
sensors

Article

Comparative Performance of Four Electrodes for
Measuring the Electromechanical Response of
Self-Damage Detecting Concrete under Tensile Load

Hyeon Woo Noh, Min Kyoung Kim and Dong Joo Kim *

Department of Civil and Environmental Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu,
Seoul 05006, Korea
* Correspondence: djkim75@sejong.ac.kr; Tel.: +82-2-3408-3820; Fax: +82-2-3408-4332

Received: 23 July 2019; Accepted: 19 August 2019; Published: 21 August 2019
����������
�������

Abstract: Self-damage or/and stress-sensing concrete is a promising area of research for measuring the
electromechanical response of structural materials using more robust sensors. However, the copper
and silver paste sensors widely used in such applications can be expensive and have detrimental effects
on the load carrying capacity and durability of the structural systems upon which they are installed.
Accordingly, this study compared the performance of four electrode types—conventional copper tape
with silver paste (CS), copper film with type 1 carbon tape (CC1), copper film with type 2 carbon
tape (CC2), and copper wire and film with type 2 carbon tape (WC2)—to develop an economical
and practical electrode for measuring the electromechanical response of self-damage-detecting
concrete. The CC1 electrode exhibited comparable performance to the CS electrode in measuring the
electromechanical response of self-damage-detecting concrete, despite requiring a longer polarization
time (80 s) than the CS electrode (25 s). The CS electrode exhibited a higher damage-sensing capacity
(GF2), whereas the CC1 electrode exhibited a higher strain-sensing capacity (GF1), as well as good
damage-sensing capacity. Therefore, the CC1 electrode using copper film with type 1 carbon tape
was determined to be the best alternative to the conventional CS electrode.

Keywords: self-sensing; attached electrode; self-damage detecting concrete; copper material; carbon
material

1. Introduction

Catastrophic collapses of civil infrastructure and buildings have brought about increased attention
to the necessity of structural health monitoring (SHM) systems [1–3]. Current SHM systems mostly
utilize embedded and/or attached sensors [4–6], but these types of sensors have exhibited relatively low
durability and very limited sensing capacity. Accordingly, over the last two decades, much research
has been performed on the self-sensing capacity of cement-based construction materials containing
conductive fillers, such as steel fibers, carbon fibers, multi-walled carbon nanotubes, carbon black, and
graphite powder under various loads [7–23]. The electrical impedance or resistivity of self-sensing
concrete containing electrically conductive fillers is well-known to change under stress and/or due to
the occurrence of damage, including cracks. In this application, it is important to correctly measure the
pure electrical response of the self-sensing concrete under load.

The correct evaluation of damage or stress based on the electromechanical response of self-damage
and/or stress-sensing concrete requires suitable electrodes that have the following properties
recommended by Han et al. [24] and Azhari [25]: electrode materials should be electrically conductive
and durable under severe environmental exposure and repeated mechanical loads; the addition of the
electrode should not negatively affect the concrete strength; and the electrode should be easily connected
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to a data acquisition system. Azhari [25] recommended copper and silver paste as suitable electrode
materials. Indeed, many researchers have used copper and silver paste in electrodes when investigating
the electro-mechanical responses of various self-sensing concretes [13,15,17,26–30]. However, current
embedded-type electrodes utilizing copper materials can possibly generate negative effects on both
the load-carrying capacity and durability of the structural systems that contain them. Additionally,
attached-type electrodes utilizing silver paste are very expensive and are not reusable. A suitable
electrode should be highly conductive, affordable, and easily attached to the surface of self-damage
and/or stress-sensing concrete.

The objective of this study is accordingly to determine a suitable electrode for the measurement
of the electromechanical response of self-damage detecting concrete by utilizing or combining
common electrically conductive materials. The specific objectives are (1) to investigate the electrical
polarization depending on the type of electrode, and (2) to measure the electromechanical response of
self-damage-detecting concrete under tensile load using the evaluated electrodes.

2. Current Electrodes

2.1. Embedded-Type Electrodes

Current embedded-type electrodes mostly include steel or copper wire mesh or wire gauze
consisting of grid structures. Han and Ou [30] embedded copper wire meshes in self-sensing concrete
containing carbon-based fillers to measure the electrical response under repeated compressive loads.
They reported an 8% decrease in the electrical resistivity of self-sensing concrete containing these
carbon-based fillers. Sun et al. [31] utilized steel wire meshes as embedded electrodes to measure the
electromechanical responses of self-sensing concretes containing graphite. As the magnitude of the
applied compressive load increased, the electrical resistivity of the graphite-reinforced self-sensing
concretes decreased—the reduction in electrical resistivity was 15.6%. Both steel and copper wire
meshes demonstrated good performance as embedded type electrodes. Azhari [25] investigated the
effects of curing time on the electrical resistivity of cement-based materials by using different electrodes
(copper plate, copper mesh, and copper wire with silver paste)—the embedded-type electrodes (copper
plate and copper mesh) produced a smaller change in the measured electrical resistivity than the
attached-type electrode (copper wire with silver paste).

2.2. Attached-Type Electrodes

Current attached-type electrodes generally utilize silver paste, silver paint, copper wire, or copper
tape. Song et al. [15] applied an attached-type electrode using copper tape and silver paste on the
surface of high performance fiber-reinforced cementitious composites (HPFRCCs) to measure their
electromechanical response during direct tensile tests. They reported that the electrical resistivity of the
HPFRCCs clearly decreased as the number of micro-cracks increased within the gauge length. Azhari
and Banthia [13] also used attached-type electrodes with copper wire and silver paste to measure the
electromechanical response of self-sensing concretes containing carbon materials, which exhibited a
noticeable decrease (25%) in the electrical resistivity under repeated compressive load.

Han et al. [24] compared the electrical polarization of an embedded-type electrode (copper gauze)
and an attached-type electrode (copper foil). The embedded electrode generated a lower polarization
potential than the attached electrode, although both electrodes produced different polarization potentials
corresponding to different amounts of current. They reported that the polarization potential was
affected by the different effective areas between the electrode and the matrix—copper foil with a larger
effective area exhibited higher polarization potential than copper gauze with a lower effective area.
Thus, different electrodes have been observed to produce different electrical and/or electromechanical
responses in cement-based composites according to their different geometric and material properties.
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3. Experimental

The experimental program in this study, described in Figure 1, was designed to compare the
performance of four different electrodes when measuring the electrical response of self-damage detecting
concrete. The configuration of the electrode can be divided into two components: the probe component,
which measures the electrical impedance or resistance of the self-damage detecting concrete, and the
adhesive component, which transfers the applied electrical current into the self-damage-detecting
concrete. Materials evaluated in this study included copper film and copper wire, and two different
types of carbon tape were evaluated as the adhesive component.
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Figure 1. Experimental program. HPFRCCs = high performance fiber-reinforced cementitious composites.

Table 1 summarizes the properties of the electrode materials evaluated in this study. By combining
different materials in the probe and adhesive components, three types of electrode were investigated as
follows: 1) copper film with type 1 carbon tape (CC1); 2) copper film with type 2 carbon tape (CC2); and
3) copper wire and film with type 2 carbon tape (WC2). A conventional electrode consisting of copper
tape with silver paste (CS) was also evaluated as a control. The performance of each electrode was
evaluated by measuring the polarization effect and by investigating the electromechanical response of
the HPFRCCs under tension.

Table 1. Properties of electrode materials.

Electrode Material Thickness,
t (mm)

Width,
w (mm)

Length,
l (mm)

Cross-Section,
A (mm2) †

Electrical Resistivity
(× 10−7 kΩ·cm)

Copper tape 0.12 10 100 1.20 0.058 a

Copper film 0.30 5 50 1.50 0.023 b

Carbon tape type 1 0.16 10 100 1.60 1.3 a

Carbon tape type 2 0.18 5 100 0.90 1.3 a

Copper wire 0.16 * 1000 0.02 0.000017 a

† A = t × w, * diameter of copper wire, a manufacturer obtained the measured electrical resistivity, b measured
electrical resistivity using the four probe method.

3.1. Materials and Specimen Preparation

Specimens of HPFRCC containing 1 vol% long and 1 vol% medium smooth steel fibers were
investigated to evaluate the performance of the three electrodes (CC1, CC2, and WC2). The composition
of the matrix and its compressive strength are provided in Table 2. The diameter of the silica sand was
0.36 mm on average and the water-to-cement ratio was 0.35. The compressive strength of the matrix
was measured to be 95 MPa by 100 × 200 mm cylinder specimen tests. The properties of the steel
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fibers are summarized in Table 3—the length and diameter of the long smooth steel fibers were 30 and
0.3 mm, respectively, while those of the medium smooth steel fibers were 19.5 and 0.2 mm, respectively.

Table 2. Matrix composition and compressive strength.

Cement
(Type III)

Silica Sand
(#40) *

Fly
Ash

Super-Plasticizer
** Water Compressive Strength

(MPa)

1.0 1.0 0.15 0.0055 0.35 95

* average particle size of silica sand is 0.355 mm, ** super-plasticizer contained 25% solid content.

Table 3. Properties of steel fibers.

Fiber Type Diameter
(mm)

Length
(mm)

Density
(g/cc)

Tensile Strength
(MPa)

Elastic Modulus
(GPa)

Electrical Resistivity
(× 10−10 kΩ·cm) *

Long smooth 0.3 30 7.90 2447 200 6.9
Medium smooth 0.2 19.5 7.90 2942 200 5.4

* measured electrical resistivity using four probe method.

A 20 L capacity Hobart-type laboratory mixer was used to mix the specimens. Cement, silica
sand, and fly ash were first dry mixed for 10 min. Then, water was added and further mixed for
5 min. When the mortar mixture exhibited suitable workability and viscosity to provide uniform fiber
distribution, the shorter fibers were first carefully dispersed, then the longer fibers were added in by
hand. The mortar mixture with the fibers was then further mixed for 1–2 min.

The mortar mixture containing the steel fibers was poured into molds for both the polarization
and tensile test specimens, as can be seen in Figure 2a. Two layers of steel wire mesh were used to
reinforce both ends of the specimen, as can be seen in Figure 2b. The specimens were then covered
with a plastic sheet and kept in a laboratory at room temperature for 24 h. Next, the specimens were
demolded and cured in water for 2 weeks. After curing, the specimens were kept in dry conditions for
2 h, then the surfaces of the specimens were ground to accommodate the attachment of electrodes.
At least three specimens (SP1, SP2, and SP3) were prepared for each electrode test series.
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3.2. Test Set-Up and Procedure

The four-probe measurement method proposed by Wenner [32], which requires two outer input
current electrodes and two inner output current electrodes, was employed to measure the electrical
polarization and electromechanical response of the self-damage-detecting concrete, as shown in Figure 3.
The distance between the two inner electrodes was 100 mm, while that between the inner and outer
electrodes was 40 mm. The geometry of tensile specimens and test set-up in this study were referred to
relevant previous studies [17,33].
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Figure 3. Electrode arrangement with different types of electrodes.

A commercial multimeter (Keysight 3458A, Santa Rosa, California, USA) was used to measure
the change in electrical resistance during the tests. The electrical resistivity of the HPFRCCs was
measured by using direct current (DC) measurements to obtain a more accurate electrical resistivity [34].
The magnitude of the input current was maintained at 50 µA for 14 min to monitor the electrical
polarization. During the polarization tests, the specimens were kept in a chamber with a constant
temperature (25 ◦C) and humidity (60%). The test setup is illustrated schematically in Figure 4.
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Figure 5 shows the test set-up for measuring the electrical resistance of the HPFRCCs during
the direct tensile tests. A universal testing machine (UTM) was used to apply a constant 1.0 mm/min
rate of displacement. The tensile elongation of the specimens was measured by two linear variable
differential transformers (LVDTs) installed in an aluminum cage, while the tensile stress was measured
by a 50 kN capacity load cell. To measure the electrical resistance of the specimens under tension, the
Keysight 3458A multimeter was connected to the specimen, as shown in Figure 5. Prior to tensioning,
the electrical resistance was measured for at least 15 min to stabilize the effects of electrical polarization.
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4. Results and Discussion

Figure 6a,b shows the typical change in electrical resistivity of the HPFRCCs due to electrical
polarization before applying tensile load and under direct tension, respectively. In Figure 6a, under
electric current without load, the electrical resistivity can be observed to rapidly increase until reaching
the polarization time required for stable electrical resistivity. In Figure 6b, it can be observed that as
the tensile strain (ε) increased from 0 to the first cracking strain (εcc), the tensile stress (σ) linearly
increased from 0 to the first cracking strength (σcc, point A) of the HPFRCCs under direct tension,
while the electrical resistivity (ρ) decreased from the initial electrical resistivity (ρ0) to that at the first
cracking point A’ (ρcc). Even though the slight change in electrical resistance within the elastic limit
prior to points A and A’ cannot be clearly correlated to the change in applied tensile stress, the electrical
resistivities of the HPFRCCs beyond points A and A’ significantly decreased until the post-cracking
points B and B’, as illustrated in Figure 6b. The electrical resistivity considerably decreased from
ρcc (point A’) to the post-cracking electrical resistivity at point B’ (ρpc), while the tensile strain increased
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from εcc to the post-cracking strain (εpc), and the tensile stress increased from σcc to the post-cracking
strength (σpc, point B). Kim et al. [17] reported that the electrical resistance of HPFRCCs under direct
tension with multiple micro-cracks is composed of a non-cracked component and a cracked component.
Since the electrical conductivity of the steel fibers in the cracked portion of an HPFRCC is much
higher than that in the non-cracked portion, the electrical resistance decreases as the number of
micro-cracks increases.

Sensors 2019, 19, 3645 7 of 16 

 

4. Results and Discussion 

Figure 6a,b shows the typical change in electrical resistivity of the HPFRCCs due to electrical 
polarization before applying tensile load and under direct tension, respectively. In Figure 6a, under 
electric current without load, the electrical resistivity can be observed to rapidly increase until 
reaching the polarization time required for stable electrical resistivity. In Figure 6b, it can be 
observed that as the tensile strain (ε) increased from 0 to the first cracking strain (εcc), the tensile 
stress (σ) linearly increased from 0 to the first cracking strength (σcc, point A) of the HPFRCCs under 
direct tension, while the electrical resistivity (ρ) decreased from the initial electrical resistivity (ρ0) to 
that at the first cracking point A’ (ρcc). Even though the slight change in electrical resistance within 
the elastic limit prior to points A and A’ cannot be clearly correlated to the change in applied tensile 
stress, the electrical resistivities of the HPFRCCs beyond points A and A’ significantly decreased 
until the post-cracking points B and B’, as illustrated in Figure 6b. The electrical resistivity 
considerably decreased from ρcc (point A’) to the post-cracking electrical resistivity at point B’ (ρpc), 
while the tensile strain increased from εcc to the post-cracking strain (εpc), and the tensile stress 
increased from σcc to the post-cracking strength (σpc, point B). Kim et al. [17] reported that the 
electrical resistance of HPFRCCs under direct tension with multiple micro-cracks is composed of a 
non-cracked component and a cracked component. Since the electrical conductivity of the steel 
fibers in the cracked portion of an HPFRCC is much higher than that in the non-cracked portion, 
the electrical resistance decreases as the number of micro-cracks increases. 

The electrical resistivity (ρ) was calculated using the following Equation (1): 

L
AR=ρ , (1)

where ρ is electrical resistivity (kΩ·cm), R is the electrical resistance (kΩ), A is the 
cross-sectional area of the specimen (cm2), and L is the distance between the input and output 
electrodes (cm). 

 

(a) under electric current without load     (b) under direct tensile load 

Figure 6. Typical change of electrical resistivity of HPFRCCs. 

Figure 7 shows the electrical resistivity history of identical HPFRCCs for 840 s (14 min) prior to 
loading, measured using the four evaluated electrode types (CS, CC1, CC2, and WC2) under electric 
current without any applied load. The multimeter was calibrated to collect data only within a range 
of 6 to 0.1 Hz to minimize noise. The electrical responses measured using the CS, CC1, and CC2 
electrodes clearly show the typical electrical polarization phenomena for 840 s, as can be seen in 
Figure 7, while the response measured using the WC2 electrode did not. Among the three electrodes 
that exhibited a typical polarization response, the CS electrode exhibited the shortest polarization 

Figure 6. Typical change of electrical resistivity of HPFRCCs.

The electrical resistivity (ρ) was calculated using the following Equation (1):

ρ = R
A
L

, (1)

where ρ is electrical resistivity (kΩ·cm), R is the electrical resistance (kΩ), A is the cross-sectional area
of the specimen (cm2), and L is the distance between the input and output electrodes (cm).

Figure 7 shows the electrical resistivity history of identical HPFRCCs for 840 s (14 min) prior to
loading, measured using the four evaluated electrode types (CS, CC1, CC2, and WC2) under electric
current without any applied load. The multimeter was calibrated to collect data only within a range
of 6 to 0.1 Hz to minimize noise. The electrical responses measured using the CS, CC1, and CC2
electrodes clearly show the typical electrical polarization phenomena for 840 s, as can be seen in
Figure 7, while the response measured using the WC2 electrode did not. Among the three electrodes
that exhibited a typical polarization response, the CS electrode exhibited the shortest polarization time
(25 s). Based on the polarization tests, CC2 and WC2 electrodes were excluded in the investigation of
the electromechanical response of HPFRCCs under direct tensile load, as both electrodes produced
significant polarization and electrical noise.

Figure 8 shows the electromechanical responses of the HPFRCCs under direct tensile load as
measured using electrodes types CS and CC1, both of which exhibit the typical electromechanical
response of HPFRCCs with steel fibers. To quantify the strain- and damage-sensing capacity of the
HPFRCCs, their gauge factors (GF, GF1, and GF2) were calculated using the following Equation (2) [17]:

GF =
∆ρ

ρ0 · εpc
; GF1 =

∆ρ1

ρ0 · εcc
; GF2 =

∆ρ2

ρcc · (εcc − εpc)
, (2)

where GF1 represents the strain-sensing capacity within the elastic range prior to first cracking, GF2

denotes the damage-sensing capacity of the HPFRCC from after first cracking to the post-cracking
point, and the overall sensing-capacity can be estimated using GF. Specimen SP1 of the HPFRCC using
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the CS electrode was excluded from the calculation of the average GF values due to the large deviation
of its test results.
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The HPFRCCs using the CC1 electrode exhibited a higher strain-sensing capacity (GF1 = 2.39) than
those using the CS electrode, as well as good damage-sensing capacity (GF2 = 0.65). Consequently, the
electromechanical response of the HPFRCCs measured using the CC1 electrode generated comparable
self-strain and damage-sensing capacity to that measured using the conventional CS electrode.

4.1. Effects of Different Electrodes on the Polarization Parameters

Table 4 summarizes the parameters describing the electrical polarization corresponding to the four
different evaluated electrodes. These polarization parameters consist of the initial electrical resistivity
(ρ0), electrical resistivity at polarization time (ρP), fractional change in the electrical resistivity from
ρ0 to ρP (ρp), change in the electrical resistivity at polarization time (∆ρP), slope at polarization time
(ρ’P), and polarization time (tp). Figure 9 shows the measured change in the electrical resistivity (∆ρ)
and the variation in the slope (ρ’) of that change corresponding to the different types of electrodes
evaluated, used to determine the polarization time (tp) required to establish stable electrical resistivity,
defined in this study as the time satisfying both of the following conditions: 1) when ∆ρ is less than
0.09 kΩ·cm, and 2) when ρ’ is less than 0.009 kΩ·cm/sec. To minimize noise when determining tp, the
data measured at a frequency of 6 Hz was calibrated to the data measured at a frequency of 0.1 Hz, as
can be seen in Figure 9a,b. The above conditions for determining tp could then be obtained using the
measured data calibrated to 0.1 Hz. As a result, the tp for the specimens equipped with the CS, CC1,
and CC2 electrodes was determined to be 25 s, 80 s, and 107 s, respectively.

Figure 10 shows the relationships between the fractional change in the electrical resistivity and
polarization time of the CS-, CC1-, and CC2-equipped HPFRCCs. The fractional changes in the
electrical resistivity at the polarization time (ρp) of the CS-, CC1-, and CC2-equipped HPFRCCs were
186.7%, 240.7%, and 190.5%, respectively. The value of ρp can be observed to be closely related to the
value of tp—the ρp of the CS- and CC1-equipped HPFRCCs increased from 186.7% to 240.7%, as the tp

increased from 25 s to 80 s.

Table 4. Polarization response parameters of HPFRCCs with different types of electrodes. SP = specimen.

Type of
Electrode

No.
Electrical Resistivity

(kΩ·cm)

Fractional Change
in Electrical

Resistivity (%)

Slope at
Polarization Time

(kΩ·cm/s) *

Polarization
Time (s)

ρ0 ρP ∆ρP ρp d∆ρP/dtp tp

CS

SP1 2.2 4.0 0.10 190.8 0.0020 30
SP2 3.2 5.5 0.12 173.8 0.0020 30
SP3 2.7 5.3 0.06 195.5 0.0040 20

Avg. a 2.7 4.9 0.09 186.7 0.0027 25
STD b 0.4 0.7 0.02 9.3 0.0009 4.7

CC1

SP1 2.8 8.1 0.13 295.8 0.0010 110
SP2 3.8 8.1 0.08 211.3 0.0000 90
SP3 2.8 6.4 0.04 214.9 0.0000 40
Avg. 3.2 7.5 0.08 240.7 0.0000 80
STD 0.5 0.8 0.04 39.0 0.0005 29.4

CC2

SP1 14.6 26.5 0.07 180.3 0.0010 100
SP2 16.5 34.6 0.11 210.6 0.0010 130
SP3 15.5 27.7 0.04 180.5 0.0060 90
Avg. 15.5 29.6 0.07 190.5 0.0027 107
STD 0.8 3.6 0.03 14.2 0.0024 17.0

WC2

SP1 51.0

-
SP2 48.8
SP3 71.3
Avg. 57.0
STD 10.1

* absolute value of the calculated value, a Avg.: average values; b STD: standard deviation.
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the electron flow at the interface between the electrode probes and the HPFRCCs. Suryanto et al. [35]
reported that the electrical resistance of cementitious composites was affected not only by the matrix
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characteristics (compressive strength, temperature, humidity, etc.) but also the electrical resistance of the
interface. Figure 11a–c illustrates the electron accumulation phenomenon at the interface between each
electrode type and the HPFRCCs. When the input current (i) flows from the probe into the cement based
material, negative electrons (e-) move in the opposite direction [36]. At this time, electron accumulation,
which causes the polarization effect, occurs between the probe (which has a high conductivity) and the
cement based material (which has a low conductivity). As the electron accumulation increases, both
the polarization time (tp) and the fractional change in the electrical resistivity at polarization time (ρp)
increase. Therefore, as can be seen in Figure 11a, electrons at the interface between the CS electrode
and the HPFRCC, which exhibited a shorter tp, accumulated less than for other electrodes, whereas
the electrons at the interface between the CC2 electrode and the HPFRCC, which exhibited a longer
tp, accumulated more, as can be seen in Figure 11c. Consequently, the ρp and tp of the CC1-equipped
HPFRCC, which exhibits more electron accumulation between the specimen and the electrode than
the CS-equipped HPFRCC, were higher than those of the CS-equipped HPFRCC. The results obtained
using the CC2 electrode showed the highest tp (107 s), and a ρp (190.5%) lower than that when using
CC1 electrode, as the CC2 electrode (which used a smaller-area carbon tape as the adhesive) seemed
to generate significantly more electron accumulation at the interface between the specimen and the
electrode. Thus, the CC2 electrode was determined to be unsuitable for measuring the electrical
resistance of HPFRCCs. Among the evaluated electrodes, the CS electrode exhibited the shortest tp (25 s).
Among the remaining electrodes, because electrode CC1 exhibited a shorter tp (80 s) than electrode
CC2 (107 s), CC1 was determined to be more suitable than CC2 for measuring electrical polarization.
Accordingly, the CS and CC1 electrodes were selected as the focus of the remaining investigation.Sensors 2019, 19, 3645 12 of 16 
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4.2. Effects of Electrode Types on Electromechanical Response

Table 5 summarizes the electromechanical response parameters (εcc, σcc, εpc, σpc, ρ0, ρcc, and ρpc)
of HPFRCCs corresponding to the two most effective electrode types evaluated in this study (CS and
CC1). All specimens, regardless of the type of electrode used, exhibited a tensile strain-hardening
response and similar mechanical resistance. The average first-cracking strength (σcc) was 5.5 MPa and
6.4 MPa for the CS- and CC1-equipped HPFRCCs, respectively; the average post-cracking strength
(σpc) was 14.9 MPa and 15.7 MPa, respectively; and the average strain capacity (εpc) was 0.48% and
0.56%, respectively.

Table 5. Electro-tensile parameters of HPFRCCs with CS and CC1 electrodes.

Notation
Tensile Strain

(%)
Tensile Stress

(MPa)
Electrical Resistivity

(kΩ-cm)
Change in the Electrical

Resistivity (kΩ-cm)

εcc εpc σcc σpc ρ0 ρcc ρpc ∆ρ ∆ρ1 ∆ρ2

CS

SP1 0.01 0.44 6.0 13.3 5.1 4.3 4.2 0.9 0.8 0.1
SP2 0.02 0.48 6.0 15.8 7.1 6.9 2.2 4.9 0.2 4.7
SP3 0.02 0.51 4.5 15.4 10.4 10.2 4.9 5.6 0.3 5.3
Avg. 0.02 0.48 5.5 14.9 8.8 8.5 3.5 5.3 0.3 5.0
STD 0.00 0.02 0.75 0.20 1.65 1.65 1.35 0.35 0.05 0.30

CC1

SP1 0.03 0.50 5.3 15.1 12.8 12.7 8.5 5.2 1.0 4.2
SP2 0.02 0.54 6.4 15.5 12.1 11.4 7.3 4.8 0.6 4.2
SP3 0.03 0.65 7.4 15.7 17.4 16.4 11.9 5.6 1.1 5.6
Avg. 0.03 0.56 6.4 15.4 14.1 13.5 9.2 4.9 0.6 4.3
STD 0.00 0.06 0.86 0.25 2.35 2.12 1.95 0.33 0.22 0.66

There was clear difference in the measured initial electrical resistivity (ρ0) of the CS- and
CC1-equipped HPFRCCs, which were 8.8 kΩ·cm and 14.1 kΩ·cm, respectively. However, as can be
seen in Figure 12, the overall change in electrical resistivity (∆ρ) was 5.3 kΩ·cm and 4.9 kΩ·cm for the
CS- and CC1-equipped HPFRCCs, respectively, even though the materials used in the CS electrode
exhibited a higher electrical conductivity than those used in the CC1 electrode.
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tensile load.

Table 6 compares the effects of electrode type on the gauge factors. The CS-equipped HPFRCCs
showed a higher damage-sensing capacity (GF2), whereas the CC1-equipped HPFRCCs exhibited a
higher strain-sensing capacity (GF1), as well as good damage-sensing capacity—GF1 of the CC1-equipped
HPFRCC was 2.39 and its GF2 was 0.65. Therefore, the CC1 electrode using copper film with type 1
carbon tape was identified as the best suited for use as a replacement for the conventional copper tape
with silver paste (CS) electrode in measuring the electromechanical response of HPFRCCs.
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Table 6. Gauge factors of HPFRCCs with CS and CC1 electrodes under direct tensile load.

Notation Overall Sensing
Capacity, GF

Strain-Sensing
Capacity, GF1

Damage-Sensing
Capacity, GF2

CS

SP1 ¥ 0.40 15.69 0.05
SP2 1.44 1.41 1.48
SP3 1.06 1.44 1.06
Avg. 1.22 1.43 1.23
STD 0.19 0.02 0.21

CC1

SP1 0.81 2.60 0.70
SP2 0.73 2.48 0.71
SP3 0.50 2.11 0.56
Avg. 0.62 2.39 0.65
STD 0.13 0.21 0.07

¥ the specimen 1 (SP1) of the HPFRCCs using the CS electrode was excluded in the calculation of the average.

5. Conclusions

In this study, we investigated the electromechanical response performance of four electrodes for
use in self-damage detecting concrete: a conventional copper tape with silver paste (CS), copper film
with type 1 carbon tape (CC1), copper film with type 2 carbon tape (CC2), and copper wire and copper
film with type 2 carbon tape (WC2). The CC1 electrode exhibited the best performance among the
three types of electrodes investigated to replace the conventional CS electrode. On the basis of the
experimental results, the following conclusions can be drawn:

• Both the CC1 and CS electrodes produced a relatively shorter polarization time than the other
electrodes (CC2 and WC2). The polarization times (tp) for the specimens using the CS and CC1
electrodes were 25 s and 80 s, respectively.

• The tp was significantly affected by the accumulation of electrons at the interface between the
specimen and electrode. Higher levels of electron accumulation resulted in longer polarization times.

• The overall change in the electrical resistivity (∆ρ) upon damage to specimens equipped with the
CS and CC1 electrodes was 5.3 kΩ·cm and 4.9 kΩ·cm, respectively. The CS-equipped HPFRCCs
showed a higher damage-sensing capacity (GF2), whereas the CC1-equipped HPFRCCs exhibited
a higher strain-sensing capacity (GF1), as well as good damage-sensing capacity.

• The CC1 electrode using copper film with type 1 carbon tape is identified as the best suited for use
as a replacement for the conventional copper tape with silver paste (CS) electrode in measuring
the electromechanical response of self-damage-detecting concrete.

We determined that the CC1 electrode can be used as a replacement for the conventional copper
tape with silver paste (CS) electrode under direct tensile load. This is an improvement in economic
terms as well, as using carbon tape is a third of the cost of using silver paste. In future research, we
intend to demonstrate the suitability of the CC1 electrode for use with HPFRCCs under compressive
load, cyclic load, and other measuring conditions (using alternating current, biphasic direct current,
multiple electrodes, the two probe method, reusability and accounting for temperature influence, etc.)
to more completely capture the capabilities and performance of this electrode type.
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