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Prediction of functional properties 
of nano TiO

2
 coated cotton 

composites by artificial neural 
network
Nesrine Amor*, Muhammad Tayyab Noman & Michal Petru

This paper represents the efficiency of machine learning tool, i.e., artificial neural network (ANN), 
for the prediction of functional properties of nano titanium dioxide coated cotton composites. A 
comparative analysis was performed between the predicted results of ANN, multiple linear regression 
(MLR) and experimental results. ANN was applied to map out the complex input-output conditions 
to predict the optimal results. A backpropagation ANN model called a multilayer perceptron (MLP), 
trained with Bayesian regularization were used in this study. The amount of chemicals and reaction 
time were selected as input variables and the amount of titanium dioxide coated on cotton, self-
cleaning efficiency, antimicrobial efficiency and ultraviolet protection factor were analysed as output 
results. The accuracy of the proposed algorithm was evaluated and compared with MLR results. The 
obtained results reveal that MLP provides efficient results that are statistically significant in the 
prediction of functional properties ( p < 0.1e

−10 ) compared to MLR. The correlation coefficient of 
MLP model ( > 95% ) indicates that there is a strong correlation between the measured and predicted 
functional properties with a trivial mean absolute error and root mean square errors values. MLP 
model is suitable for the functional properties and can be used for the investigation of other properties 
of nano coated fabrics.

Titanium dioxide ( TiO2 ) in nano forms (nanoparticles, nanowires, nanorods, nanosheets, nanoflowers) have 
shown tremendous impact in many industries (especially in textiles) as a multifunctional coating material. 
Nano TiO2 is frequently used to achieve not only photocatalytic self-cleaning, antimicrobial properties, super-
hydrophilic surfaces and water purification due to its higher surface area, but also in protective textiles against 
ultraviolet (UV) radiations, noise mitigation and air pollution1,2. TiO2 is an intrinsic n type metal oxide semi-
conductor material that closely resembles with zinc oxide in photocatalytic properties. The prominent features 
that enables TiO2 as a functional material in multiple applications are photocatalytic activity, chemical stability 
and non-toxicity3. Researchers have synthesized and coated nano TiO2 on textile substrates for photocatalytic 
and other functional properties4–7. In an experimental study, Noman et al. synthesized TiO2 nanoparticles and 
successfully coated on cotton fabric. The coated fabric was analysed against methylene blue dye and bacteria 
culture for self cleaning and antimicrobial properties respectively. The coated fabric showed significant results 
for self-cleaning and antimicrobial properties. The design of experiment was based on central composite design 
(CCD) and the obtained results were statistically evaluated under regression model through Design Expert (DE) 
software8. Here, in this current study, an attempt has been made to develop a prediction model by using machine 
learning tools that can work in two ways i.e., correlates the actual response of coated fabric with process vari-
ables, analyse the predicted response of DE and indicate which approach is better as a prediction model in reality. 
Nowadays, ANN exhibits a strong advantage in capturing any type of existing relationship from given data as 
it does not include a physical mechanism and a mathematical model. Thanks to the training process, ANN can 
learn, understand and recognize the information treatment rules, adapt and predict the wanted output variables 
from database considered as input variables9.

In general, textile processes are mostly non-linear in nature and a lot of efforts are applied to obtain optimal 
solutions10–12. ANN is an excellent approach that has been widely used by different group of researchers for the 
prediction of various properties of textile materials for different purposes where it has proven its effectiveness and 
potential. Malik et al. applied a backpropagation ANN to predict the tensile properties of even and uneven yarns 
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extracted from polyester-cotton blend. The selected parameters for this study were twist multiplier, cot hardness 
and break draft ratio. Simulation results of tensile properties were obtained through ANN and compared with 
MLR, where ANN outperformed MLR13. In another study, Malik et al. proposed ANN for the prediction the warp 
and weft yarns crimp in woven barrier fabrics. The use of ANN to predict yarn crimp has shown good results in 
the predicted output, especially for the warp yarn (with less prediction error between actual and predicted out-
put)14. In another experimental study, Malik et al. used ANN for the prediction of antimicrobial performance of 
chitosan/AgCl-TiO2 coated fabrics. The input variables were curing time and concentration of colloids. Samples 
were developed with different blends of selected colloid under different curing time. Backpropagation ANN was 
trained under a hybrid combination of Bayesian regularization and Levenberg Marqaurdt algorithms15. The same 
group of Malik et al. extended their study and applied ANN to develop a relationship between loom parameters, 
used material and construction of fabric in terms of porosity, mean pore flow, mean pore size with air perme-
ability. The experimental result showed ANN provided prediction with high accuracy of comfort properties 
with minimal error16. Almetwally et al. applied ANN and linear regression for the prediction of core spun yarn 
strength, elongation and rupture. The results showed that ANN propose highly accurate prediction of spinning 
strength17. Farook et al. used ANN to predict cotton fibre maturity. They selected various fibre characteristics as 
an input variables and analyzed fibre maturity as an output variable. The simulation results showed that ANN 
predicted cotton fibre maturity with small error18. In another study, Farooq et al. proposed ANN to predict the 
change of shade of dyed knitted fabrics that would happen after finishing application. The inputs were the shade 
percentage, dye color, and finishing concentrations. The outputs were the delta values of the selected samples 
with respect to standard samples. Tests results showed that ANN provide high prediction accuracy for shade 
change that occurred during finishing19. Dashti et al. predicted the yarn tenacity using ANN trained by genetic 
algorithm. The performance of this approach was useful to achieve desired tenacity with minimum production 
cost. However, it is a time-consuming process20. Furferi et al. introduced ANN for the prediction of coatings 
process on textile fabrics. Testing results demonstrated the significance of ANN model particularly for coat-
ing mechanisms21. Knanat et al. applied ANN for the prediction of thermal resistance of wet knitted fabrics. 
The results showed efficient prediction of thermal resistance22. Ribeiro et al. proposed an automated machine 
learning method to predict physical properties of woven fabrics based on finishing features and textile design23. 
However, the prediction of overall mechanical behavior of textile composites is still a very challenging task due 
to the complexities of microstructures and boundary conditions24,25. Taieb et al. used ANN for the prediction of 
fabric drapability under low stress26. They reported that physical factors play crucial role while predicting fabric 
drapability properties. Kalkanci et al. estimated fabric shrinkage by applying ANN algorithm inside relaxation 
methods27. Thermofixing, sanforizing, drying and washing are the important processes that are applied on fabrics 
during finishing applications28. Dimensional changes were predicted at the end of finishing processes by ANN. 
The experimental results showed that ANN gives better prediction results for dimensional change. Khan et al. 
investigated mechanical properties of cross-ply laminated fibre-reinforced polymer composites as well as mod-
elled and predicted the mechanical properties using ANN29. The composite samples were developed by altering 
glass fibre layers with carbon fibre layers and polyphenylene sulphide with high-density polyethylene. The fibers 
were used as reinforcement materials and polyphenylene sulphide was used as a polymer matrix. Mechanical 
properties i.e., hardness, flexural modulus, impact and rupture strength were investigated for both directions. 
Simulation results showed that ANN predicts the mechanical properties with low MAE which computed between 
actual and predicted values.

The above discussed literature reveal that the most common ANN type used in textile industry is MLP30,31. 
MLP is a class of backpropagation ANN that has the advantages of self-learning, high nonlinearity resolution and 
the ability of mapping between input and output variables without introducing a mathematical model between 
nonlinear data and precisely predict the best function. As well as the authors searched, there is no relevant 
literature available on the use of ANN in any form to investigate or predict the functional properties of nano 
TiO2 coated textiles. Therefore, an approach has been introduced in this paper that is based on MLP model for 
the prediction of various properties of nano TiO2 coated cotton. The amount of titanium precursor, amount of 
solvent and process time were selected as input variables whereas the amount of nano TiO2 coated on cotton 
fabric, and some related functional properties i.e., self-cleaning efficiency, antimicrobial efficiency and ultraviolet 
protection factor (UPF) were considered as outputs variables. The achieved results were compared with MLR 
and with the experimental values using analysis of variance (ANOVA).

Materials and methods
Materials.  Bleached cotton fabric with mass (GSM) 110 g m −2 was used for samples preparation. All other 
chemicals i.e., titanium tetrachloride, isopropanol and methylene blue dye were taken from sigma aldrich.

Experimental design.  Design of experiment with various amount of titanium tetrachloride and isopro-
panol under fluctuating sonication time is based on central composite design for all developed samples as shown 
in Table 1. The optimization of independent variables was performed by Design-Expert 10 software. Total 20 
samples were developed during experimental study. The variables used during the study were the amount of 
titanium precursor (titanium tetrachloride), the amount of solvent (isopropanol) and sonication time. The com-
bination of variables is expressed in Table  1. The experimental results were obtained by using the following 
quadratic Equation.

(1)Y = b0 +
∑

biXi +
∑

bi,jXiXj +
∑

bi,iXi
2
, where i ≥ j and i, j = 1, 2, 3.
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In the above equation, b0 represents the coefficient of constant term, bi represents the coefficient of linear term 
that explains the persuade of the variables, bi,j represents the coefficient of two factors interaction and bi,i repre-
sents the coefficient of quadratic term respectively8.

Artificial neural network.  Artificial intelligence techniques seem to be promising and are still evolving. 
ANN are machine learning algorithms based on mathematical models that are identical and inspired by biologi-
cal nerve systems, responsible for the functionality of human brain. It consists of large sets of neurons connected 
by axons. Artificial neurons are individual neural units that are interconnected with each other to form a net-
work.The crucial point of this technology is the connection between individual neural units that can be rein-
forcing or inhibiting. This action is exercised through a combination of input values and an activation function, 
which returns the output of a neuron. A very special feature of ANN is the automatically creation, derivation and 
exploration of new information using previous learning that is called as training process32.

A multilayer perceptron method is a class of feedforward ANN. Backpropagation (BP) is one of the most 
common and typical learning algorithm in MLP that deals with non-linear models by reducing the desired target 
error in a gradient descent pattern though tailoring the weight factors and biases33,34. In this algorithm, training 
occurs in three steps: (1) Forward propagation step: an experimental data is introduced to MLP as input and its 
effect is propagated, in stages, through different layers of the network. Then, as a result, the outputs are generated. 
(2) Computation of the error: the error vector is computed from the difference between predicted and actual 
outputs. (3) Backward propagation step: The computed error vector is propagated backwards to the MLP and the 
synaptic weights are adjusted in such a way that the error vector reduces with every iterative step. Furthermore, 
the MLP model is getting closer and closer to generating the desired output.

Technically, MLP are used to model non-linear problems in order to predict output dependent variables 
y = [y1, . . . , yn] for given independent input variables x = [x1, . . . , xk] from their training values. The obtained 
results mainly depend on weights w = [w1, . . . ,wk] . The following equation represents the relationship between 
input and output of the network35,36:

where, y is the output. xj is the jth input. wj is the jth weight and b represents the bias. ϕ is the activation function. 
The biases and weights comprise the information that the neuron recovers during the training phase. A detail 
theoretical discussion of ANN architecture and training algorithms are presented by different researchers in their 
studies9,37,38. Theoretically, by increasing number of network layers, ANN generates significantly accurate results. 
However, increasing number of network layers is a time consuming process and makes the training process dif-
ficult to fit. Therefore, we adopted the standard classical structure of MLP that includes three-layers, one input 
layer; one hidden layer, and one output layer for the prediction of functional properties. Figure 1 displays the 
schematic structure of the proposed MLP model for this study.

(2)y = ϕ





�

j

wj ∗ xj + b



,

Table 1.   The input variables and experimental design.

Sample Amount of titanium tetrachloride (ml) Amount of isopropanol (ml) Sonication time (h)

1 10 6 0.5

2 6 4 3

3 2 2 0.5

4 6 4 4

5 6 2 3

6 10 2 4

7 2 6 4

8 6 6 2

9 10 6 2

10 6 4 1

11 6 4 2

12 2 4 1

13 6 4 3

14 6 4 1

15 2 6 0.5

16 2 2 4

17 6 4 2

18 10 4 3

19 6 4 1

20 10 2 0.5
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There were training and testing parts in the proposed MLP model and 75% of the data from Table 1 was used 
for the training of the proposed model whereas 25% of the data was used for testing purpose respectively. Three 
physical factors shown in Table 1 were considered as training inputs vectors. Therefore, the number of input 
nodes for training was 3; the number of nodes for output layer was 4 and the number of nodes for hidden layer 
was calculated according to the following equation34:

where N is the number of hidden layer nodes. m and n represent the number of input and output nodes, respec-
tively. a is a constant with a value range [1, 10]. The best number of hidden layer nodes was determined from 
this value range.

Model selection.  The performance of the proposed MLP model was evaluated using various statistical indi-
cators i.e., root mean squared error (RMSE), mean absolute error (MAE), Pearson correlation coefficient (r) and 
coefficient of determination ( R2 ), defined respectively by the following equations:

where yi and ŷ represent the actual and network outputs, respectively. n is the number of samples. ȳ represents 
the mean of the actual variables and ¯̂y is the mean of the predicted variables.

Sensitivity analysis.  Sensitivity analysis (SA) is a statistical method that provides an idea of how sensitive 
is the best solution chosen to any changes in input values from one or more parameters39. ANOVA is an inde-
pendent SA method that assesses if there is any statistically significant association between one or more inputs 
and output40–43. ANOVA utilizes the statistic ratio F to define if there is a significant difference exists between 
the average responses to main interactions or interactions between factors. The higher F-value indicates higher 
rankings. The p-value represents the differences between column means if they are significant or not. In this 
paper, one-way ANOVA is used to assesses the difference between the obtained results using the proposed MLP 
model, MLR and experimental values.

(3)N =
√
m+ n+ a,

(4)RMSE =
√

1

n
�n

i=1(yi − ŷi)2,

(5)MAE = 1

n
�n

i=1

∣

∣(yi − ŷi)
∣

∣,

(6)r =
∑n

i=1(yi − ȳ)(ŷi − ¯̂y)
√

∑n
i=1(yi − ȳ)2

√

∑n
i=1(ŷi − ¯̂y)2

,

(7)R2 =





�n
i=1(yi − ȳ)(ŷi − ¯̂y)

�
�n

i=1(yi − ȳ)2
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Figure 1.   MLP model for the prediction of functional properties of nano TiO2 coated cotton.
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Results and discussion
Analysis of the proposed MLP model.  Functional properties of nano TiO2 coated cotton fabric were 
predicted through backpropagation MLP model. The selected MLP model with three-layers (i.e., an input, a 
hidden, and an output layers) was adjusted in a way that the number of hidden layer nodes could not exceed the 
range of values [4, 13] according to Eq. (3). Afterwards, the results were tested for different number of hidden 
layer nodes in this values range. Figure 2 represents the errors and accuracy in terms of RMSE and R2 for differ-
ent number of hidden layer nodes. The obtained results reveal that the proposed MLP model with 11 nodes has 
the lower computation error and higher accuracy with RMSE = 21.3844 and R2 = 0.9976 , respectively. There-
fore, MLP model with 11 nodes was adopted and further used in this work.

Regarding the transfer function, there are three main transfer functions mostly used for hidden and output 
layers i.e., logarithmic sigmoid (logsig), tangent sigmoid (tansig) and purelin (a linear function) functions. The 
best selection of a transfer function for input and output layers guarantee the accuracy of the predicted results. 
Therefore, all possible measures were taken to assure that the tests were performed in such a way where the 
network structure, the thresholds and the weights were the same. Table 2 shows the RMSE, r and R2 of different 
transfer functions. It was observed that the determination of transfer function of hidden and output layers has 
a significant influence on the desired prediction accuracy. The selection of logsig transfer function for hidden 
layer and tansig transfer function for output layer provide lower errors according to RMSE and high accuracy 
according to R2 and r. Figure 3 represents the MLP model based on the optimal structure (number of layers and 
layer nodes) according to our observations and this model is further utilised for the prediction of results. The 
setting of training parameters are presented in Table 3.

MLR model.  The purpose of MLR is to investigate the relationship between independent variables i.e., 
(amount of titanium tetrachloride, amount of isopropanol, and sonication time) and the obtained results i.e., 
(self-cleaning efficiency, antimicrobial efficiency and UPF) for nano TiO2 coated cotton fabric. Moreover, the 
performance of MLR and MLP were compared using the MAE, RMSE, correlation coefficient and the coefficient 
of determination released in the four properties.

Comparison of MLP and MLR results.  A comparison of the predicted results of MLP model was made 
with MLR results of all functional properties for different amount of precursor and solvent under varying reac-
tion time. The predicted results for all four outputs are presented in Fig. 4. The absolute errors given by the dif-
ference between predicted and actual values for both MLP and MLR is shown in Fig. 5.

Figure 2.   Root mean square error (RMSE) and coefficient of determination R2 for different hidden layer nodes.

Table 2.   Errors of different transfer functions.

Hidden layer function Output layer function R
2 r RMSE

Purelin Purelin 0.9796 0.9897 61.9663

Purelin Tansig 0.9740 0.9869 69.8786

Purelin Logsig 0.8576 0.9261 163.5759

Logsig Tansig 0.9976 0.9988 21.3844

Logsig Logsig 0.8469 0.9203 169.5826

Logsig Purelin 0.9788 0.9893 63.0491

Tansig Tansig 0.9829 0.9914 56.5975

Tansig Logsig 0.8337 0.9131 176.7290

Tansig Purelin 0.9871 0.9935 49.2292
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Figure 3.   The experimental structure of MLP model.

Table 3.   Parameters and settings of training network.

Parameters Settings

Training function Trainbr

Transfer function of Hidden layer Logsig

Transfer function of Output layer Tansig

Epochs 1000

Input node 3

Hidden node 11

Output node 4

Learning rate 0.02

Performance goal 0.00001

Figure 4.   The predicted and actual values using MLP and MLR.
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The cumulative mean of both RMSE and MAE, R2 , and r of both MLP and MLR models for all four functional 
properties are presented in Table 4. The results reveal that the values of estimation error were significantly lower 
for the proposed MLP model as compared to MLR for all four functional properties.

The correlation between the actual and the predicted values using MLP of all tested properties is illustrated in 
Fig. 6. It is observed from the results that the correlation ( R−value) provide a very strong relationship between 
the actual and predicted values, where R = 99% for Nano TiO2 coated amount, R = 96% for Self-Cleaning effi-
ciency, R = 95% for antimicrobial efficiency, and R = 93% for UPF.

The relation between actual and predicted values by MLR model had been plotted using a linear regression 
model in Fig. 7. We noted that MLR model provide a good correlation between the actual and predicted values 
especially for the first functional property Nano TiO2 coated amount, where R = 96% . However, the results shows 
less accuracy for the other three functionals properties, where R = 78% for Self-Cleaning efficiency, R = 75% 
for antimicrobial efficiency, and R = 82% for UPF. As result, MLP outperformed MLR for the prediction of the 
all functional properties.

Figure 5.   Absolute errors between predicted and actual values using MLP and MLR.

Table 4.   The performance measures of MLP and MLR for functional properties of nano TiO2 coated cotton.

Multifunctional properties Methods RMSE MAE R
2 r

Nano TiO2 Coated amount
MLP 41.19 27.97 0.903 0.9503

MLR 70.94 55.64 0.86 0.9274

Self-cleaning efficiency
MLP 5.35 4.59 0.95 0.9747

MLR 6.10 5.25 0.52 0.7211

Antimicrobial efficiency
MLP 7.51 6.98 0.95 0.9747

MLR 8.27 7.69 0.54 0.7348

UPF
MLP 6.82 5.81 0.93 0.9644

MLR 3.45 7.46 0.85 0.9220
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Robustness assessment.  A one-way ANOVA test was applied to assess the robustness of the predicted 
results using MLP, MLR as well as the experiment data. ANOVA test helps to knows how it is the correlations 
between the predicted responses of coated fabric with process variables. Table 5 shows the results of the one-
way ANOVA test of each functional properties obtained by MLP, MLR and experimental. It is observed that the 
developed MLP model was more statistically significant as compared to MLR and experimental, as it provides 
the lowest p-value for all functional properties.

Conclusions
In this paper, a specific class of ANN called MLP model was developed and compared with MLR for the predic-
tion of functional properties of nano TiO2 coated cotton fabric. The developed MLP model was used to correlate 
different output results with varying input variables. The obtained results showed a higher prediction accuracy 
for the developed MLP model i.e., ( p < 0.1e−10 and r > 95% ) compared to MLR. The computed values of RMSE 
and MAE from all predicted results confirmed that the proposed MLP model has lower error as compared to 
MLR. The successful utilization of the developed model revealed a non-linear relationship between the selected 
parameters for the prediction of functional properties. The findings of this work highlight that MLP approach 
can be effectively used for the prediction of other properties of nano coated fabrics.

Figure 6.   Correlation between the predicted and actual values for overall sets of data using MLP model.
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Figure 7.   Correlation between the predicted and actual values using MLR model.

Table 5.   Analysis report of the experimental values and the predicted values using MLP and MLR for 
functional properties of nano TiO2 coated cotton.

Multifunctional properties Methods p-value F-value

Nano TiO2 coated amount

Experimental 8.38e−7 29.99

MLP 3.24e−8 47.88

MLR 4.22e−7 33.18

Self-cleaning efficiency

Experimental 0.001 8.92

MLP 7.17e−11 109.38

MLR 0.007 5.78

Antimicrobial efficiency

Experimental 2.65e−5 17.47

MLP 2.18e−11 127.76

MLR 0.005 6.284

UPF

Experimental 2.33e−5 17.86

MLP 7.61e−10 79.51

MLR 6.12e−7 31.42



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12235  | https://doi.org/10.1038/s41598-021-91733-y

www.nature.com/scientificreports/

Received: 22 March 2021; Accepted: 31 May 2021

References
	 1.	 Zhang, K. et al. Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal. ACS 

Appl. Mater. Interfaces 11, 17368–17374. https://​doi.​org/​10.​1021/​acsami.​9b017​34 (2019).
	 2.	 Zhang, K. et al. Multifunctional textiles/metal-organic frameworks composites for efficient ultraviolet radiation blocking and noise 

reduction. ACS Appl. Mater. Interfaces 12, 55316–55323. https://​doi.​org/​10.​1021/​acsami.​0c181​47 (2020).
	 3.	 Noman, M. T., Ashraf, M. A. & Ali, A. Synthesis and applications of nano-tio2 : A review. Environ. Sci. Pollut. Res. 26, 3262–3291 

(2018).
	 4.	 Noman, M. T., Ashraf, M. A., Jamshaid, H. & Ali, A. A novel green stabilization of tio2 nanoparticles onto cotton. Fibers Polym. 

19, 2268–2277 (2018).
	 5.	 Noman, M. T. et al. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics 83, 203–213. 

https://​doi.​org/​10.​1016/j.​ultras.​2017.​06.​012 (2018) (Ultrasonic advances applied to materials science).
	 6.	 Noman, M. T., Petru, M., Amor, N., Yang, T. & Mansoor, T. Thermophysiological comfort of sonochemically synthesized nano 

tio2 coated woven fabrics. Sci. Rep. 10, 1–12 (2020).
	 7.	 Ashraf, M., Wiener, J., Farooq, A., Šašková, J. & Noman, M. Development of maghemite glass fibre nanocomposite for adsorptive 

removal of methylene blue. Fibers Polym. 19, 1735–1746 (2018).
	 8.	 Noman, M. T. et al. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. 

Ultrason. Sonochem. 40, 41–56. https://​doi.​org/​10.​1016/j.​ultso​nch.​2017.​06.​026 (2018).
	 9.	 Daniel, G. G. Artificial Neural Network, 143–143 (Springer, 2013).
	10.	 Behera, P., Noman, M. T. & Petro, M. Enhanced mechanical properties of eucalyptus-basalt-based hybrid-reinforced cement 

composites. Polymers.https://​doi.​org/​10.​3390/​polym​12122​837 (2020).
	11.	 Azeem, M., Noman, M. T., Wiener, J., Petru, M. & Louda, P. Structural design of efficient fog collectors: A review. Environ. Technol. 

Innov. 20, 101169. https://​doi.​org/​10.​1016/j.​eti.​2020.​101169 (2020).
	12.	 Noman, M. T. & Petru, M. Effect of sonication and nano tio2 on thermophysiological comfort properties of woven fabrics. ACS 

Omega 5, 11481–11490. https://​doi.​org/​10.​1021/​acsom​ega.​0c005​72 (2020).
	13.	 Malik, S. A., Farooq, A., Gereke, T. & Cherif, C. Prediction of blended yarn evenness and tensile properties by using artificial neural 

network and multiple linear regression. Autex Res. J. 16, 43–50. https://​doi.​org/​10.​1515/​aut-​2015-​0018 (2016).
	14.	 Malik, S. A., Gereke, T., Farooq, A., Aibibu, D. & Cherif, C. Prediction of yarn crimp in pes multifilament woven barrier fabrics 

using artificial neural network. J. Text. Inst. 109, 942–951 (2018).
	15.	 Malik, S. A., Arain, R. A., Khatri, Z., Saleemi, S. & Cherif, C. Neural network modeling and principal component analysis of anti-

bacterial activity of chitosan/agcl-tio2 colloid treated cotton fabric. Fibers Polym. 16, 1142–1149. https://​doi.​org/​10.​1016/j.​expth​
ermfl​usci.​2013.​06.​006 (2015).

	16.	 Malik, S. A., Kocaman, R. T., Gereke, T., Aibibu, D. & Cherif, C. Prediction of the porosity of barrier woven fabrics with respect to 
material, construction and processing parameters and its relation with air permeability. Fibres Text. East. Eur. 26, 71–79 (2018).

	17.	 Almetwally, A. A., Idrees, H. M. & Hebeish, A. Predicting the tensile properties of cotton/spandex core-spun yarns using artificial 
neural network and linear regression models. J. Text. Inst. 105, 1221–1229. https://​doi.​org/​10.​1080/​00405​000.​2014.​882043 (2014).

	18.	 Farooq, A. et al. Predicting cotton fibre maturity by using artificial neural network. Autex Res. J. 18, 429–433 (2018).
	19.	 Farooq, A., Irshad, F., Azeemi, R. & Iqbal, N. Prognosticating the shade change after softener application using artificial neural 

networks. Autex Res. J.https://​doi.​org/​10.​2478/​aut-​2020-​0019 (2020).
	20.	 Dashti, M., Derhami, V. & Ekhtiyari, E. Yarn tenacity modeling using artificial neural networks and development of a decision 

support system based on genetic algorithms. J. AI Data Mining 2, 73–78. https://​doi.​org/​10.​22044/​jadm.​2014.​187 (2014).
	21.	 Furferi, R., Governi, L. & Volpe, Y. Modelling and simulation of an innovative fabric coating process using artificial neural networks. 

Text. Res. J. 82, 1282–1294. https://​doi.​org/​10.​1177/​00405​17512​436828 (2012).
	22.	 Kanat, Z. E. & Özdil, N. Application of artificial neural network (ann) for the prediction of thermal resistance of knitted fabrics 

at different moisture content. J. Text. Inst. 109, 1247–1253. https://​doi.​org/​10.​1080/​00405​000.​2017.​14230​03 (2018).
	23.	 Ribeiro, R. et al. Predicting physical properties of woven fabrics via automated machine learning and textile design and finish-

ing features. In Artificial Intelligence Applications and Innovations (eds Maglogiannis, I. et al.) 244–255 (Springer International 
Publishing, Cham***, 2020).

	24.	 Noman, M. T., Petru, M., Militký, J., Azeem, M. & Ashraf, M. A. One-pot sonochemical synthesis of zno nanoparticles for photo-
catalytic applications, modelling and optimization. Materials.https://​doi.​org/​10.​3390/​ma130​10014 (2020).

	25.	 Noman, M. T., Amor, N., Petru, M., Mahmood, A. & Kejzlar, P. Photocatalytic behaviour of zinc oxide nanostructures on surface 
activation of polymeric fibres. Polymers.https://​doi.​org/​10.​3390/​polym​13081​227 (2021).

	26.	 Taieb, A. H., Mshali, S. & Sakli, F. Predicting fabric drapability property by using an artificial neural network. J. Eng. Fibers 
Fabr.https://​doi.​org/​10.​1177/​15589​25018​01300​310 (2018).

	27.	 Kalkanci, M., Sinecen, M. & Kurumer, G. Prediction of dimensional change in finished fabric through artificial neural networks. 
Tekstil Ve Konfeksiyon 28, 43–51 (2018).

	28.	 Noman, M., Petru, M., Louda, P. & Kejzlar, P. Woven textiles coated with zinc oxide nanoparticles and their thermophysiological 
comfort properties. J. Nat. Fibers 18, 1–14. https://​doi.​org/​10.​1080/​15440​478.​2020.​18706​21 (2021).

	29.	 Khan, S. et al. Fabrication and modelling of the macro-mechanical properties of cross-ply laminated fibre-reinforced polymer 
composites using artificial neural network. Adv. Compos. Mater. 28, 409–423 (2019).

	30.	 Erbil, Y., Babaarslan, O. & Ilhami, I. A comparative prediction for tensile properties of ternary blended open-end rotor yarns using 
regression and neural network models. J. Text. Inst. 109, 560–568. https://​doi.​org/​10.​1080/​00405​000.​2017.​13611​64 (2018).

	31.	 Malik, S. A. et al. Analysis and prediction of air permeability of woven barrier fabrics with respect to material, fabric construction 
and process parameters. Fibers Polym. 18, 2005–2017 (2017).

	32.	 Wang, Z., Di Massimo, C., Tham, M. T. & Julian Morris, A. A procedure for determining the topology of multilayer feedforward 
neural networks. Neural Netw. 7, 291–300. https://​doi.​org/​10.​1016/​0893-​6080(94)​90023-X (1994).

	33.	 Kalantary, S., Jahani, A. & Jahani, R. MLR and ANN approaches for prediction of synthetic/natural nanofibers diameter in the 
environmental and medical applications. Sci. Rep. 10, 1–10 (2020).

	34.	 Xiao, Q. et al. Prediction of pilling of polyester-cotton blended woven fabric using artificial neural network models. J. Eng. Fibers 
Fabr.https://​doi.​org/​10.​1177/​15589​25019​900152 (2020).

	35.	 Jeon, J. H., Yang, S. S. & Kang, Y. J. Estimation of sound absorption coefficient of layered fibrous material using artificial neural 
networks. Appl. Acoust. 169, 107476. https://​doi.​org/​10.​1016/j.​apaco​ust.​2020.​107476 (2020).

	36.	 Doran, E. C. & Sahin, C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and 
support vector machines. Text. Res. J. 90, 1558–1580. https://​doi.​org/​10.​1177/​00405​17519​896761 (2020).

	37.	 Jain, A. K., Jianchang, M. & Mohiuddin, K. M. Artificial neural networks: A tutorial. Computer 29, 31–44. https://​doi.​org/​10.​
1109/2.​485891 (1996).

	38.	 Golnaraghi, S., Zangenehmadar, Z., Moselhi, O. & Alkass, S. Application of artificial neural network(s) in predicting formwork 
labour productivity. Adv. Civ. Eng. 2019, 1–11 (2019).

https://doi.org/10.1021/acsami.9b01734
https://doi.org/10.1021/acsami.0c18147
https://doi.org/10.1016/j.ultras.2017.06.012
https://doi.org/10.1016/j.ultsonch.2017.06.026
https://doi.org/10.3390/polym12122837
https://doi.org/10.1016/j.eti.2020.101169
https://doi.org/10.1021/acsomega.0c00572
https://doi.org/10.1515/aut-2015-0018
https://doi.org/10.1016/j.expthermflusci.2013.06.006
https://doi.org/10.1016/j.expthermflusci.2013.06.006
https://doi.org/10.1080/00405000.2014.882043
https://doi.org/10.2478/aut-2020-0019
https://doi.org/10.22044/jadm.2014.187
https://doi.org/10.1177/0040517512436828
https://doi.org/10.1080/00405000.2017.1423003
https://doi.org/10.3390/ma13010014
https://doi.org/10.3390/polym13081227
https://doi.org/10.1177/155892501801300310
https://doi.org/10.1080/15440478.2020.1870621
https://doi.org/10.1080/00405000.2017.1361164
https://doi.org/10.1016/0893-6080(94)90023-X
https://doi.org/10.1177/1558925019900152
https://doi.org/10.1016/j.apacoust.2020.107476
https://doi.org/10.1177/0040517519896761
https://doi.org/10.1109/2.485891
https://doi.org/10.1109/2.485891


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12235  | https://doi.org/10.1038/s41598-021-91733-y

www.nature.com/scientificreports/

	39.	 Meddeb, A., Amor, N., Abbes, M. & Chebbi, S. A novel approach based on crow search algorithm for solving reactive power 
dispatch problem. Energies.https://​doi.​org/​10.​3390/​en111​23321 (2018).

	40.	 Pianosi, F. et al. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 
79, 214–232 (2016).

	41.	 Noman, M. T. & Petru, M. Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. 
Nanomaterials.https://​doi.​org/​10.​3390/​nano1​00916​61 (2020).

	42.	 Noman, M. T., Amor, N. & Petru, M. Synthesis and applications of zno nanostructures (zonss): A review. Crit. Rev. Solid State 
Mater. Sci. 2, 1–44. https://​doi.​org/​10.​1080/​10408​436.​2021.​18860​41 (2021).

	43.	 Noman, M. T., Petru, M., Amor, N. & Louda, P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. 
Sci. Rep. 10, 1–2 (2020).

Author contributions
N.A. and M.T.N. conceived; designed and performed experiments; analysed the results and wrote manuscript. 
M.P. analyzed the results, supervised and acquired funding. All of the authors participated in critical analysis 
and preparation of the manuscript.

Funding
This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic and the Euro-
pean Union (European Structural and Investment Funds—Operational Programme Research, Development and 
Education) in the frames of the project “Modular platform for autonomous chassis of specialized electric vehicles 
for freight and equipment transportation”, Reg. No. CZ.02.1.01/0.0/0.0/16_025/0007293.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.3390/en11123321
https://doi.org/10.3390/nano10091661
https://doi.org/10.1080/10408436.2021.1886041
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Prediction of functional properties of nano  coated cotton composites by artificial neural network
	Materials and methods
	Materials. 
	Experimental design. 
	Artificial neural network. 
	Model selection. 
	Sensitivity analysis. 

	Results and discussion
	Analysis of the proposed MLP model. 
	MLR model. 
	Comparison of MLP and MLR results. 
	Robustness assessment. 

	Conclusions
	References


