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Clostridium difficile is an Gram positive enteropathogen
that can cause opportunistic infections resulting in coli-
tis.1,2 It is predominantly associated with antibiotic treat-
ment, but it is increasingly recognized as the causative
agent of symptoms in patients that lack this risk factor.1,3

Its classification as an urgent antibiotic resistance threat
by the US Centers for Disease Control and Prevention4

is based on the fact that the pathogen affects an already
vulnerable population that is treated by antibiotics for
other infections or prophylactically, rather than resis-
tance of C. difficile against clinically used antibiotics,
which is limited.1 C. difficile can be identified in livestock
and companion animals and it has been shown that
strains from animal and human reservoirs are identical,
suggesting a clear zoonotic potential.5-7

Initially identified as Bacillus difficilis as part of the
microbiome of healthy infants,8 it gained notoriety as
Clostridium difficile and the disease it causes is generally
referred to as Clostridium difficile infection (CDI). Geno-
mic analyses however indicated that C. difficile should be
placed in the family Peptostreptococcaceae rather than
Clostridiaceae, and to reflect this the name Peptoclostri-
dium difficile was proposed.9 Though this was unilater-
ally adopted by the National Center for Biotechnology
Information (NCBI), the proposal lacked a formal defini-
tion of the type species and the name was not widely
adopted by the community. A formal reclassification was
published in 201610 and the new nomenclature Clostri-
dioides difficile allows the continued use of CDI, as well
as the colloquialism Cdiff.

The symptoms of CDI are the ultimate result of toxins
produced by the C. difficile bacteria.11 The genes encod-
ing these toxins are located on a mobile pathogenicity
locus.12-14 Indeed, strains lacking the pathogenicity
island are non-toxigenic. Most pathogenic C. difficile

strains encode 2 high molecular weight toxins, TcdA and
TcdB, and the relative contribution of these toxins to
pathogenesis has been subject of controversy.15-18 Simi-
larly, conflicting findings have been reported with respect
to the function of other proteins (TcdC, TcdE) encoded
on the pathogenicity locus.1,19 Further, certain C. difficile
strains encode a binary toxin that contributes to patho-
genesis.1,11,19-21 Overall, virulence, fitness and transmissi-
bility of the pathogen appear to be multifactorial.19,22,23

In this issue of Virulence, Collery and coworkers
attempt to identify a possible cause of the discrepancies
observed between various laboratories studying C. diffi-
cile.24 To appreciate the intricacies of this work, it is nec-
essary to understand the background of the strains that
were investigated. The first strain of C. difficile to be
sequenced was isolated from a patient suffering pseudo-
membranous colitis and was responsible for an outbreak
of CDI in the hospital in Z€urich.25,26 This strain, called
630, demonstrated transferable resistance to the antimi-
crobial erythromycin and is also resistant to several other
drugs.25,26 The strain was redistributed to several other
labs, and the annotation of the genome sequence has
been updated several times.27,28 In order to facilitate
genetic studies on C. difficile, 2 groups independently
derived an erythromycin sensitive strain by serial cultur-
ing on non-selective media: the Mullany laboratory
(University College London, London, UK) generated
strain 630Derm,29 and the Rood laboratory (Monash
University, Victoria, Australia) generated 630E (also
known as JIR8094).30 These strains – harboring an iden-
tical 2.4 kb deletion in the mobile element Tn5398,31-33

allowed the use of the ermB gene (conferring erythromy-
cin resistance) as a selectable marker in C. difficile. Both
630E and 630Derm were provided to other laboratories.
Notably, both 630 and 630Derm have been deposited
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directly or indirectly in various culture collections
[ATCC (https://www.atcc.org), NCTC (https://www.
phe-culturecollections.org.uk) and DSMZ (https://www.
dsmz.de)] which – in turn – provide bacterial strains to
other scientists (Fig. 1). Whereas the DNA from the
2006 genome sequence of strain 630 came from the Mul-
lany laboratory,25 DNA from 2 independent resequenc-
ing projects was derived from the isolates banked by the
NCTC (NCTC3000 Project, https://www.phe-culturecol
lections.org.uk/collections/nctc-3000-project.aspx) and
the DSMZ.34 The latter genome sequence shows some
peculiar features, including the apparent loss (i.e. not
detected in their analyses) of plasmid pCD630 and trans-
poson Tn5397 and acquisition of an additional rRNA
cluster, that seem to suggest extensive sub-culturing. Of

note, the DSMZ strain was obtained from the NCTC,
that in turn received its isolate from the Mullany labora-
tory. A single study has reported a complete genome
sequence for strain 630Derm33 prior to the study of Col-
lery and coworkers.24 Strikingly, the authors identified
many more differences from strain 630 than the deletion
of an ermB gene in Tn5398, including a transposition of
the conjugative transposon CTn5 and an additional
rRNA cluster, similar to the resequenced 630 strain.34

Thus, despite a common ancestry, the strains differ
vastly.

The study of Collery and coworkers is noteworthy for
several reasons. First, it represents a multi-laboratory
effort to determine if differences reported in literature
are due to the different 630 derivatives used (630Derm

Figure 1. Schematic representation of the genealogy of strain 630, 630Derm and 630E (JIR8094) and their related genome sequences.
Strain 630 was deposited by B. Wren/H. Maschler (ATCC BAA-1382), P. Mullany (NCTC 13307). The DSMZ lists the provenance for 630
(DSMZ 27543) as obtained from P.Bracegirdle (NCTC) and for 630Derm (DSMZ 28645) as H. Hussain (Mullany laboratory) > N. Minton >
R. Gerhard. Figure also highlights that, historically, 630Derm was the dominant strain used in European C. difficile laboratories, whereas
630E (JIR8094) was mainly used in Australia and the USA. The sources of the sequenced DNA are indicated in brackets.
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versus 630E). Second, in a comprehensive approach, the
authors try to define the contributions of a selected set of
single nucleotide polymorphisms (SNPs) to the pheno-
typic and transcriptomic differences. Instances where a
single SNP defines major phenotypic changes are scarce,
but not unprecedented; e.g. for C. difficile, SNPs in the
gyrA gene that result in fluoroquinolone resistance
underlie the expansion of the epidemic 027/BI/NAP1
strain35 and for Campylobacter jejuni hypervirulence has
been linked to SNPs in the outer membrane protein
PorA.36 Also for non-pathogenic model bacteria SNPs
can be linked to specific phenotypic changes, related to
domestication37 or adaptation,38 for instance.

However, considering the number of SNPs, it should not
come as a surprise that the authors failed to link SNPs to
specific phenotypic differences. Both derivatives differ sig-
nificantly from strain 630, and though one can argue that
630Derm more closely resembles the ancestral strain,24 it is
an illusion to consider the findings obtained with this strain
to be directly representative for strain 630. These findings
are also consistent with other studies that observe substan-
tial phenotypic variation with a specific type of C. difficile
with respect to, for instance, sporulation.39-41

Should we then move away from laboratory strains and
research only clinical isolates? While this may address the
fact that some regulatory interactions are only observed in
certain clinical strains,42,43 other major issues, such as pas-
saging in laboratories, remain problematic. Moreover, it will
further increase the inter-laboratory variation, as each labo-
ratory would have its own “wild type.” There is therefore
value in the use of a standard strain, and the authors argue
that this could be 630Derm.24

In what way could some of the challenges in linking
SNPs and phenotypes be addressed? One strategy is to
expand the number of strains analyzed to allow for
genome wide association studies (GWAS); such studies
have demonstrated for instance the relation between
SNPs and b-lactam resistance in Streptococcus pneumo-
nia44 and predicted virulence in MRSA from genome
data.45 With a limited set of 14 genome sequences it
has already been possible to identify SNPs associated
with the epidemic group BI/NAP1/027 that can cause
severe disease.46 With a broader analysis of phenotypic
and clinical characteristics and an increasing number of
C. difficile genome sequences available (on Oct 11, 2016
the number of genome assemblies in Genbank was 647;
https://www.ncbi.nlm.nih.gov/genome/
?termDclostridioidesCdifficile), GWAS analysis could
contribute significantly to our understanding of this
important pathogen.

In summary, the work on C. difficile genomes and
strains by Collery and coworkers,24 as well as several
others,39,42,43 should be a caveat to many researchers;

their findings may apply only to their specific isolate or
strain and should encourage them to be careful with gen-
eralizations. Also, researchers should exercise caution in
repeated propagation of strains under laboratory condi-
tions and document the provenance even when strains
are obtained from reputable sources.
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