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γδ TCR Recognition of
MR1: Adapting to Life on
the Flip Side
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Nonclassical class I MHC-like
molecules are ligands for several
unconventional T cell populations.

Recently, Le Nours et al. identified
human γδ T cells recognising MHC-
related protein-1 (MR1) via their
T cell receptor (TCR). Also recognised
by theαβ-TCRofmucosal associated
invariant T cells, MR1 interacts with
specific γδ-TCRs using strikingly di-
verse binding modes, suggesting
fundamental differences in γδ T cell
recognition.

γδ T cells, defined by their surface expres-
sion of paired γ and δ T cell receptor (TCR)
chain heterodimers, have been retained
throughout vertebrate evolution and play
critical roles in host immunity in diverse
settings, including infection, antitumour
immunity, and immune regulation [1,2].
They are also of increasing therapeutic in-
terest. Although it is widely accepted that
unlike αβ T cells, they do not recognise
peptide-MHC molecules, the question of
what antigens they do recognise via their
TCR still remains substantially unresolved.

Since the discovery of γδ T cells, diverse
molecules have been proposed as candi-
date γδ-TCR ligands [3]. While recent
evidence has confirmed butyrophilin/
butyrophilin-like (BTN/BTNL) family mole-
cules as direct TCR ligands for γδ T cell
populations bearing specific TCRγ chain
variable regions (either Vγ4/Vγ7 [4] or Vγ9
chains [5,6]), the mouse nonclassical
class I MHC molecules T10 and T22 were
the first γδ-TCR ligands to be confirmed
biochemically [7]. Since then, γδ T cells ca-
pable of interacting via their TCR with the
nonclassical class I MHC molecule CD1d
have also been defined [8].

Recently, Le Nours and colleagues have
made an important step forward by dem-
onstrating a third category of nonclassical
class I MHC molecule, MHC-related pro-
tein 1 (MR1), is also a target for γδ-TCR
binding [9]. Their study combines use of
MR1-tetramer staining to identify MR1-
binding γδ T cell populations, surface

plasmon resonance (SPR) to assess direct
γδ-TCR/MR1 binding, and structural tech-
niques to establish relevant binding
modes. Their findings significantly ad-
vance our understanding of MR1 and
may hold some fundamental lessons re-
garding γδ-TCR recognition itself.

Adaptive γδ T Cell Recognition of a
Monomorphic Ligand
CD1d and MR1 are established recogni-
tion targets for defined αβ T cell popula-
tions, namely invariant natural killer T cells
(iNKTs) and mucosa associated invariant
T cells (MAITs), respectively. Aligning with
the monomorphic nature of these ligands,
both iNKTs andMAITs express a highly re-
stricted TCR repertoire and also exhibit
distinct innate-like phenotypes relative to
the bulk αβ T cell compartment. Using
MR1 tetramers, Le Nours et al. showed
the situation is very different for MR1-
binding γδ T cells.

In most people, MR1-specific γδ T cells
comprised a low percentage (~0.1%) of
γδ T cells. Strikingly, their TCR repertoire
was diverse, reflecting the TCR-diverse
adaptive-like Vδ2neg repertoire as a
whole and chiefly focussed on the preva-
lent Vδ1 and Vδ3 subsets, combined with
a broad range of Vγ chains. Also, MR1-
specific γδ T cells phenotypically resem-
bled the entire γδ T cell pool. By contrast,
the semi-invariant, innate-like Vγ9Vδ2
T cell subset, which bears a highly re-
stricted TCR repertoire, was not a source
of MR1-specific γδ T cells. These fea-
tures closely mirror those of CD1d-
specific γδ T cells (and γδ T cells specific
for the exogenous model antigen phyco-
erythrin), but contrast with properties of
iNKTs and MAITs. Relative to αβ T cells,
γδ T cell recognition of nonclassical
class I MHC molecules may therefore be
fundamentally skewed towards highly
TCR-diverse, adaptive-like γδ subsets,
which are thought to bind a diverse
array of ligands.
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Whilst limited phenotypic analysis of MR1-
specific γδ T cells was carried out, their dif-
ferentiation status was not defined. Ad-
dressing this question, highly relevant for
adaptive compartments, would clarify if
MR1-specific γδ T cells reside within the
Teffector subpopulation, consistent with
bona fide MR1-directed adaptive Teffector
responses, or alternatively within the Tnaive
subpopulation, which lacks effector capa-
bility and would be more suggestive of po-
tential adaptive reactivities [10] yet to
encounter MR1 in vivo. In vitro assays in-
volving transduction of MR1-binding
TCRs into Jurkat T cells showed that al-
though CD69 upregulation was not always
observed, MAP kinase/ERK kinase activa-
tion was universal, confirming a potential
to support TCR triggering. Although
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Figure 1. Overview of the MAIT αβ TCR-MR1-5-OP-RU, G7 γδ TCR-MR1-5-OP-RU, and CD8αα-HLA-A2 Complexes. (A) Cartoon representation of the
MAIT αβ TCR-MR1-5-OP-RU complex (PDB ID: 4NQC): MR1, brown; β2-microglobulin (β2M), blue; 5-OP-RU, green; α-chain, light green; β-chain, cyan. (B) Cartoon
representation of the G7 γδ TCR-MR1-5-OP-RU complex (PDB ID: 6MWR): MR1, brown; β2M, blue; 5-OP-RU, green; Vγ9 chain, pale cyan; Vδ1 chain, salmon.
(C) Cartoon representation of the CD8αα-HLA-A2 complex (PDB ID: 1AKJ): HLA-A2, orange; β2M, blue; peptide, hot pink; CD8αα, red and yellow. Ig-like variable and
constant domains for α, β, γ, and δ chains are indicated by Vα, Cα, Vβ, Cβ, Vγ, Cγ, and Vδ, Cδ respectively. Abbreviations: MAIT, mucosa associated invariant T cell;
MR1, MHC-related protein 1; TCR, T cell receptor.

low levels of MR1-specific T cells were
detected in most individuals, MR1-
tetramer-positive cells were enriched in
some individual samples, including in
newly diagnosed coeliac disease and
Merkel cell carcinoma. This finding sug-
gests both TCR-diverse Tnaive and clonally
focussed Teffector subpopulations may
contribute to the MR1-specific γδ T cell
pool; the latter could contribute to physio-
logical adaptive γδ Teffector responses in
some individuals. Future studies will no
doubt shed light on these questions.

Diverse Modes of Antigen-Agnostic
γδ TCR Binding to MR1
Le Nours and colleagues also outlined the
molecular basis of γδ-TCR/MR1

interaction. SPR binding studies revealed
MR1-binding γδ-TCRs tested were largely
‘antigen agnostic’ and either entirely
unaffected or only slightly impacted by
the presence/absence of MR1-bound
antigen, suggesting potential ‘inherent
autoreactivity’ to MR1-expressing cells
even in the absence of antigenic challenge.
Although iNKT and MAIT TCR/ligand rec-
ognition has also been linked to ‘inherent
autoreactivity’, this operates via binding
modes apparently exclusively involving in-
teraction of αβ-TCR CDR loops with the
α1α2 platform (Figure 1A). Moreover, con-
served iNKT and MAIT TCR V-region
usage and respective germline-encoded
CDR1/2 loops provide a clear basis for
such semi-invariant interactions, which ap-
pear literally and immunologically ‘restricted’
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to the α1α2 platform of CD1d or MR1,
allowing potential for discriminating pres-
ence/absence and nature of bound antigen.

By contrast, mutational analyses sug-
gested that collectively, the MR1-binding
γδ-TCR pool was not limited to interaction
with the upper-face of the α1α2 platform,
but also contained TCR specificities
recognising the membrane-proximal
‘flip-side’ of MR1, predominantly to the
α3 domain. X-ray crystallographic analysis
confirmed this highly novel binding mode.
Importantly, ‘flip-side’ interaction was con-
sistent with antigen ‘agnosticism’ and in-
volved no contacts to upper-facing α1α2
helical platform residues, instead predomi-
nantly featuring α3 domain contacts, with
additional interactions to the platform’s un-
derside (Figure 1B). Consistent with diverse
Vγ usage in the MR1-binding γδ-TCR pool,
interaction was dominated by Vδ-mediated
contacts. Moreover, while some CDR1δ-
mediated involvement was evident, Vδ in-
teractions involved critical hydrophobic
contacts formed by CDR3δ residues,
consistent with only a small proportion of
the extremely diverse Vδ1 TCR repertoire
satisfying the molecular criteria for MR1
recognition. This mode resembled CD8αα/
class I MHC recognition (Figure 1C), which
itself was likened to antibody/antigen inter-
action [11]. These observations confirm
that γδ T cell recognition of MR1 is indeed
fundamentally different to CD1d/MR1-
restricted recognition by semi-invariant
iNKTs and MAITs.

In summary, the identification of MR1-
binding γδ T cells is a significant advance
for both MR1 and γδ T cell biology and

should be applauded. By contrast to
iNKTs and MAITs that now have
established contributions to immune regu-
lation, including in diverse models of infec-
tion/disease, the physiological role and
importance of γδ T cells that recognise
nonclassical class I MHC molecules has
remained largely unclear since their initial
identification 20 years ago. In this context,
the immunobiological meaning and rele-
vance of antigen-agnostic recognition of
MR1 by γδ T cells is currently unclear.
Moreover, future studies should consider
the parallel and nonmutually exclusive
possibilities that MR1 interactions with
γδ-TCRs either contribute to physiological
adaptive γδ T cell effector immune re-
sponses, or alternatively in some cases
largely represent potential autoreactivities.
In this second scenario, the presence of
MR1-specific cells may reflect the funda-
mental potential of the adaptive γδ-TCR
repertoire to recognise diverse self-
antigens, from which particular
autoreactive TCR specificities may be se-
lected to differentiate into Teffector cells to
support adaptive γδ T cell
immunosurveillance following relevant im-
mune challenges. Given the recent finding
that MR1-directed αβ-TCR alloreactive
recognition of an antigenically altered
form of MR1 can mediate broad
antitumour responses [12], it is tempting
to speculate on the potential relevance of
γδ-TCR/MR1 interactions in such settings,
particularly given established in vitro
antitumour capabilities of γδ T cells. The
study by Le Nours and colleagues is a fun-
damental step forward that should pave
the way for future studies to address
such fascinating questions.
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