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Abstract

Flying lizards of the genus Draco are renowned for their gliding ability, using an aerofoil

formed by winglike patagial membranes and supported by elongated thoracic ribs. It

remains unknown, however, how these lizards manoeuvre during flight. Here, I present the

results of a study on the aerial behaviour of Dussumier’s Flying Lizard (Draco dussumieri)

and show that Draco attaches the forelimbs to the leading edge of the patagium while air-

borne, forming a hitherto unknown type of composite wing. The attachment of the forelimbs

to the patagium suggests that that aerofoil is controlled through movements of the forelimbs.

One major advantage for the lizards is that the forelimbs retain their complete range of

movement and functionality for climbing and running when not used as a part of the wing.

These findings not only shed a new light on the flight of Draco but also have implications for

the interpretation of gliding performance in fossil species.

Introduction

A number of vertebrates and invertebrates are known to perform gliding flights [1–3]. Flying

Lizards of the agamid genus Draco are the most specialized and best-studied gliding reptiles

[2,4–6]. Their patagium is supported by five to seven greatly elongated thoracic ribs that are

spread by specialized iliocostalis and intercostal muscles [1,3,4,6–8]. It is commonly assumed

that flying lizards use the unfurled patagium to glide and hold the forelimbs free in front of the

body while airborne. This assumption was promulgated about 300 years ago, when the first

preserved specimens were brought to Europe and reports of flying lizards were accompanied

by drawings showing artistic interpretations of them holding their forelimbs in front of the

body while “gliding” [9–12]. The patagium-associated musculature has been suspected to be

used to control the direction of the glide path [1,3,6–8], but it has remained unclear how the

lizards are able to manoeuvre in the air [2,6].

Anatomical properties of the patagium, as well as behavioural observations, challenge the

assumption that the associated muscles alone can perform the sophisticated movements

required for manoeuvring: Only two muscles insert the first elongated ribs [7] and therefore

can only produce movements in a limited number of directions, mainly those spreading (for-

ward) and furling (backward) the patagium. The patagium-spreading muscles stem from mus-

culature originally used for breathing [7,13]. In the ancestral state, the intercostal muscles of

both sides contract simultaneously in order to expand and contract the thorax [14]. The
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patagium is spread not only to form an aerofoil but also for display in intraspecific communi-

cation, and photographs and observations of display of different species of Draco indicate that

both sides of the patagium are moved simultaneously [6,15–18]. If Draco was able to perform

the sophisticated unilateral movements required for glide-path control with their patagium-

associated muscles alone, such movements would also probably be exhibited during display,

which appears not to be the case. Therefore, it appears unlikely that the major component for

flight control are the specialized trunk muscles. Here, I report on the results of a study I con-

ducted on the aerial behaviour of Dussumier’s Flying Lizard (Draco dussumieri) in order to

investigate whether the patagium might be controlled in a different way. Observations and

documentation of gliding flight in the animal’s habitat are supplemented by examinations of

morphological characteristics of preserved specimens of D. dussumieri and 17 other species of

Draco. My findings suggest that the patagium is actually controlled by the forelimbs and thus

point to a hitherto unknown type of composite wing in animals.

Material and methods

Behavioural observations

I observed gliding flights of Draco dussumieri in areca nut (Areca catechu) and coconut (Cocos
nucifera) plantations near the towns of Agumbe (13.509536˚N, 75.097385˚E, WGS 84; 650 m

a.s.l.) and Hebri (13.458442˚N, 74.990963˚E; 80 m a.s.l.), Karnataka, southwestern India, dur-

ing the late morning and early afternoon (9–15 h) on fourteen non-consecutive days in March

2015 and in March and April 2017. The observations were made using a non-experimental

approach of the natural behaviour in the habitat, where the lizards performed gliding flights

from one tree to another. No animal was captured, handled, or manipulated in any other way

during the study. A total of approximately 500 gliding flights performed by at least twenty dif-

ferent males and six different females were observed, often with the aid of Minox 10x50 binoc-

ulars. The minimal total number of individuals results from the addition of the respective

maximum numbers of individuals that were observed simultaneously at three different, geo-

graphically separated observation localities. Sequential short-exposure photographs of a total

of about 150 glides were taken with Nikon full-frame digital single-lens reflex cameras D600

at a rate of 5.5 frames per second (March 2015) or D750 at 6.5 frames per second (March/

April 2017), each equipped with a Nikon AF-S 200–400 mm telephoto zoom lens (manually

focused). Video sequences of the composite wing formation and the landing were recorded at

60 frames per second with the same camera and lens equipment. Movements and actions were

investigated by frame-by-frame analyses. Estimates of speed at a given phase of the gliding

flight were made from four documentations by measuring the distance between two spots at

which a lizard was photographed during a photo or video sequence with a measuring tape and

dividing it by the time that had passed between the consecutive frames.

Morphological examination

In order to corroborate observations of possible morphological adaptations for gliding flight

in Draco, I examined voucher specimens of 18 species of Draco and 21 species of 12 represen-

tative genera of other arboreal Asian agamid lizards deposited in the herpetological collection

of the Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany (S1

Table). I took measurements (to the nearest 0.1 mm) with a digital calliper of snout-vent length

(SVL, from tip of snout to vent), arm length (AL, from the forelimb insertion to the distal end

of the antebrachium, measured with the arm extended perpendicularly to the median body

plane), and length of the leading edge of the patagium (LL, from the insertion of the first elon-

gated rib to the point at which the leading edge starts to bend posteriorly, i.e. the lateral margin
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of the leading edge; given as a percentage of the corresponding arm length, rounded to the

nearest 1%). I checked the ability to deviate the wrist ulnarly (adduction) and radially (abduc-

tion) in all specimens, as well as the relative length of the fingers. The results of the examina-

tion are given in S1 Table.

Results

Sequential photographs and videos of gliding Draco revealed that the lizards did not hold their

forelimbs free and extended forwardly in front of the body while airborne but instead always

attached them to the leading edge of the patagium (Figs 1 and 2; S1 Fig). This combination

constitutes a hitherto unknown type of composite wing, in which the separate units are formed

by different parts of the body and are connected to each other only for the duration of the glid-

ing flight.

Formation of the composite wing

At the beginning of a gliding flight, the movements and actions of the forelimbs and the pata-

gium followed a particular pattern in all observed and documented instances. Initially, a lizard

oriented its body horizontally on the tree trunk, then launched itself from the tree by jumping

and descended head first (Figs 1–3; S2 Fig). After takeoff, it reoriented its body, so that the ven-

tral side was directed towards the ground. The extended forelimbs reached back and up, and

the anterior patagium-supporting ribs were spread (Figs 1 and 3C). When the extended arms

were parallel to the leading edge of the patagium and the strongly adducted hands were above

the anterior two patagial ribs, the hands were placed on the dorsal surface of the outer margins

of the leading edge of the patagium. Often, the hands were not placed on both sides simulta-

neously but on one shortly after the other, causing a faint swerve in the glide path (S2 Anima-

tion). The resulting composite wing was subsequently extended a little further forward to its

full extent (Figs 1–3). The whole process is shown in Figs 1 and 3; S2 and S3 Figs; S1–S3 Videos

(original speed); and S1–S3 Animations (slowed down tenfold).

During and after the spreading of the patagium, the lizards actively arched their backs, and

the extended patagium was cambered (Fig 2A and 2B). The attached forelimbs constituted a

straight, thick leading edge of the aerofoil, which contrasted with its thin trailing edge (Figs 1–

3). While being in contact with the patagium, the hands were deviated about 90˚ ulnarly rela-

tive to the extended arms (Figs 1 and 2).

When the composite wing was formed, the postaxial parts of the upper arms were situated

along the ventral side of the leading edge of the patagium whereas the lower arm reached

slightly dorsally, allowing the adducted hands to touch the dorsal side of the patagium (Fig 2).

One specimen exhibited an apparent rupture of the patagial membrane (Fig 2G and 2H).

The timing of the formation of the composite wing varied between different glides. From

takeoff (feet leaving the tree trunk) to the completion of the formation between 167 ms (Fig 1;

S1 Video; S1 Animation) and about 460 ms (Fig 3; S3 Fig) passed. During an agonistic interac-

tion, two rivalling males fell down a tree after attacking each other. They spread their patagia

but did not attach their forelimbs to them but instead extended the arms towards their oppo-

nents and the tree trunk while airborne (Fig 2I). Both specimens tumbled down along the tree

trunk and their descent was not directed. One lizard finally grasped the bark of the tree about

one meter above the ground; the second specimen hit the ground.

Glide trajectory

The glide trajectories varied markedly between individual glides, most notably in the horizon-

tal distance between the starting and the landing point. The longest observed glides covered a
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Fig 1. Formation of the composite wing of Draco dussumieri during the initial phases of the gliding flight. (A) Seen from below. Image composed of

ten still frames from a video clip (S1 Video); consecutive frames are 1/30 s apart from each other. (B) Seen from the front (left, consecutive photos are 181 ms

apart from each other) and from below (right; corresponding photos of the same phases). White arrows indicate the position of the hands. For explanation see

text.

https://doi.org/10.1371/journal.pone.0189573.g001
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Fig 2. Details of the composite wing in Draco dussumieri. White arrows indicate the position of the hands. (A) During takeoff jump. Note the straight back

while the patagium is furled. (B) During glide phase. Note the cambered shape of the patagium and the arching of the back when the patagium is extended.

(C- F) During glide phase, seen from the side (C, D) and from below (E, F). Note the strongly adducted hands and the fingers touching the dorsal side of the
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horizontal distance of about 26 m, the shortest only 2.2 m to the next tree. In two instances,

the glide ended several meters below the starting point on the same tree, when one lizard

glided in one complete spiral downwards around the tree trunk and a second lizard, on its way

away from the tree, turned almost 180˚ in mid-air and glided back downwards to the tree from

which it had started.

A gliding flight typically consisted of four phases: the initial takeoff jump, an acceleration

phase, a gliding phase, and the landing. The relative duration of the different phases varied

between individual gliding flights. During the initial takeoff jump, the lizard left the tree with a

forward speed of approximately 2 m�s-1 (S2 Fig). Once airborne, it was rapidly accelerated

downwards in addition to the continued forward motion (Fig 3; S3 Fig, S2 Video). The acceler-

ation phase ended with the formation of the composite wing, after which the trajectory became

more horizontal (Figs 1B and 3D; S3 Fig). In two documented glides over a horizontal distance

of 8 and 12 m, respectively, the lizards reached their maximum velocity of about 6.8 m�s-1 (5.8

m�s-1 horizontal speed) in this phase of the glide (S3 Fig). Shortly before reaching the landing

patagium. The postaxial part of the upper arm is below the leading edge of the patagium. (G, H) Apparent rupture of the patagium (green arrow) posterior to

second elongated rib. (I) Two males uncontrolledly descending during agonistic interaction without their forelimbs being in contact with the not fully extended

patagium.

https://doi.org/10.1371/journal.pone.0189573.g002

Fig 3. Draco dussumieri (adult male) gliding from one tree to another. Sequential photographs were taken at 6.5 frames/s. (A) Starting point where the

lizard had been perching and displaying. (B) After the initial jump, the patagium is spread and the hands are moved above the patagium. (C) The hands are

being placed on the dorsal side of the leading edge of the patagium. (D) After the composite wing is formed, the glide path becomes more horizontal. (E- F)

Before landing, the glide direction is adjusted and the patagium is increasingly oriented upward, accompanied by a strong upturn of the glide path. (G) During

landing, the forelimbs are extended forward towards the landing spot, and the head is moved up and back.

https://doi.org/10.1371/journal.pone.0189573.g003

Novel type of wing in lizards

PLOS ONE | https://doi.org/10.1371/journal.pone.0189573 December 13, 2017 6 / 14

https://doi.org/10.1371/journal.pone.0189573.g002
https://doi.org/10.1371/journal.pone.0189573.g003
https://doi.org/10.1371/journal.pone.0189573


point, the hands with the lateral parts of the leading edge of the patagium were raised above

the horizontal body plane (Fig 3; S3 and S4 Figs). The aerofoil was re-orientated upward, and

the trajectory subsequently became more horizontal or even turned upwards (Fig 3; S3 and S4

Figs). The longitudinal axis of the lizard’s body and the aerofoil were finally orientated perpen-

dicular to the glide path, and the velocity of the forward motion was drastically reduced (Figs

3–5; S3 and S4 Figs). This upward orientation of the body was retained until the landing point

was reached (Figs 3–5; S3 and S4 Figs; S4 Animation). The forelimbs remained attached to

the patagium during the gliding phase and most of the landing phase (Fig 3; S3 and S4 Figs).

Immediately before landing, the hands were lifted from the patagium and the forelimbs were

moved toward the landing spot to allow the hands to grasp the surface being landed upon

(Figs 3–5; S3 and S4 Figs; S4 Animation). During the landing process, the patagium was being

furled against the sides of the body (Figs 3G, 4, and 5C; S4 Animation). In most of the observed

gliding flights, the trajectory continued to be orientated downward during the landing, albeit

markedly more horizontal than during the preceding glide phases, and the lizards hit the sur-

face first with the forelimbs then with the hindlimbs (Figs 3G, 4D, and 5C; S4 Animation). At

the end of longer glides, the trajectory often became horizontal or even turned upward and the

lizards hit the surface with forelimbs and hindlimbs almost simultaneously (S3 and S4 Figs).

Disconnecting the composite wing

The composite wing was disconnected immediately before reaching the landing point to

enable the hands to grasp the surface (Figs 3–5; S3 and S4 Figs; S4 Animation). The whole pro-

cess, from the fingers leaving the surface of the patagium until the forelimbs being extended

forward, was completed within only about 1/30 s (Fig 4), and was therefore difficult to resolve

temporally in detail with the equipment used in this study. Several photographs taken at

Fig 4. Landing of Draco dussumieri at the end of a gliding flight. Still frames from a video sequence (S4 Animation); consecutive images are 1/60 s apart

from each other. (A) The lizard approaches the landing site and its hands are lifted from the surface of the patagium. (B) The hands are free and the arms

move forward towards the landing site. (C) Immediately before the impact, the forelimbs are extended forward and the head is moved up and back. The furling

of the patagium begins. (D) Arms and chest but not the head hit the landing site. The hands grasp the surface. (E) Legs, abdomen and head hit the landing

site. (F-H) The body is erected and the furling of the patagium is completed.

https://doi.org/10.1371/journal.pone.0189573.g004
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different stages of the disconnection process indicate that the fingers are uplifted while the

palm of the hand remains on the dorsal surface of the patagium; the hands are then rotated

toward the longitudinal axis of the arm, reversing the adduction; and finally, the whole fore-

limbs are moved forward until they are orientated towards the landing point (Figs 4 and 5).

Fig 5. Draco dussumieri disconnecting the composite wing immediately before landing. Photographs A and B show the same individual on two

different instances, C a second individual, and D-F a third individual at three different instances. (A) Shortly before reaching the landing point, the aerofoil is

orientated more vertically. The fingers are still touching the leading edge of the patagium. Note the ulnar deviation of the hands. (B) The hands have just been

lifted from the patagial surface and are still strongly adducted. (C) At a remaining distance of only a few centimeters from the landing point, the forelimbs and

hindlimbs are extended forward towards the tree. (D-F) Different states during the release of the patagium: (D) the fingers of the left hand have been lifted up

and thus have just lost contact with the patagium; the fingers of the right hand still touch the leading edge. (E) the fingers of the left hand have just been lifted

from the dorsal surface of the patagium; the right hand has already been rotated forward. (F) the left hand is rotated forward; the right forelimb is already

moved forward and not visible from behind anymore.

https://doi.org/10.1371/journal.pone.0189573.g005
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Discussion

My findings demonstrate that, contrary to previous assumptions, the forelimbs of Draco are

not held free and extended forwardly during flight but are always attached to the patagium.

The involvement of the forelimbs in the formation of such a hitherto unknown composite

wing suggests a plausible explanation of how the lizards achieve manoeuvrability while air-

borne, in that the forelimbs are connected to the leading edge of the patagium and control the

aerofoil during the gliding flight.

The patagium of Draco lizards can be spread by the intercostal musculature without the

help of the forelimbs, as is evident during display and during the formation of the composite

wing. However, given the limited number of muscles inserting the patagium-supporting ribs

[7] and the resulting constraints regarding the directions of movements that can be produced

by these muscles, it appears unlikely that the trunk muscles are the major controlling unit of

the wing. In contrast to that, the forelimbs can be moved in a much wider range of directions

and, when attached to the patagium, appear to be well suited to perform the fine-scale alter-

ations of shape and orientation of the aerofoil through adjustments of the leading edge, which

are necessary for manoeuvring and controlling the trajectory. Although my observations sug-

gest that Draco controls its wing with the forelimbs, it remains to be tested experimentally

whether the lizards would still be able to conduct directed glides if the forelimbs were manipu-

latively prevented from forming a connection with the patagium.

A number of morphological characteristics support the notion that the forelimbs are con-

nected to the patagium. Draco is able to deviate its hand ulnarly, but not markedly radially,

whereas other arboreal agamid lizards can neither adduct nor abduct their hands at the wrist

joint (S1 Table). Therefore, the ability to adduct the hand is obviously not directly related to

climbing activities and appears to be a specific adaptation that allows the grasping of the pata-

gium by the hand. The pronounced adduction of the wrist brings the finger claws in a position

that is best suited to exert forward traction on enlarged scale rows that extend along the first

two pairs of ribs on the dorsal surface of the patagium [8]. The relative length of the fingers of

Draco differs from that of other arboreal agamid lizards, inasmuch as the third and fourth fin-

gers (the longest) are almost identical in length, and the somewhat shorter second and fifth fin-

gers likewise have almost the same length (S1 Table). This appears to be an adaptation that

enables the fingers to grasp modified areas above the ribs on the patagial surface. The claws of

the two longest fingers reach to enlarged scales posterior to the second elongated rib, the

shorter ones reach between the first and the second rib when the forelimb is placed along the

leading edge of the patagium and the wrist is adducted. A live specimen of Draco dussumieri
(Fig 3G and 3H) and two preserved specimens (ZFMK-H 14098: Draco dussumieri; ZFMK

20897: Draco volans; S1 Table) exhibited apparent ruptures of the patagial membrane just

behind the second elongated rib, which is the area where the claws of the longer fingers touch

the patagium.

To grasp the patagium with the hands, opposing forces would need to be exerted onto the

two sides of the leading edge. When the composite wing was formed, the postaxial part of the

upper arm was below the leading edge of the patagium whereas the adducted hands were on

the dorsal side (Figs 1 and 2; S1 Fig). Thus, the leading edge of the patagium appeared to be

locked between the arms pushing up from the ventral side and the hands applying downward

pressure and forward traction on the dorsal side (Fig 2). Details of how the connection of the

forelimb to the leading edge is achieved and what forces are produced by the respective body

parts involved need to be further investigated.

As Draco shows a conserved morphology of the patagium within the genus [6], and the

extended forelimb constantly reaches close to the lateral margin of the leading edge (S1 Table),
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the need for control of the patagium through the forelimbs could be an important constraint

preventing further rib elongation and increase of wing area. The wing of Draco is characterized

by distinct adaptive morphological features. According to aerodynamic theory, the camber of

the aerofoil and the presence of a thick leading edge, compared to the thin trailing edge, may

create greater lift forces than is possible using flat wings [3,19]. If this is the case in the compar-

atively short and broad wings of Draco remains to be tested experimentally. Examination of

preserved Draco specimens suggest that the cambering and the tension of the patagium can be

altered by arching or straightening of the back and, to a lesser extent, movements of the hin-

dlimbs, as the posterior end of the patagium is attached to the proximal portions of the thighs.

These adjustments certainly have an influence on the aerodynamic properties of the aerofoil,

but their significance remains to be studied in detail. Also, the role of the throat lappets which

are extended laterally in some but not all gliding flights (Figs 1–5; S1–S3 Fig) and which have

been interpreted as canards [20] or smaller and secondary anterior aerofoils [6] remains to be

investigated in detail.

A composite wing, in which the lift-generating and the controlling units are formed inde-

pendently by different parts of the body and must be connected to each other at the beginning

of the gliding flight, is hitherto unknown from the animal kingdom (Figs 1–3 and 6). Apart

from few groups of gliding or parachuting animals that use only their flattened bodies and

unmodified, outstretched limbs to generate lift and drag forces [2, 21,22], all other groups of fly-

ing and gliding animals have developed enlarged aerodynamic surfaces that are permanently

attached to the skeletal and muscular elements that control them [2,3,19]. The enlarged aerody-

namic surfaces of vertebrates are mostly found on modified limbs or fins (Fig 6). In contrast to

the hindlimbs, which possess moderate modifications, such as a lateral compression and a row

of enlarged scales along the trailing edge of the thigh [6,8], the forelimbs of Draco lack modifica-

tions that would increase their surface. Such modifications would be expected if the forelimbs

were held free and extended forwardly and used to generate greater drag and lift forces, as in

parachuting geckos and frogs [23,24] (Fig 6). The major advantage of the composite wing of

Draco is that the forelimbs retain their complete range of movement and full functionality for

agile climbing and running activities when not being used as a part of the wing. Although this

study reports only on the formation of the composite wing in D. dussumieri, this behaviour is

Fig 6. Wings and patagia of vertebrate groups employing flapping (A-C) and gliding (D-H) flight.

Colours mark the major aerodynamic surfaces (yellow) and the skeletal and muscular structures that control

them (red). A: Pterosaur (Rhamphorhynchus, extinct); B: Bird (Columba); C: Bat (Phyllostomus); D: Flying

fish (Hirundichthys); E: Flying frog (Rhacophorus); F: Parachuting gecko (Ptychozoon); G: Flying squirrel

(Petaurista); H: Flying lizard (Draco). In Draco, the forelimbs are connected to the lift-generating surfaces of

the patagium only for the duration of the flight.

https://doi.org/10.1371/journal.pone.0189573.g006
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evident in previously published photographs of gliding specimens of other Draco species

[2,5,25]. Given the conserved patagial and forelimb morphology across all species of Draco [6]

(S1 Table), the composite wing is very likely formed in the same way by all species in the genus.

The patagium of Draco differs functionally from the patagia of the parachuting geckos Pty-
chozoon and Hemidactylus (Fig 6F), as the latter are unsupported by ribs, not controlled by

muscles, and unfold passively as they catch air during descent [8]. The composite wing of

Draco closely resembles the plagiopatagia of gliding squirrels and colugos, which extend

between the arms and legs and are controlled by limb movements [2] (Fig 6G). The patagium

of Draco, however, is not spread as a result of the limbs posturing while airborne, but appar-

ently has to be deliberately grasped and thus connected to the forelimbs.

The estimated maximum glide velocity of approximately 6.8 m�s-1 is within the range of

adjusted mean glide velocity measured under experimental conditions for 11 other species of

Draco (5.2–7.6 m�s-1) [5]. Further measurements will certainly reveal a wider range of glide

velocities than that obtained from my limited number of documentations that allowed an anal-

ysis of that kind.

The concept of a patagium being controlled by largely unmodified limbs needs to be taken

into consideration when interpreting extinct organisms as possible gliders. A number of

extinct lineages, including the Late Permian Coelurosauravus, the Late Triassic Kuehneosaurus,
Kuehneosuchus and Icarosaurus, the Late Triassic Mecistotrachelos, and the Early Cretaceous

Xianglong, possess elongated ribs or bony rib-like structures that are hypothesized to have sup-

ported a patagial membrane and thus to resemble the glide-associated morphological modifi-

cations of the modern Draco [20,26–30]. These fossil taxa are assumed to have glided through

the air with the forelimbs extended forwardly and to have changed direction by unilateral

adjustments of the aerofoil through contractions of the trunk musculature [6,20,27,28]. Since

Draco apparently uses the forelimbs to control the patagium, it is reasonable to propose that

the extinct gliders formed a similar connection and might have regulated their glide path in a

similar way. Skeletal properties of extinct gliders allow this interpretation. The forelimb is

shorter than the first elongated rib in these species and would have constituted a straight,

thickened leading edge when extended and attached to the patagium. To hold on to the dorsal

surface of the patagium, adduction of the wrist is advantageous, a condition which is apparent

in the holotypes of Icarosaurus siefkeri and Mecistotrachelos apeoros and in a well-preserved

specimen of Coelurosauravus jaekeli [28,29,31]. Hence, it seems plausible that these early rep-

tile gliders likewise formed a composite wing using their forelimbs. This would imply that the

manner of how modern Draco form their wing and apparently control an aerofoil while simul-

taneously retaining full mobility of the forelimb could have been developed convergently in

the past by several non-related reptile lineages.

Supporting information

S1 Table. Results of the morphological examination of voucher specimens of arboreal aga-

mid lizards. For details and abbreviations see Materials and Methods. Symbols indicate the

ability to abduct/adduct the wrist more than 80˚ (�) or less than 20˚ (–).

(DOCX)

S1 Fig. Composite image showing the connection of the forelimb to the leading edge of the

patagium in airborne Draco dussumieri in 108 different instances (gliding flights).

(TIF)

S2 Fig. Draco dussumieri forming the composite wing during the initial phases of a gliding

flight. Consecutive still frames from a video (S2 Video) recorded at 60 frames/s. Numbers in
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the upper right corner are the running time given in seconds.

(TIF)

S3 Fig. Gliding flight of a male Draco dussumieri. Composite image composed of photos

taken at a rate of 6.5/s, showing the different glide phases, and details of the corresponding

individual photos. The lizard jumps from a tree (upper right corner) and forms its composite

wing. Subsequently, the trajectory becomes more horizontal. Before landing, the aerofoil is ori-

entated upwards and the forward speed is reduced. The lizard approaches the landing point in

a horizontal trajectory, hitting it with hands and feet almost simultaneously.

(TIF)

S4 Fig. Landing of Draco dussumieri at the end of a gliding flight covering a horizontal dis-

tance of 12 m. Hands with the lateral parts of the leading edge are raised above the horizontal

body plane, causing a change of the angle of attack (right). The trajectory first becomes hori-

zontally than turns even upwards. Eventually, the aerofoil is brought in a near vertical position

and the forward speed is reduced. Note the forelimbs being connected to the leading edge of

the patagium (right and middle).

(TIF)

S1 Video. Formation of the composite wing in Draco dussumieriduring the initial phases

of a gliding flight. Video recorded at 60 frames/s, original speed. See also S1 Animation (slo-

wed down tenfold) and Fig 1.

(WMV)

S2 Video. Formation of the composite wing in Draco dussumieriduring the initial phases

of a gliding flight. Video recorded at 60 frames/s, original speed. See also S2 Animation (slo-

wed down tenfold).

(WMV)

S3 Video. Formation of the composite wing in Draco dussumieriduring the initial phases

of a gliding flight. Video recorded at 60 frames/s, original speed. See also S3 Animation (slo-

wed down tenfold).

(WMV)

S1 Animation. Formation of the composite wing in Draco dussumieriduring the initial

phases of a gliding flight. Animation in “Graphics Interchange Format” (GIF) using the still

frames from S1 Video slowed down tenfold. See also Fig 1.

(GIF)

S2 Animation. Formation of the composite wing in Draco dussumieriduring the initial

phases of a gliding flight. Animation in GIF using the still frames from S1 Fig (S2 Video) slo-

wed down tenfold.

(GIF)

S3 Animation. Formation of the composite wing in Draco dussumieriduring the initial

phases of a gliding flight. Animation in GIF using the still frames from S3 Video slowed

down tenfold.

(GIF)

S4 Animation. Landing of Draco dussumieri at the end of a gliding flight. Animation in GIF

using the still frames from a video recorded at 60 frames/s, slowed down twentyfold. See also

Fig 4.

(GIF)
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