the same genotype in each of the three biological replicates. Api-

ces were dissected and separated under a microscope. The soil was removed carefully for the

root apices by washing these in a petri dish in freshwater. Seven millimeters of primary roots

containing the apical meristem and elongation zone of barley and tomato were harvested. The

absence of root hairs determined the root elongation zone. Likewise, three biological replicates

were harvested independently in each species. Barley vegetative shoot apices comprising apical

meristem and emerging leaf primordia were dissected, and 50 shoot apices were pooled in

each of the three biological replicates. Similarly, 50 tomato vegetative shoot apices were col-

lected, comprising shoot apical meristem and emerging leaf primordial. Samples were har-

vested at similar time points on the same day in the laboratory and immediately frozen in

liquid nitrogen after dissection.
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RNA extraction and Massive Analysis of cDNA Ends (MACE) analysis

MACE-based transcriptome analysis was performed by GeneXpro GmbH (Frankfurt, Ger-

many) [19]. According to the manufacturer’s description, the root and shoot tissues were

homogenized, and total RNA was extracted for each sample using the INVITEK plant RNA

mini kit (INIVTEK, Germany). RNA was fragmented, and polyadenylated mRNA was

enriched by poly-A-specific reverse transcription. A specific adapter was ligated to the 5’ ends,

and the 3’ ends were amplified by competitive PCR. MACE sequencing is based on the True-

Quant method, which reduces the amount of duplicate transcript sequencing and enables the

precise comparison and identification of ultra-low expressed transcripts. Sequencing was per-

formed on the Illumina platform (San Diego, USA).

Gene expression and function analyses

Transcriptome data were qualitatively adjusted using Trimmomatic SE (version 0.36) [20]

with a minimum length of 40 bases and quality filter parameters of 28 for the leading and 17

for the trailing bases linked with a head crop of 10 bases. Fragments were aligned with the bar-

ley (IBSC_V2) and tomato (SL2.50) reference genome [21] using BWA mem (version 0.7.17)

[22] applying standard settings. Read filtering was performed strictly, applying a quality filter

of>60 using samtools 1.8 [23] view option. Duplicates as residuals from the PCR step in

sequencing were disregarded due to the low impact in expression analysis [24] and the True-

Quant technique. Fragments were matched to the genes by the tool featurecounts of the sub-

read software package (version 1.6.2) for tomato and barley separately, using the

corresponding annotation files for the used reference [25].

Further analyses were performed in the R (3.4.4) [26] and Julia (1.5.1) [27] environments.

The expressional and functional analysis methodology is presented in the workflow chart in S1

Fig. The read count normalization and probability values were calculated using Bioconductor

package edgeR for transcriptome analysis [28,29]. The analysis of both species was performed

separately between the root and shoot apical meristem transcriptomes. Probability (p) value

adjustment was performed by R function p.adjust, once by false discovery rate (FDR) and Bon-

ferroni adjustment. Analysis was further performed based on FDR. Replicate testing was done

applying a generalized linear mixed model based on a negative binomial distribution. Differen-

tially expressed genes (DEG) were selected based on FDR values of p< 0.01 and a log fold

change (LFC) bigger 3. These were used to run a gene ontology (GO) enrichment by Agri-

GoV2 [30] with default settings. Additionally, the GO terms were compared based on the

expression level of the genes. DEG were associated with corresponding GO terms,

exprk ¼
P
CPMik

countðikÞ
ð1Þ

where the expression CPM of all genes i, annotated to the same GO term k were summarized

to an average gene ontology expression exprk. The expression pattern of the root and shoot

group was compared in a generalized linear model (based on a negative binomial distribu-

tion),

p ¼ glm

aCPM1k
bCPM1k

..

. ..
.

aCPMnk bCPMnk
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3
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7
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5
; expression � species ð2Þ

where p is the probability derived from the glmmodel, which tests the gene expression 1:n for
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GO term k in tissue a against tissue b. This step identified p values for GO terms based on the

expression level. After FDR adjustment, candidate GO terms were selected by applying a cut-

off of FDR< 0.01, LFC > 3, and a minimum of five genes per GO.

Subsequently, tomato and barley were directly compared on GO expression level, analog to

the previously presented equation. Therefore, the gene expression values of the GO terms were

matched for both barley and tomato tissues. The LFC between root and shoot of the same spe-

cies was calculated and compared to the other species for each GO term. Therefore, the LFC

distribution of each GO term was compared between tomato and barley. Differentially

expressed GO terms were selected from this set based on an FDR< 0.05 and a gene count> 2.

Furthermore, orthologous genes were identified based on reference proteome sequence

level using default settings of OrthoMCL [31]. The minimum cut-off was set to an e-value

threshold of 1e-5 and a length match of at least 50% for the essential all-vs-all BLASTP [32]

step. The identified set of genes was used to match genes on a 1:1 base by the read count step

onward. The genes were extracted from the raw read counting file. Root and shoot were sepa-

rated so that barley and tomato were compared on both tissue levels separately by edgeR. The

output of this was clustered in significantly DEG (FDR< 0.05, LFC > 3, normalized expres-

sion in both species>5) and equally expressed genes (EEG)(FDR > 0.2, mean normalized

expression over both species >5). The group of orthologous genes was clustered by principal

component analysis. The DEG and EEG group were compared on gene count level in the

three sub-categories molecular function, cellular component, and biological process. These

orthologous genes should provide a classification of evolutionary conservation patterns. Fur-

thermore, orthologous genes, annotated to one of three selected gene ontologies were exam-

ined for their chromosomal identity between the species in a circos plot. EEG and DEG were

separated to investigate positions similarities and variations and if these were correlating with

genomic positions.

Venn diagrams were prepared using the R package VennDiagram 1.6.20 [33]. Bioconductor

packages ComplexHeatmap 2.6.2 [34] and Circlize 0.4.11 [35] were used to create the heat-

maps. Correlations were performed by corrplot 0.84 package [36]. GO term bar plots were

printed using ggplot2 3.3.2 package. Principal component analysis and plots were created by

PCAtools 2.2.0 [37] and complex boxplot with either ggplot2 3.3.2 or ggpubr 0.4.0 packages

[38,39]. Finally, circos plots were created with OmicCircos 1.2.0 [40].

Assessment of photoperiod-induced physiological development

An additional experiment was performed to validate one distinct observation in the transcrip-

tome comparison. Therefore, Scarlett and Moneymaker seeds were pre-germinated, and each

plant was placed into a pit soil container of 6x6x8 cm size. Ten replicates of each genotype

were placed in two different growth cabinets–defined by an 8 and 16h light regime. Other

environmental parameters were adjusted to the same settings as priorly described. On the 10th

& 11th days after germination, the relative chlorophyll content was measured by a MultispeQ

V2.0 hand-held chlorophyll meter (https://www.photosynq.com/), using protocol PSII mea-
surements in the center of the leaf. The oldest and the youngest leaf per plant were measured in

the center part on both days, seven hours after the lights were switched on. A t-test was per-

formed to compare the relative chlorophyll content between (I) the two photoperiods for

tomato and barley separately and (II) the species at the same photoperiod.

3. Results

The presented study covered multiple comparison levels to provide a general overview of phys-

iological processes in different tissues and species at the seedling stage under a short-day
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photoperiod regime. On the first level, root and shoot meristems within the species were tested

against each other to uncover tissue-related gene expression variations. Transcriptome analysis

using MACE revealed 7.9 million reads in barley root apices, of which 5.5 million reads were

aligned across the barley genome. Among the mapped reads, 4.7 million reads were aligned to

barley annotated genes. More transcripts (10.5 million) were found in the barley shoot, of

which 5.9 million reads were mapped and aligned with barley annotated genes (S2A Fig). In

tomato root and shoot apices, around 12.4 and 7.9 million reads were identified, of which 7.1

and 5.5 million reads were mapped to annotated genes, respectively (S2B Fig). Across tissues

and species, the three replicates indicated high similarities (S3 Fig). Pearson correlations of the

normalized gene expression between the replicates ranged from 0.97 to 1.00. The calculated p-

value between the replications for all genes supports the similarities of replicates observed in

the correlation analysis (r > 0.99).

Barley tissue comparison

We detected 16,842 of 39,809 genes (42%) to be expressed in both barley tissues (Fig 1A), from

which 1,918 were significantly upregulated in the shoot and 2,214 in the root meristem (Fig 1B

and 1C). Additionally, 1,085 genes have only been expressed in the root, while 1,533 genes

show expression only in shoot tissue (Fig 1A, S1 Table). By performing a gene ontology enrich-

ment based on the gene cluster occurrences in the overexpressed genes, 51 significant ontology

Fig 1. Overview of root to shoot tissue expression in barley. A–count of expressed genes in shoot tissue only, both tissues and root tissue only. B–volcano plot

of differentially expressed genes, visualizing the Bonferroni adjusted -log10 probability value against the log2 fold change. Blue dots indicate significantly

upregulated genes in root tissue; red indicates the same for shoot tissue. C–heatmap of all DEG for the root and shoot tissue. The mean expression value over

the three replicates is shown on a log10 transformation. D–differentially expressed gene ontologies. The exterior color of the bar splits root (blue) from the

shoot (green), the p-value is indicated by the bar fill. The bars represent the average normalized expression value for the GO terms, based on all genes related to

the GO term.

https://doi.org/10.1371/journal.pone.0265981.g001
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classes were observed (S4 Fig, S2 Table). The most significant GO terms were identified for

cell wall organization, oxidation-reduction processes, and heme-binding (p< 0.0001). On a

lower but still significant level of probability (p< 0.05), transcription factor activities and met-

abolic process regulations have been observed to vary between the root and shoot. These

observations were further quantified by an expression level analysis of GO terms (S3 Table).

Ten significantly different ontologies were detected, where five of these show an up-regulation

in root tissue (Fig 1D). Three of these genes are related to the transport of nutrients (ammo-

nium transport, phosphate transport, transmembrane transporter), while one is related to the

energy process (sucrose alpha-glucosidase), and the last and strongest is associated with oxida-

tive stress response (oxidoreductase activity). Another family of oxidoreductase genes is signif-

icantly upregulated in the shoot meristem, but the absolute expression is much lower than in

the root tissue.

Furthermore, two other oxidative response classes were observed (cyclase activity, and anti-

oxidation activity). Besides these three stress-responsive ontology classes, the photosystem I

reaction center and glycerol kinase activity were overexpressed. Thus, concluding the observa-

tions made on the barley tissue comparison level, a sink source pattern can be observed with

the additional oxidative stress response.

Tomato tissue comparison

In tomato, 20,297 of 33,812 genes (60%) were expressed in both tissues, from which 1,537 were

upregulated in the shoot and 1,874 upregulated in the root meristem. Additionally, 1,835

genes have shown expression in the root, while 1,362 genes are only expressed in the shoot tis-

sue (Fig 2A–2C, S4 Table). Gene ontology clustering based on the DEG resulted in 63 signifi-

cant variations between root and shoot tissue (S5 Fig, S5 Table). The most pronounced

variation was noticed for stress response, cell wall organization, metabolic processes, transcrip-

tion factor binding, transporter activity, and photosystem I. By comparing the gene expression

level of root and shoot tissue against each other on the GO term level, 27 significantly different

classes have been observed (S6 Table). Eleven of these (41%) are overexpressed in the root

compared to the shoot tissue, while 16 are overexpressed in the shoot tissue. Most of the root-

related GO terms can be classified in the functional groups of transporting (transmembrane

transporter), reservoir activity (nutrient reservoir activity, beta-carotene mono oxidase activ-

ity, anthocyanin glucosyltransferase), nutrient uptake (Nicotianamine biosynthesis), and elon-

gation (apoplast, gibberellin oxidase). For the shoot, few superordinate classes were identified,

which are growth (elongation), photosynthetic activity (protochlorophyllide reductase, photo-

lyase, rubisco, photosystem I and II, chlorophyll-binding, extrinsic to membrane), oxidative

response (Flavonoid biosynthesis, oxidoreductase, formamidase activity), developmental activ-

ities (indole acid carboxyl transferase) and energy transformation (acetyl-CoA reductase,

glyoxylate reductase). The highest overall expression can be reported for photosynthesis-

related processes directly linked to photosystems I and II (Fig 2D).

Comparison of barley and tomato development

While the roots showed equal functional activity between barley and tomato gene ontologies,

the shoot tissues varied in photosynthetic activity levels. Remarkably, the oxidoreductase activ-

ity (acting on CH-CH group donors) was overexpressed in tomato shoot tissue and barley

shoot tissue while lowly expressed in root tissues (Figs 1D & 2D). Compared to the barley GO

clustering, 2.7 times more differentially expressed GO terms were observed. The reduced

expressional activity in barley tissues resulted in a lower tissue-specific differentiation level

(Fig 3A). The principal component analysis revealed variations between species on gene
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ontology expression level, presented by the first component. This first component explains

more than 70% of the entire variation. The second component explains 17%, related to the tis-

sue-specific variation. Generally, a more pronounced differentiation of the tomato tissues than

the barley tissues was observed. Based on the LFC comparison between barley and tomato, 12

GO terms were identified to be significantly different between the two species (Fig 3B).

Generally, three major groups can be clustered from the direct GO expression comparison.

The first group is photosynthetic activity (Photosystem II, Chlorophyll binding) (S6C & S7C

Figs). The activity was highest in tomato shoot tissue, while little expression was detected in

barley. Two genes were expressed in the barley shoot, while three were in tomato. The average

expression level was 100 times higher in tomato than in barley (Tomato 1771; Barley 18 nor-

malized reads). For both species, the Photosystem II reaction center W protein was found to

be active (HORVU1Hr1G078140 [5 reads expressed in the shoot meristem], Solyc06g084050

[1720 reads] & Solyc09g065910 [3505 reads]). In contrast, the photosystem I indicated similar

expression patterns in barley and tomato (Figs 1D & 2D). The second group was related to

stress response on the cellular level, including response to wounding, peroxidase activity, and

defense response. While the peroxidase activity differed between the species on p < 6.5e-10, the

intraspecies tissue variation was p< 0.001 (Fig 3B). Fifty-nine genes related to this category

were expressed in tomato, showing an average expression level of 943 normalized reads in the

root and 124 in the shoot meristem. Contrasting, 256 genes were expressed in barley, with an

average expression level of 288 normalized reads in the root and 88 in the shoot meristem. The

Fig 2. Overview of root to shoot tissue expression in tomato. A–count of expressed genes in shoot tissue only, both tissues and root tissue only. B–volcano

plot of differentially expressed genes, visualizing the Bonferroni adjusted -log10 probability value against the log2 fold change. Blue dots indicate significantly

upregulated genes in root tissue; red indicates the same for shoot tissue. C–heatmap of all DEG for the root and shoot tissue. The mean expression value over

the three replicates is shown on a log10 transformation. D–differentially expressed gene ontologies. The exterior color of the bar splits root (blue) from the

shoot (green), the fill color indicates the p-value level. The bars represent the average normalized expression value for the GO terms, based on all genes related

to the GO term.

https://doi.org/10.1371/journal.pone.0265981.g002

PLOS ONE Transcriptomal footprint in physiological variations underlying photoperiodic sensitivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0265981 September 12, 2022 7 / 21

https://doi.org/10.1371/journal.pone.0265981.g002
https://doi.org/10.1371/journal.pone.0265981


highest expressed gene in tomato was the TPX1 peroxidase (Solyc07g052510). Contrasting, the

peroxidase superfamily protein (HORVU2Hr1G125110) was in barley (S6B Fig). From these

values, we can conclude that the peroxidases are more active in the root than in the shoot meri-

stem in both species. Besides the peroxidase activity, defense response and the response to

wounding were discovered for this group. In the category of defense response, we observed an

adverse pattern (S7E Fig). While the number of genes was similar (107 tomato genes, 120 bar-

ley genes), the average expression of gene ratio was higher in tomato root than shoot meri-

stems (75 to 56 normalized reads). Contrasting, the expression in barley shoot meristems was

higher (138) than in root meristems (62). Still, most associated genes in this class were not

expressed in either tomato or barley. The highest expressed genes had the same function

(Defensin-like protein) in both species (Solyc07g006380, 2,388 expressed reads; HOR-

VU1Hr1G010250, 4,420 expressed reads on average across both tissues).

The response to wounding showed a similar expression pattern in both species (S7I Fig).

The expression of all 21 and 30 genes associated with this group was similar in tomato and bar-

ley, respectively. However, when considering average expression across all genes, a sildely

overexpression in the shoot compared to the root meristems was observed. While a chymo-

trypsin inhibitor (HORVU1Hr1G004150 [5861 reads on average across both tissues]) was the

highest expressed gene in barley, a chymotrypsin inhibitor-2 (Solyc08g080630 [1523]) showed

the highest expression of all genes associated with response to wounding. Notably, the gene

with the highest expression was observed in barley, while most genes were not expressed in

barley meristems.

Fig 3. Gene ontology comparison between barley and tomato. A -Based on the expression values of genes annotated to a GO term, GO terms were merged

between barley and tomato. A principal component analysis of all GO terms matched was performed, comparing all replicates of barley root, barley shoot,

tomato root, and tomato shoot tissue to each other. B–the square rooted expression level of barley and tomato tissues for significantly different GO terms,

indicated by the fill color of the bars.

https://doi.org/10.1371/journal.pone.0265981.g003
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Interestingly, also chlorophyll-binding indicated variations between the tissues and species.

Unsurprisingly, the expression of chlorophyll-binding related genes was higher in shoot than

root meristems (S6C Fig). The average expression of 20 genes related to this category was 22

and 2379 normalized reads in tomato root and shoot meristem, respectively. The highest

expressed gene was Solyc07g047850, a chlorophyll a-b binding protein. Contrasting, barley tis-

sues showed barely any expression in both tissues. Across 18 genes related to this category.

The average expression rate was 0 and 3 normalized reads in root and shoot meristems, respec-

tively. The highest expressed gene was HORVU2Hr1G060480, a photosystem I reaction center

subunit (average expression in shoot meristem = 49 reads).

Generally, the expression magnitude for the GO terms was higher in root tissues, with an

overall higher expression in tomato. A higher expression level in tomato was also observed for

the other two stress-responsive GO terms (S7E & S7I Fig).

Finally, the biggest group was related to respiratory and developmental processes. NADH

dehydrogenase, 4 iron 4 sulfur cluster binding, and proton-transporting ATPase activity might

be associated with respiratory functions. The ribosomal constitution, protein binding, and cal-

cium-binding appear to be related to developmental processes. In tomoto, 132 genes were

found to be related to the calium ion binding category (S7A Fig). The average expression level

in root and shoot was not significantly different (253 & 283 normalized reads in root and

shoot). The highest expressed gene was Solyc10g081170, a Calmodulin 2 messenger molecule

(4590 reads across both tissues). Compared to tomato, about three times more genes (330)

were related to this category. The average expression level was lower (190 & 177 for root and

shoot meristem), and the highest expressed gene was a calreticulin 1b protein (HOR-

VU2Hr1G121990 [5995 reads]). While the tissues did not indicate significant variations in

both species, the species themselves significantly diverged from each other (p<0.001).

A similar observation was made for the biggest gene ontology category–protein binding. A

total of 2,231 and 3,561 genes were reported for this category in tomato and barley, respectively

(S7D Fig). The average expression across both tomato tissues was significantly higher com-

pared to barley (p<0.001; on average, 400 in tomato and 111 in barley). The highest expressed

gene in tomato was a meloidogyne-induced giant cell (Solyc01g099770, [24,442 reads across

both tissues]). Contrasting to the tomato tissue comparison, barley tissues significantly differed

in gene expression (p<0.001).

The category of the structural constituent of ribosomes included 171 genes in tomato and

660 in barley (S7G Fig). In barley, the majority of genes of this category were not expressed.

Still, a distinct subset of genes indicated similarly high expression compared to tomato genes.

The average expression level of tomato genes was 4183 normalized reads, with the highest

expressed gene being a ribosomal protein L3 (Solyc01g104590 [17,050 reads across both

tissues]).

Concluding, no significant variation between the tomato tissues was observed for the devel-

opmental processes, but a significantly increased expression compared to the barley tissues

(S7A, S7D & S7G Fig). The same holds for the respiratory GO terms. No variation between tis-

sues of the same species was observed. Nevertheless, significant overexpression of genes in the

tomato tissues was detected compared to the barley tissue (S6A, S6D & S7H Figs).

Subsequently, we wanted to compare the expression of Cry1 and Cry2 in both species and

tissues. These cryptochromes were reported to mediate the photoperiodic control of flowering,

entrainment of the circadian clock, cotyledon opening and expansion, anthocyanin accumula-

tion, and root growth [41]. The blastn of Hv-CRY1a/b and Hv-CRY2 sequences, derived from

[42], revealedHORVU6Hr1G049950 (Hv-CRY1) and HORVU6Hr1G058740 (Hv-CRY2) as

single hits. We compared the expression of Hv-CRY1/2 in root and shoot to the expression of

orthologous tomato Cry1 and Cry2 genes (Fig 4). Locus information of tomato orthologous
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was derived from [41]. While we did not observe variations in the gene expression of Cry2 in

shoot tissues between tomato and barley, Cry1 revealed 2.3 times higher gene expression in

tomato compared to barley shoot. The root tissue expression of Cry1 and Cry2 revealed a 1.95

and 2.87 times overexpression in the barley root tissue compared to tomato, respectively.

Finally, we aimed to validate the observations made in terms of divergent photosynthetic

activity, mediated by the photoperiod, by a phenotyping experiment. The measurement of the

relative chlorophyll content under two different day length scenarios (8h & 16h) indicated a

significant difference in barley (p8h to 16h< 0.001). At the same time, no variation was observed

between the tomato groups (p8h to 16h = 0.504) (Fig 5A). The average relative chlorophyll con-

tent in leaves was 25.53 in barley genotypes in the 8h scenario and 35.95 in 16h. Analogously,

the tomato values were 30.13 (8h) and 31.37 (16h). As these numbers already indicate, in a

direct comparison of tomato and barley in the same day length scenario, tomato plants per-

formed significantly better under 8h conditions (p8h-tomato-barley<0.0003). In contrast, the

opposite was true in the 16h condition (p16h-tomato-barley<0.04).

Conserved protein sequences and transcription patterns

Five hundred nineteen orthologous genes were identified based on their protein structure

homology. These were used to estimate the magnitude of conservation in the expression level

(Fig 6A, S7 Table). This 1-to-1 sequence similarity relationship indicates that these respective

barley and tomato genes were more closely related than any other genes.

A principal component clustering of these genes exposed the higher transcriptional relation

tissue-wise in this set of orthologues (Fig 6A). Compared to the collection of GO expression of

all genes in Fig 3A, the tissues show increased transcriptional conservation in the group of

Fig 4. Normalized expression (TMM) of photomorphogenesis controlling genes Cry1 and Cry2. The expression is compared between tissues (x-axis) and

species (color).

https://doi.org/10.1371/journal.pone.0265981.g004
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orthologous genes. While the first component separates the root tissue, the shoot tissues are

separated by the second component. The clustering of these orthologues in DEG and EEG

results in two unequally sized groups. Based on a threshold of at least five reads in either set, 94

and 91 DEG were identified, comparing the species tissue-wise for root and shoot, respectively.

The majority of these genes were not or only marginally expressed in barley. With a minimal

expression threshold of five reads in both species, the number of DEG was reduced to 12 and

14 in root and shoot, respectively (Fig 6B). Six of these genes were found in both tissues. These

include endopeptidase activity, proteolysis, structural constituent of ribosome, SNAP receptor

activity, and response to stress and oxidation-reduction. These genes have a significant overex-

pression in the tomato tissues in common, with an average LFC value of ten.

The other EEG group was almost four times bigger (Fig 6B). Forty-one EEGs were identi-

fied in the root gene expression, while forty-five were detected in the shoot comparison. Seven

of these were found in both tissues, including transcription coactivator activity, clathrin bind-

ing, hydrolase activity, protein binding, metabolic processes, and two endonuclease activity

genes. The average expression of these genes was 298 normalized fragments, indicating an

overall high expression level. Four were annotated as transcription factors for the EEG in the

root, ten were related to protein binding, 14 were identified as enzymes, two were related to

oxidation reactions, and four were identified as endonuclease enzymes. In shoot-related EEG

observed genes, 14 enzymes were identified. Nine were described as transcription factors, five

protein-binding-related genes, seven genes with oxidation background, and three endopepti-

dases. Several genes were annotated to more than one function.

High expressional conservation between the species was observed when clustered to biolog-

ical processes, cellular components, and molecular function (Fig 5B). Especially the count of

Fig 5. Relative chlorophyll content assessed by an multispeQ gadget for ten replicated seedlings of barley (cultivar Scarlett) and tomato (cultivar

Moneymaker) in two different photoperiods (8h, 16h day light). Values above boxplots indicate the result of a t-test comparison.

https://doi.org/10.1371/journal.pone.0265981.g005
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EEG in the molecular function group is 4.3 and 5.4 times higher than the DEG for shoot and

root, respectively. The other two groups show lower representation in both groups, which

results in no variation between DEG and EEG.

Ultimately, we mapped the orthologous genes and compared their genomic position

between the species. As the three groups transport, translation, and photosynthesis have

caught the most interest, we compared the genomic loci between tomato and barley for DEG

(Fig 6C), and EEG (Fig 6D) expressed orthologous genes. Three photosynthesis, one transport,

and two translation-related genes were identified among the DEG group. Analog, one photo-

synthesis, six transport, and five translation-related orthologous genes were observed for the

EEG group. The comparison of the genomic loci revealed a hotspot on barley’s chromosome

5H, where five of six DEG orthologous genes were located. Besides, three EEG transport-

related genes were found on 5H. Contrasting to barley, the distribution of the DEG and EEG

orthologous genes did not indicate any clustering in the tomato genome.

Fig 6. Orthologous gene comparison between tomato and barley tissues. A–principal component analysis of the orthologue genes, showing all three

replicates for each tissue–species combination. B–Classification of differentially expressed genes (DEG) and equally expressed genes (EEG) in the three groups

biological process, cellular component, and molecular function. The count of genes of each group is illuminated. C–Circos plot of the normalized expression of

shoot (green) and root, meristems (brown) for tomato and barley, separated by chromosomes. Differentially expressed genes between barley and tomato for the

three groups photosynthesis (dark green), transport (gold), and translation (dark red) are linked with lines in the center. D–similar to C, but showing the links

between equally expressed genes.

https://doi.org/10.1371/journal.pone.0265981.g006
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In conclusion, the orthologues’ significant variation in expression is related to a void barley

root and shoot gene expression at the seedling stage. For the set of genes showing expression

in both tissues, the majority is described by the group of molecular functions. Most of these

genes indicated a similar expression.

4. Discussion

The functional analysis of these two divergent species was performed after a cultivation period

of ten days, described by a photoperiod of 8h. While modern tomato varieties are day-length

neutral [43], barley, as facultative long-day species [44], depends on long photoperiods to

flower. Regarding this habit, short day-length was also observed to suppress growth and devel-

opment in barley at the seedling stage [45]. Although the photoperiodic habit of species is gen-

erally determined, the day length type depends on the presents or expression level of specific

candidate genes and, therefore, is interchangeable [43]. Furthermore, mutation breeding has

created barley varieties with day-length neutral habits, indicating the potential to change the

photoperiodic sensitivity [44].

This study aimed to identify significant variations and similarities of physiological develop-

ment in early seedling stages between a day-length neutral tomato variety and a long-day bar-

ley variety. Therefore, root apices, comprising root meristem and root elongation zone of

barley and tomato, were precisely harvested under a dissecting microscope. Likewise, shoot

meristems comprising two emerging leaf primordia were gathered in both species. To homog-

enize the sampling process, we cut exactly 50 roots and shoot apices (as technical replicates)

and pooled them in each biological replicate. The primary reason behind this sampling strat-

egy was to target development-related genes and ensure the reproducibility of transcript data.

Our data showed very highly similar gene expression among the individual biological repli-

cates in each tissue in both species, suggesting that the adopted sampling strategy was appro-

priate (S2 & S3 Figs).

We used massive cDNA Ends (MACE) analysis instead of whole transcriptome sequencing

by standard RNAseq approaches. MACE was preferred over RNAseq for two reasons. First,

the bias of gene length should be avoided. While the gene length variation does not matter

much in intraspecies transcriptome analysis, the comparison between species results in gene

length expression bias. Both the orthologue genes and the gene ontology comparison on

expression level could be biased by the gene length-related expression. Although the expres-

sion could have been corrected by the gene length, only sequencing the 3’ single end of the

gene gives higher confidence in the processed approach. Second, PCR duplicates are reduced

due to the applied TrueQuant approach while sequencing. This should ensure minimal PCR

bias during transcriptome sequencing. Ideally, each template molecule can be identified by its

unique TrueQuant adapter sequence. Based on this, PCR copies can be determined and elimi-

nated from the dataset, and uneven amplification and artifacts generated during the PCR

amplification can be eliminated. Nevertheless, MACE also has some relevant disadvantages,

like the comparably short read length and the sequencing on the 3’ end. These two might have

caused the significant loss of fragments throughout the alignment, filtering, and annotation

process. As previously reported, inaccurate gene annotations might result in failed read anno-

tations for those fragments with a start position beyond the annotated gene start [46]. This

becomes a more relevant issue the shorter the reads are. Besides, the precise alignment of very

short single-end reads is challenging. Maybe this was the other reason for the high number of

unaligned reads.

In the functional analysis, the intraspecies comparison revealed a generally lower expres-

sion of genes in barley tissues than tomato. While only about 48% of all genes were expressed
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in barley, almost 73% of all genes have shown evidence of activity in tomato. The higher num-

ber of expressed genes is also represented by a higher relative number of DEG in Tomato com-

pared to barley (Fig 2). This is the first indication of lower differentiation activity in barley

tissues. A GO enrichment, based on the occurrences of DEG, revealed twelve more variant

terms in the tomato root to shoot comparison than for the barley tissues (Fig 3). Similarities

were found for the terms cell wall organization, metabolic processes, and transcription factor

binding. In addition, variations were observed for stress response and photosynthetic activity,

which showed variance in the tomato tissues, but not between the barley tissues.

Based on an expression value comparison of root to shoot tissues, particular GO variations

between the species were observed. Barley root tissue-specific ontologies were nutrient trans-

portation, respirational aspects, and oxidative stress response. In tomato, gene overexpression

in roots was found for nutrient uptake, transport, and storage groups. Additionally, elonga-

tional processes can be observed, indicating growth processes in the root tissue. Comparing

the shoot level, both species have an overexpression in oxidative response classes and the pho-

tosystem I activity in common. Besides these, six additional GO classes related to the photo-

synthetic activity are overexpressed in the tomato shoot tissue. Overexpression of

photosynthetic genes in the shoot is not unexpected, but the missing overexpression in barley

tissue makes it remarkable. We found two gene copies of the Photosystem II reaction center

W protein in tomato and one in barley. The high expression of the genes in tomato indicated

pronounced photosynthetic activity. Contrasting, the same gene in barley was only marginally

expressed in the shoot meristem.

Based on these Photosystem II transcript patterns of barley and tomato shoot tissues, we

performed a small phenotypic experiment, where we measured the leaf chlorophyll content of

barley and tomato seedlings, treated with 8h and 16h day-length. Based on the observations

made in transcriptome comparison, We hypothesized that (I) tomato plants grown under 8h

and 16h day length should not differ in their relative chlorophyll content–as it is a day-length

neutral species; (II) contrasting to tomato, there is a difference between barley plants grown in

8h and 16h environments, and finally (III) the relative chlorophyll content of the leaves will be

higher in tomato than barley under short-day conditions. This experiment validated that the

barley genotype Scarlett was affected in its relative leaf chlorophyll content by the day length.

A 30% reduction in the relative chlorophyll content was observed in the 8h compared to the

16h environment. Contrasting, the tomato genotype moneymaker did not facilitate any reduc-

tion in the chlorophyll content by the reduced day length. We concluded that all three hypoth-

eses are fulfilled. Therefore, we consider the observed gene expression patterns to indicate

reduced photosynthetic activity in the barley genotype Scarlett under 8h light regimes.

Furthermore, developmental gene ontologies and energy transforming processes indicated

that tomato shoot tissue was associated with superior energy production under short-term

light conditions compared to barley shoot tissue.

One might speculate this variation might also be caused by the tomato’s lower seed weight

than barley. This might force tomato seedlings to overweight the energy production and pho-

tosynthesis gene expression compared to barley. Overall, there were 2.7 times more gene

ontologies found in tomato to vary between root and shoot tissues. This might indicate higher

tissue specificity, probably associated with a more pronounced developmental variation under

the given light regime.

The following comparison level supported the GO variations’ higher physiological and met-

abolic activity in tomato tissue. Therefore, the LFC variation between root and shoot tissues

on the intraspecies level was compared between the species. Two photosynthesis-related GO

terms were highly expressed in the tomato shoot (Fig 2), but not in the barley shoot (Fig 1).

Especially interesting is the low expression level of photosystem II-related genes in barley
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shoot tissue. These two photosystems cover a different range of light absorbance (680nm,

720nm), which leads to a reduced energy transformation from less energetic light due to the

reduced activity of the photosystem II [47].

Furthermore, the activity of photosystem II is reported to require more light than photosys-

tem I [48]. Evolutionary variant extrinsic proteins might have a crucial effect on the structure

and function of the photosystem II [49]. The reduced photosynthetic activity is framed in an

overall reduced physiological activity in barley tissues. The reduced physiological activity was

assumed based on the structural constituent of ribosomes, protein binding, NADPH dehydro-

genase, or proton-transporting ATPase activity. The structural constituent of ribosomes plays

a crucial role in regulating gene expression [50–52]. The count of protein-binding related

genes has been observed to be one of the most expressed groups, which might be related to tis-

sue differentiation processes [53] or the regulation of plant developmental processes by pro-

tein-protein interactions [54]. NADPH dehydrogenase, relevant in the respiratory chain

[55,56], was more active in tomato tissues. The activity of NADPH dehydrogenases was

reported to be dependent on Ca2+ [57]. Calcium has several roles in plant development [58],

and we observed the calcium ion binding expression also being higher in tomato tissues. This

might indicate that a reduced calcium ion binding results in reduced activity of the NADPH

dehydrogenases and, ultimately, reduced development and differentiation in barley tissues.

The PCA shows a higher tissue distinction in tomato (Fig 3A), indicating a more pronounced

developmental variation under the given light regime. The observed higher expression of

stress-responsive genes in tomato tissues might be associated with unfavorable photoperiodic

cycle conditions induced injuries, as described by Hillman (1956) [59].

The candidate genes Cry1 and Cry2 were selected as target genes, as these were described to

have a relevant impact on tissue differentiation. Furthermore, the expression pattern was

observed to change over time [7]. From the observation made in our experiment, one could

conclude that tomato promotes shoot over root development (Fig 4). Contrasting, barley pro-

motes the root growth overshoot development. But, as our experiment lacked a barley expres-

sion profile in a long-day light regime, we compared the observed Cry1 and Cry2 expression

patterns to literature-obtained expression data. By this comparison, we aimed to answer

whether the lower expression of Cry1 in barley was associated with the species or the 8h light

regime. Compared to the expression profile of Morex seedlings, derived by [60], Cry1 was 2.9

times higher expressed in Morex under 16h light regime (external source) than Scarlett under

8h (S8 Fig). Similarly, Cry2 was 2.14 times higher expressed in Morex compared to Scarlett. As

these are two different genotypes and the sampling time point marginally differs, observed var-

iations could be due to genotypic or time variations. Nevertheless, the expression variation

between the environments for barley was highly significant, and the expression of Morex 16h

was even beyond the level observed in tomato. Therefore, it could indicate that Cry1 and Cry2
alleles in Scarlett would be higher expressed than tomato orthologous under a 16h light

regime.

Additionally, the expression conservation level between these two species was investigated

by comparing orthologous genes. The hypothesis of the structural relation of genes leading to

a higher level of equal expression can be confirmed. In the group of molecular functions, five

times more genes showed equivalent expression compared to differential expression (Fig 5).

The other two groups were shallowly covered, indicating that functional conservation beyond

species levels is more likely in basic molecular functions. This statement is supported by the

genes found to be EEG related to core functionalities, like enzyme activity and translational

processes. All DEG genes have shown overexpression in tomato tissue, while most of these

genes were not expressed in barley. This might change with a different light regime and might

be another indicator of delayed and reduced physiological activity under short daylight.
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Comparing the physical positions of orthologous genes annotated to photosynthesis, trans-

port, and translation-related functions did not reveal that orthologous genes are not clustered

on chromosomes. Similar results were observed for EEG, indicating that these two species are

different in their genomic construction.

5. Conclusion

Applying a short photoperiod regime resulted in gene expression variations between tissues

and species. The photoperiod is a relevant regulator for photosynthetic activity physiological

and morphological differentiation for photoperiod-sensitive species like barley. As early sow-

ing dates of spring-type crops result from climate change, the reduced growth under shorter

day length conditions can indicate undesired lower productivity in unadapted varieties, espe-

cially with high latitudes. Breeding of new, less photoperiod-sensitive barley varieties might

overcome delayed development and differentiation. Growth suspension by short photoperiod

could benefit from genetic adjustments to avoid the coincidence of flowering and spring

drought. This could retain high yields in rainfed crops through drought avoidance strategies

by early root development.

Supporting information

S1 Fig. Workflow of the gene expression and functional analysis on three levels. Each level

is framed by a yellow, orange, or green square.

(TIF)

S2 Fig. The number of reads (in millions), mapped reads, and mapped in genes in Barley (A)

and tomato gene annotation (B).

(TIF)

S3 Fig. Correlations among three biological replicates of root apices (BRx / TRx) and shoot

apices (BSx/ TSx) in Barley (A) and tomato (B). Correlation is illustrated by color, shape, and

additionally as a numerical value.

(TIF)

S4 Fig. Gene ontology clustering results by applying AgriGo V2–51 significant GO terms

have been identified between the root and shoot meristem in barley. A–biological process;

B–molecular function; C—cellular component.

(TIFF)

S5 Fig. Gene ontology clustering results by applying AgriGo V2–63 significant GO terms

have been identified between the root and shoot meristem in tomato. A–biological process;

B–molecular function; C—cellular component.

(TIFF)

S6 Fig. Boxplot of the log10 transformed expression values for selected GO terms. Each dot

represents the expression level of a single gene, while the boxplot summarizes these single

points. Root and shoot are separated by color, while the species are spatially divided. Two sta-

tistical tests were performed, between the tissues and between the species for each GO term

individually. The results of the tissue-wise comparison are printed below the GO term name

between the green and purple boxplots, while the species-related comparison is placed between

the spatially separated boxplots.

(TIF)
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S7 Fig. Boxplot of the log10 transformed expression values for selected GO terms. Each dot

represents the expression level of a single gene, while the boxplot summarizes these single

points. Root and shoot are separated by color, while the species are spatially divided. Two sta-

tistical tests were performed, between the tissues and between the species for each GO term

individually. The results of the tissue-wise comparison are printed below the GO term name

between the green and purple boxplots, while the species-related comparison is placed between

the spatially separated boxplots. The GO term and function are illustrated above each boxplot.

(TIF)

S8 Fig. Normalized expression (RPM) of photomorphogenesis controlling genes Cry1 and

Cry2. The expression is compared between tissues (x-axis) and species (color). Expression

data for Morex, published by Liu et al. 2020 was added to compare barley expression patterns

under short-day (Scarlett– 8h) and long day (Morex– 16h) photoperiods.

(TIF)

S1 Table. Barley gene expression of normalized expression value. Basemean–mean expres-

sion over all six replicates, BasemeanA–root mean value; BasemeanB–shoot mean value.

PAdj–Bonferroni adjusted p-value. BR_Rx–normalized expression values for each replicate

separated BR = barley root. BSM_Rx–normalized expression values for each replicate of the

barley shoots separately.

(XLSX)

S2 Table. Result of AgriGo V2 clustering of significantly expressed genes in barley root

and shoot.

(XLSX)

S3 Table. Barley gene ontology clustering based on expression values for each GO term.

Genecount–count of genes found for the GO term (identical between root and shoot); Avgr–

Average expression value root; SDr–standard deviation for root tissue; MINr / MAXr–mini-

mum and maximum expression values. Same presented for shoot tissue by Avgs, SDs, MINs

and MAXs. Pval–probability value calculated by a generalized linear model (binomial distribu-

tion). Logfc–Logfoldchange value. FDR–adjusted p-value.

(XLSX)

S4 Table. Tomato gene expression of normalized expression value. Basemean–mean expres-

sion over all six replicates, BasemeanA–root mean value; BasemeanB–shoot mean value.

PAdj–Bonferroni adjusted p-value. TR_Rx–normalized expression values for each replicate

separated TR = tomato root. TSM_Rx–normalized expression values for each replicate of the

tomato shoot separately.

(XLSX)

S5 Table. Result of AgriGo V2 clustering of significantly expressed genes in tomato root

and shoot.

(XLSX)

S6 Table. Tomato gene ontology clustering based on expression values for each GO term.

Genecount–count of genes found for the GO term (identical between root and shoot); Avgr–

Average expression value root; SDr–standard deviation for root tissue; MINr / MAXr–mini-

mum and maximum expression values. Same presented for shoot tissue by Avgs, SDs, MINs

and MAXs. Pval–probability value calculated by a generalized linear model (binomial distribu-

tion). Logfc–Logfoldchange value. FDR–adjusted p-value.

(XLSX)
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S7 Table. Orthologous genes (1 to1 relationship) identified by OrthoMCL analysis of pro-

tein sequences between barley and tomato.

(XLSX)

Acknowledgments

We are grateful to Mrs. A. Bungartz for her help in sample preparation. Special thanks to Mrs.

Anna Vlasova for her valuable suggestion in data analysis and to Mr. Md. Kamruzzaman for

reading the manuscript.

Author Contributions

Conceptualization: Heiko Schoof, Jens Léon, Ali Ahmad Naz.
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