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Cataract is one of the leading causes of blindness in the world’s population. Amethod to evaluate blurriness for cataract diagnosis in
retinal images with vitreous opacity is proposed in this paper. Three types of features are extracted, which include pixel number of
visible structures, mean contrast between vessels and background, and local standard deviation. To avoid the wrong detection of
vitreous opacity as retinal structures, a morphological method is proposed to detect and remove such lesions from retinal visible
structure segmentation. Based on the extracted features, a decision tree is trained to classify retinal images into five grades of
blurriness. The proposed approach was tested using 1355 clinical retinal images, and the accuracies of two-class classification
and five-grade grading compared with that of manual grading are 92.8% and 81.1%, respectively. The kappa value between
automatic grading and manual grading is 0.74 in five-grade grading, in which both variance and P value are less than 0.001.
Experimental results show that the grading difference between automatic grading and manual grading is all within 1 grade,
which is much improvement compared with that of other available methods. The proposed grading method provides a universal
measure of cataract severity and can facilitate the decision of cataract surgery.

1. Introduction

A cataract occurs when there is a buildup of protein in the
lens. The protein buildup makes lens cloudy; thus, some of
the light is prevented from passing through the lens and
vision is impaired [1]. This is mainly why cataract is the
principle cause of partial to complete blindness. It is reported
that cataract patients account for almost half of global blind-
ness [2]. Research also suggests that the number of people
worldwide who have lost their vision is increasing by approx-
imately 1 million per year and this number is expected to
increase up to 40 million by the year 2025 [3]. Although
surgery is an effective treatment available for these patients.
An accurate diagnosis of the severity of cataract is still needed
prior to any surgical interventions to ensure both safety of the
patients and high-quality treatment.

Cataracts are classified into three types according to the
location of opacity: nuclear cataract, cortical cataract, and
posterior subcapsular cataract. Clinically, nuclear cataract
is diagnosed using slit-lamp photography, while cortical

and posterior subcapsular cataracts are diagnosed using ret-
roillumination imaging devices. Clinical grading of cataract
is performed via comparing the observed picture with a set
of standard photos with different cataract severities. Lens
Opacities Classification System III (LOCS III) [4] is widely
applied in clinical diagnosis. Besides, the Oxford Clinical
Cataract Classification [5] and the American Cooperative
Cataract Research Group (CCRG) method [6] are similar
grading criteria. The criteria mentioned above require differ-
ent imagemodalities to diagnose cataract which can be graded
separately for each individual type. A universal evaluation of
cataract severity is essential to determine the timingof cataract
surgery and the priority of surgery when surgery service is
not sufficient.

Since the first fundus camera was invented in 1910 [7],
the retinal image acquired by the fundus camera has been
widely applied in diagnosis of ocular diseases such as
glaucoma, age-related macular degeneration, and diabetic
retinopathy [8]. Recently, retinal image is proposed as a new
means for cataract diagnosis according to its blurriness [9].
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Comparedwith that of slit-lamp images and retroillumination
images, only one image modality is required for cataract
diagnosis using retinal images, and a universal grading of
cataract severity can be assessed. Two distinguished benefits
are found in this method which include compatibility for
telediagnosis and integration with screening of glaucoma
and diabetic retinopathy. Therefore, we believe screening
for cataracts using retinal images can be an efficient means
not only for addressing healthcare shortage problem in
developing countries via telemedicine but also for integrated
screening of different retinal diseases.

Opacity of lens will lead to blur photography of the
retina. According to blurriness shown in a retinal image, blur
level of retinal images can be classified into five grades [10].
Figure 1 shows examples of retinal images with five different
grades. Figure 1(a) shows a healthy retinal image with grade
0. In an image with grade 0, the retinal vessels (both the main
vessels and capillary vessels) and optic disc can be clearly

seen. In an image with grade 1, main vessels are visible while
the capillary vessels are only faintly visible as shown in
Figure 1(b). Figure 1(c) presents an image with grade 2 in
which small vessels are invisible and main vessels are faintly
visible. In an image with grade 3, only the optic disc and
vessels around the optic disc can be seen indistinctly, which
is illustrated in Figure 1(d). As Figure 1(e) shows, no retinal
structures can be observed in an image with grade 4.
Ophthalmologists define grade 0 as noncataract and grades
1–4 as cataract cases, while no surgery is needed for grades
0-1 and timely surgery is necessary for grades 2–4 [11].

Screening for cataract using retinal images according to
blurriness will be influenced by two factors: vitreous opacity
and the small pupils of patients. Vitreous opacity is a
common abnormality which can be observed in a retinal
image. Normal vitreous body is a transparent and extracellu-
lar gel, which contains a complicated structural framework of
collagen, soluble proteins, and hyaluronic acid and a water

(a) (b)

(c) (d)

(e)

Figure 1: Examples of retinal images with different blurriness grades: (a) grade 0; (b) grade 1; (c) grade 2; (d) grade 3; (e) grade 4.
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content of 99% [12]. There are many types of vitreous opacity
with different causes, and they usually appear as a circular-
shaped, translucent bright area in a retinal image. Figure 2
shows some examples of a retinal image with vitreous opac-
ity. Figures 2(a), 2(b), and 2(c) are diagnosed as cataract in
grades 2, 3, and 4, respectively. It can be seen that vitreous
opacity may emerge in various shapes, sizes, intensities, and
positions and they are obvious even in blurry images, which
will influence the detection of retinal structures and evalu-
ation of blurriness. The small pupil of patients will also
cause blur of retinal images, but it mostly affects the
peripheral regions of the retinal images. Generally, the ret-
inal images of patients will be photographed with the mode
of the small pupil.

In developing countries, due to the regional economic
gap, well-experienced ophthalmologists are not sufficient in
some areas [13]. This fact impedes timely treatment for
patients. At present, screening of cataract and other retinal
diseases in these developing areas with insufficient ophthal-
mologists can be performed through remote consultation.
Computer-aided analysis and a screening system can realize
feature-based visualization and provide references for oph-
thalmologists, which are applicable to remote consultation.
Moreover, there is difference of diagnosis between different
ophthalmologists. An automatic screening system can quan-
tify features, which is beneficial to unify diagnostic criteria.

Automatic analysis of retinal image has been investi-
gated for many years. Most research focuses on automatic
detection of retinal structures such as the optic disc [14–17],
vessels [18–20], and fovea [21–23]. Based on anatomical

structure detection, features of each fundus structure are
extracted to detect pathological changes. Extensive studies
have been performed on computer-aided diagnosis systems
for ocular diseases such as microaneurysms [24], glaucoma
[25–27], macular degeneration [28, 29], and diabetic reti-
nopathy [30, 31].

Research efforts have been put into diagnosis of a specific
type of cataract automatically using slit-lamp images or ret-
roillumination images [32–34]. With retinal image becoming
more and more widely used in clinical applications, auto-
matic grading of cataract based on retinal image is proposed
in recent years. Fourier analysis was proposed to estimate
cataract severity in digital retinal images [35]. It showed that
Fourier value has a close correlation with the combined
LOCS III score and logMAR visual acuity. In this study, the
detection between cataract and noncataract was evaluated,
but automatic grading of cataract severity was not performed.
Top-bottom-hat transformation and a trilateral filter were
applied in paper [36] to extract features which include lumi-
nance feature, gray co-occurrence matrix, and gray-gradient
co-occurrence matrix. Based on these features, BP neural
network classifier was utilized to grade cataract severity.
The wavelet transform and sketch-based methods were
investigated for feature extraction in [13]. Retinal images
were classified into noncataract, mild, moderate, and severe
grade with multiclass discriminant analysis algorithm. The
method in [37] combined methods proposed in [13, 36].
The ensemble methods, majority voting, and stacking are
investigated to combine the multiple base learning models
for final cataract classification.

(a) (b)

(c)

Figure 2: Examples of images with vitreous opacity: (a) image with blurriness of grade 2; (b) image with blurriness of grade 3; (c) image with
blurriness of grade 4.
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Although cataract classification using retinal image has
been investigated in the previous studies, there are still two
challenges. One issue is that existing methods cannot handle
the retinal images with vitreous opacity well. All available
methods of screening cataract using retinal images are only
based on the features of contrast between retinal structures
and background [13, 35–37] without considering the influ-
ence of vitreous opacity. In these methods, vitreous opacities
with strong contrast will be detected as retinal structures,
which will lead to incorrect grading. Another challenge is
that the performance of automatic grading needs to be
improved. For example, there is still great grading difference
(>1 grade) between automatic grading and clinical grading
using available methods, which will hinder the clinical usage
of automatic grading.

In this paper, an approach to evaluate blurriness for
cataract diagnosis with vitreous opacity removal is proposed.
The main contribution of this work can be summarized as
follows: (1) A morphological method with multithresholds
is proposed to detect vitreous opacity. The detected vitreous
opacity is removed from retinal structure detection to
improve the accuracy. This method is also applicable to elim-
inate exudates from visible retinal structure segmentation.
(2) The designed approach is applicable to images with
different resolutions. (3) Our grading difference between
automatic grading and clinical grading is all within 1 grade,
which shows that the proposed method outperforms the
other existing methods. (4) Our approach is evaluated using
a large amount of retinal images (>1000) with different
resolutions.

2. Method

The proposed automatic approach for cataract grading
includes the following steps: preprocessing for image-size
normalization, image enhancement, feature extraction, and
cataract grading. The entire process is illustrated in Figure 3.
In order to process retinal images with different resolutions,
image-size normalization based on the diameter of the
acquired region of interest (ROI) is performed in preprocess-
ing. Images are further enhanced with 2D reverse Gaussian-
matched filter after preprocessing, and three types of features
are extracted. A decision tree is trained to classify every two
adjacent grades into one class before the final grading.

Pathological changes may appear in a retinal image, and these
pathological changes will affect accurate feature extraction.
Vitreous opacity is one type of pathological change, which is
commonly presented in retinal images of cataract patients.
To avoid its disturbance, a morphological method with
multithresholds is proposed to detect vitreous opacity in this
paper and vitreous opacity is further removed from the retinal
structure segmentation.

2.1. Preprocessing. In order to handle the images with differ-
ent resolutions, every image will be adjusted to the same size
automatically. It should be noted that the diameter of an ROI
(region of interest) mask is normalized rather than the size of
an input image. To obtain this diameter, an ROI mask is
obtained. Firstly, a retinal image is set at a threshold in the
red channel. This method is essentially employed to separate
the dark background and the retina. To avoid misclassifying
areas with low illumination in the retina as background, the
threshold value is set to 10, which is an empirical value. Then,
morphological operators of opening, closing, and erosion are
applied on the image obtained in the previous step in turn
with a 3× 3 square kernel [16]. Figure 4(b) shows an example
of the generated ROI mask of Figure 4(a). When processing a
new retinal image, the ROI mask is extracted and the maxi-
mal width in the horizontal direction is computed as the
diameter of the fundus as shown in Figure 4(b). If the diam-
eter is not equal to a given diameter, then the input image will
be resized according to the ratio between the estimated diam-
eter and the given diameter by bilinear interpolation. In our
test, the given diameter is set to 2161 pixels. To reduce the
detection error near the boundary, the ROI mask will be
shrunk by 50 pixels. Next, all the parameters are set accord-
ing to the size of retinal structures in normalized images. In
the normalized images, the average diameter of the optic disc
is about 200 pixels, and the width of the vessels are in the
range of 24∼36 pixels.

2.2. Image Enhancement with the 2D Gaussian-Matched
Filter. In order to enhance the retinal vessels and boundary
of the optic disc, the 2D Gaussian-matched filter [18] is
applied on green channel followed by initial processing. It
is observed that retinal blood vessels usually appear darker
than their surroundings and can be approximated as piece-
wise linear segments; we assume that the model of a vessel

Feature extraction with
vitreous opacity removal

Classi�cation
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output

Input image Preprocessing Image
enhancement

Detection of
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opacity?
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extraction

No
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Figure 3: Flow diagram of the proposed cataract grading system.
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segment is a reverse Gaussian function. So, a Gaussian filter is
employed as the matched filter. Mathematically, a Gaussian
filter can be described as follows:

Ki x, y = −exp −x2

2σ2 , x ≤ 3σ, y ≤
L
2 , 1

where L is the length of a vessel segment on afixed orientation.
The orientation of L is initialized along y-axis.σ represents the
scale of thisfilter,which is related to thewidthof thevessel. The
mean value of the filter is determined as (2), and A is the
number of points in this filter.

ui = 〠
x,y ∈N

Ki x, y
A 2

The final convolutional filter is defined as follows:

Ki′ = Ki x, y − ui 3

Inorder todetect the vessel indifferentdirections, 12filters
on 12 different orientations are generated using the rotation
matrix mentioned as follows:

R = cos θi −sin θi
sin θi cos θi

, 4

where θi is the orientation of the ith filter which increases 15°

from ith filter. Twelve filters are applied on each pixel in the
green channel. For every pixel, only the maximum response
among the twelve filters is retained.

Filter size and parameter σ and L are all determined
according to the vessel width of an input image. It has been
proved in [18] that it is proper to set σ and L to 2 and 9 pixels,
respectively, in their database, and the filter size is 15× 16
pixels. In our paper, the size of our normalized image is
4 times of the size of images in [18]. Therefore, the filter
is designed with size 60× 61, and σ and L are set to 8
and 36, respectively. An example of the enhanced image
is shown in Figure 5(b). It can be seen that the retinal ves-
sels and boundary of the optic disc are enhanced in the
retinal image.

2.3. Detection of Vitreous Opacity. Vitreous opacity often
appears in the retinal image, which will interfere the grading
of blurriness for cataract diagnosing. Due to the higher inten-
sity compared with background, boundaries of vitreous
opacity will be enhanced by the 2D Gaussian-matched filter
as well. When a large area of vitreous opacity appears, the
accuracy of grading will be seriously influenced because the
boundaries of vitreous opacity are wrongly extracted as
visible retinal structures.

Diameter

(a) (b)

Figure 4: ROI mask generation: (a) original image; (b) ROI mask.

(a) (b)

Figure 5: The enhancement with 2D Gaussian filter convolution: (a) original image; (b) enhanced image.
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To eliminate the detection error brought by vitreous
opacity, a set of morphology operations are applied on the
green channel of input images to enhance regions of vitreous
opacity. To avoid the noises, the green channel is smoothed
by a median filter at first. The size of this median filter should
be less than the width of the vessels. In our paper, the size is
set to 12× 12 pixels. Close operations are performed with
circle structuring elements e1 and e2 which are defined by
the following:

d1 = G ⊕ e1 ⊖ e1, 5

d2 = G ⊕ e2 ⊖ e2, 6

where G represents the intensity in green channel after
median filtering.

Next, d2 is dilated with circle structuring element e3 as
expressed in

d2 = d2 ⊕ e3 7

A subtraction operation is performed between d1 and d2
to enhance the boundary of bright lesions:

D = d2 − d1 8

Equations (5) and (6) aim to erode dark vessels, so the
selection of the size of circle structuring elements is based
on the width of the main retinal vessels. In our experiments,
the main vessels’ width of normalized image is in the range of
24∼36 pixels. Accordingly, the radius of e1 and e2 is set to 24
and 36, respectively. The radius of e3 decides the width of the

detected boundaries of the candidate vitreous opacity, and
the width should be slightly wider than the average width
of the vessels. Through experiments, it is suitable to set e3
to 28. Figures 6(a), 6(b), and 6(c) show the enhancement of
vitreous opacity, which correspond to the original images in
Figures 2(a), 2(b), and 2(c), respectively.

By thresholding in image D, boundaries of bright regions
will be detected as candidate vitreous opacity, which contain
the boundaries of vitreous opacity, the optic disc, and few
vessels across the optic disc. To judge whether there is vitre-
ous opacity in an input image, thresholding is performed on
image D according to (9). The number of segmented pixels
and number of connected regions are computed. Through
testing, when td is set to 8, vitreous opacity in most images
can be detected well in our database. If the number of
segmented pixels is much larger than that of the optic disc
perimeter or if the number of connected domains is more
than 5, it is considered that there is possible vitreous opacity
in this image.

Dt x, y = 1, D x, y ≥ td
0, D x, y < td

9

As shown in Figure 6(a), when the optic disc is obvious in
retinal images, the boundary of the optic disc and vessels
around the optic disc will be enhanced in image D as well.
Therefore, the region around the optic disc should be
excluded from vitreous opacity detection. A method of optic
disc removal is proposed and applied only on the images with
possible vitreous opacity.

(a) (b)

(c)

Figure 6: The enhancement of vitreous opacity. (a), (b), and (c) correspond to the original images in Figures 2(a), 2(b), and 2(c), respectively.
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Because the optic disc is usually the largest bright region
in a retinal image, the 2% brightest pixels in the ROI are
selected as candidate pixels of the optic disc. If B is defined
as the selected bright pixels, a clustering algorithm is applied
on B to cluster these pixels into groups based on Euclidean
distance. The candidate optic disc is searched among these
groups according to the size of the optic disc.

Features in image Dt are taken into consideration to
search the optic disc. For groupi, the number of pixels in Dt
is summed up in a window W centered on the center of
groupi as follows:

sum p = 〠
x,y ∈W

Dt x, y 10

If sum p is larger than p2, then this group is considered as
the optic disc. Then, detected candidate vitreous opacities in
the square with the size 1 5 optic disc diameter × optic
disc diameter centered on the center of the optic disc are
excluded. If there is no region satisfying the above criteria, it
is considered that there is no visible optic disc in the image.
The whole process is expressed as in Algorithm 1.

The parameters p1, p2, and l are all determined by the size
of the optic disc. The optic disc is roughly an ellipse and its
long diameter is about 200 pixels in our experiments. The
bright pixels with the distance less than l are all gathered into
one region, and l is set to be the diameter of the optic disc. p1
is utilized to judge whether the clustered group is a candidate
of the optic disc. Considering that not all pixels in the optic
disc can be selected as the brightest pixels, p1 is set to
2/3 × area of the optic disc. sum p is the area of detected
edges in window W. W should cover the optic disc, which
is set to 1 5 optic disc diameter × 1 5 optic disc diameter. p2
is employed to detect whether the clustered region contains
the edges of the optic disc. p2 should be at least larger than
the area of optic disc boundaries. Because the width of
disc edges is close to the vessel width, p2 is set to
vessel width × optic disc perimeter.

2.4. Feature Extraction. It is important to extract appropriate
features from a retinal image for classifying cataract. Figure 1
illustrates that retinal structures that are clearer and can be
seen in images with lower grades. According to the grading
protocol mentioned in Section 1, the contrast between retinal
structures and background is the prime feature for grading.
Considering the above, three types of features which contain
nine features are selected in this paper. These nine features
are described in Table 1.

2.4.1. Visible Retinal Structure Segmentation Using Multiple
Thresholds. Vessels and boundary of the optic disc are
enhanced with the Gaussian-matched filter as described in
Section 2.2. More obvious structure has higher response.
Retinal structure pixels are segmented by thresholding the
enhanced image E image x, y with a given threshold value
ti, and a visible structure map Vi can be generated as

Vi =
1, if E image x, y ≥ ti
0, if E image x, y < ti

, 11

where x, y is the position of every pixel in the image and Vi
is a binary image in which visible structure pixels are
expressed as 1. Figure 7 shows some examples of visible
structure results with different grades of cataract by setting
ti to 0.9. The images in Figure 7 correspond to the original
images in Figures 1(a), 1(b), 1(c), 1(d), and 1(e), respectively.
It is evident that there is the largest number of visible struc-
ture pixels in a healthy image, and the number of segmented
pixels can describe the severity of cataract. The number of
visible structure pixels vi is computed as follows:

vi = 〠
x,y ∈Vi

Vi x, y 12

High threshold will result in missing vessels in the retinal
images with serious blur, but on the other hand, low thresh-
old will produce noises in the retinal images with lower

Table 1: Feature description of cataract grading.

Feature parameter Description

v1
Number of visible retinal structure pixels

segmented with threshold t1

v2
Number of visible retinal structure pixels

segmented with threshold t2

v3
Number of visible retinal structure pixels

segmented with threshold t3

v4
Number of visible retinal structure pixels

segmented with threshold t4

m1
Mean enhanced value of segmented visible

retinal structures with threshold t1

m2
Mean enhanced value of segmented visible

retinal structures with threshold t2

m3
Mean enhanced value of segmented visible

retinal structures with threshold t3

m4
Mean enhanced value of segmented visible

retinal structures with threshold t4
d Average value of the local standard deviation

for pixels in B
groupi ← clustering algorithm Euclidean distance
less than l i ∈ Z+

Agroupi ← area of groupi
if Agroupi > p1

optic disc candidates←groupi
end if
end for
forgroupi
sum p = ∑

x,y ∈W
Dt x, y

if sum p > p2
groupi is considered as optic disc
else
There exists none visible optic disc
end if
end for

Algorithm 1
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grades. Visible structure segmentation with only one thresh-
old is not enough to classify retinal images into 5 different
grades accurately. Therefore, four increasing threshold values
t1, t2, t3, and t4 are applied using (11) separately, and each
threshold is only employed to distinguish two adjacent
grades. t1 is set to classify grades 3 and 4, t2 is for the classifi-
cation of grade 2 and grade 3, and so on. The value t1 should
not be too low to avoid over segmenting nonvessel pixels in
grade 3 and grade 4. The value t4 should not be set too high
to detect small vessels in the retinal images with grade 0.
With the blurriness aggravating, the difference between two
adjacent grades is less. Accordingly, difference between the
two adjacent thresholds is increasing. Through experiments
of sample images from five grades, t1, t2, t3, and t4 are set to
0.3, 0.5, 0.9, and 1.4, respectively, in this paper. Four visible
retinal structure segmentation V1, V2, V3, and V4 are
obtained, which correspond to the four thresholds t1, t2, t3,

and t4. Then, the number of segmented pixels in V1, V2, V3,
and V4 is summed and denoted as v1, v2, v3, and v4, respec-
tively, via (12), which is described in Table 1.

Asmentioned in Section 2.3, responses of the 2DGaussian
filter for the pixels around vitreous opacity are strong,
which will be detected as visible retinal structure pixels
(see Figures 9(a-1), 9(b-1), and 9(c-1)). If an input image
is diagnosed as vitreous opacity, boundaries of vitreous
opacity should be eliminated from segmentation results
V1, V2, V3, and V4.

It is hard to eliminate vitreous opacity directly from
visible structure segmentation due to the large variation
among the images with different blur levels. Input images
are classified into two classes: class 1 containing images
with visible retinal structures (grades 0, 1, and 2) and
class 2 including images with invisible retinal structures
(grades 3 and 4). Vitreous opacity is removed from

(a) (b)

(c) (d)

(e)

Figure 7: Visible structure segmentation. (a), (b), (c), (d), and (e) correspond to the original images in Figures 1(a), 1(b), 1(c), 1(d), and
1(e), respectively.
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visible structure segmentation using different algorithms
for these two classes.

For this rough classification, a retinal image is divided
into two annular regions: region 1 and region 2 (refer to
Figure 8). Average enhanced values of E1 and E2 using the
Gaussian filter in these two regions are computed as follows:

E1 =
1
n1

〠
x,y ∈R1

E image x, y , 13

E2 =
1
n2

〠
x,y ∈R2

E image x, y , 14

where R1 and R2 represent region 1 and region 2, respec-
tively. R1 contains no retinal structures and R2 contains the
main structures. And n1 and n2 are the number of pixels in
R1 and R2 correspondingly. E image is the enhanced image
with Gaussian filter correlation.

Average values in two regions are added up as follows:

E = E1 + E2 15

According to the value E, an input image is categorized
into two classes by thresholding:

E ≥ te, input ∈ class 1
E < te, input ∈ class 2 , 16

where te is a value that is trained using bipartition [38] in the
sample set.

To eliminate vitreous opacities from four different vessel
maps, V1, V2, V3, and V4, boundaries of vitreous opacity are
extracted by applying three thresholds on image D via

Di x, y = 1, if D x, y ≥ tdi
0, if D x, y < tdi

, i = 1, 2, 3, 17

where td1 < td2 < td3. In this paper, td1, td2, and td3 are set
to 2, 5, and 8, respectively, via experiments. The extracted
results are expressed as binary images D1,D2, and D3 in turn

and are further expanded using circle structuring element e4
as follows:

Di =Di ⊕ e4 18

The radius of e4 is set to 5 pixels to ensure that the width of
vitreous opacity boundary is wider than the vessel diameter.

It is observed that most vitreous opacities are obvious
in the retinal images of class 1, but a lot of vitreous opac-
ities are dim in retinal images of class 2. Due to higher
contrast of the images in class 1, many nonvitreous opacity
pixels are detected in D1 and D2. In the images of class 2,
most vitreous opacities can be detected well in D1 and D2,
but many dim vitreous opacities will be missed in D3. There-
fore, different algorithms for class 1 and class 2 are proposed
to remove vitreous opacities from V1, V2, V3, and V4. Due to
the strong contrast between vitreous opacities, some images
with large number of vitreous opacities of class 2 may be
misclassified as class 1. So for images in class 1, if there are
still many connected regions with small areas in V1 after
removal of vitreous opacities, it is considered that this image
is misclassified as class 1 and further elimination needs to be
performed on V1 and V2. The whole process of eliminating
vitreous opacity is as in Algorithm 2.

α is a set of connected regions in V1, and N is the number
regions in α. Because single vitreous opacity is a region of a
small area, β is the set of connected regions with a small area
that is less than half of the area of the optic disc and K is the
number of regions in β.

Examples of vitreous opacity boundary removal from vis-
ible retinal structure segmentation are shown inFigure 9. Final
visible retinal structure maps are illustrated in Figures 9(a-3),
9(b-3), and 9(c-3)), and Figures 9(a-2), 9(b-2), and 9(c-2)) is
the extracted vitreous opacity boundaries. It canbenoted from
Figure 9 that the proposedmethod can detect vitreous opacity
well in these images and the extraction of retinal feature is
more accurate after vitreous opacity removal.

2.4.2. Mean Gaussian Filter Response of Segmented Visible
Retinal Structure Pixels. The value of a pixel in the enhanced
image implies the contrast in the original image. Mean
enhanced value of segmented pixels is described as follows:

mi =
1

Snum
〠
x,y ∈ s

E image x, y 19

Figure 8: The partition of a retinal image.

if input ∈ class1
V1-D3,V2-D3,V3-D3,V4-D3
Label the connected regions in V1: α = α1, α2, , αN
Label the connected regions with small area:

β = β1, β2, , βk

if K > N
2

V1-D1,V2-D2
end if

else
V1-D1,V2-D2,V3-D3,V4-D3

end if

Algorithm 2
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In (19), S is a group of the segmented vessel pixels with a
specified threshold value. E image x, y represents the value
of the point (x, y) in the enhanced image. snum denotes the
number of all segmented vessel pixels. Four mean enhanced
values (m1, m2, m3, and m4 presented in Table 1) are com-
puted with four different thresholds.

2.4.3. Local Standard Deviation. A clearer image owns a
sharper contrast, which corresponds to greater intensity var-
iance. Accordingly, local variance is computed on every pixel
within the ROI mask. The neighborhood standard deviation
is calculated within the n × n neighborhoods around the cor-
responding pixels. Mean value of the local standard devia-
tions d (presented in Table 1) in the ROI mask is calculated
as a feature. The value of n can be set in a range of 0∼vessel
width. Large value of n will lead to long computing time.
Experiments show that different values of n will not affect

the classification results too much. To save computing time,
n is set to 3 in this paper.

2.5. Grading of Blurriness. Because the distribution of fea-
tures overlaps between neighboring grades, a decision tree
is trained to classify a retinal image according to the blur-
riness. A sample set S selected from database is used to
train grading parameters. The whole process is demon-
strated in Figure 10.

Firstly, feature v3 is selected to classify input images into
three classes: a group of images with grades 0 and 1, a group
of images with grade 1 and grade 2, and a group of images
with grade 2, grade 3, or grade 4. It can be described as follows:

v3 < s− Δs input ∈ grades 0 and 1
−Δs ≤ v3 ≤ Δs input ∈ grade 1 or 2
v3 > s + Δs input ∈ grades 2, 3, and 4

20

(a‒1) (b‒1) (c‒1)

(a‒2) (b‒2) (c‒2)

(a‒3) (b‒3) (c‒3)

Figure 9: Examples of vitreous opacity removal from visible retinal structure segmentation. The first row is the segmented visible structures
in three retinal images without removing vitreous opacity. The second row shows the extracted boundaries of vitreous opacity. The last row is
the final visible structure detection after removing vitreous opacity boundaries. The images in columns 1, 2, and 3 correspond to the original
image in Figures 2(a), 2(b), and 2(c), respectively.
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Here, the interval of feature v3 in the overlapped distribu-
tion between sample images in grade 1 and grade 2 is defined
as an increasing order s1, s2, , sn . s is the average value of
feature v3 in the overlapped distribution between sample
images in grade 1 and grade 2. Δs is computed as follows:

Δs = s1 + sn

2
21

Next, feature v2 is used to classify the retinal images into
three classes similarly as feature v3. Finally, images are graded
into five different grades according to different features as
Figure 10 shows. As retinal structures are hard to be seen in
the images with the cataract in grades 3 and 4, feature d is
not used for classification between grades 3 and 4.

For classifying two neighboring grades (grade i and grade
i + 1), threshold Ti of the employed feature is trained using
bipartition proposed by Quinlan [38]. Information gain of
the feature f i based on threshold Ti is calculated as follows:

Gain S, f i = Ent S − 〠
λ∈ −,

SλT
S

Ent SλT , 22

where S is the sample set, S−T is the sample set in which f i is
less than threshold Ti, and S+T is the sample set in which f i
is larger than Ti.

Ent is the information entropy, which can be expressed as
follows:

Ent S = −〠
N

k=1
pklog2pk, 23

where pk is the proportion of class k in the sample set and N
is the number of the employed features.

A voting scheme is applied for final grading, and the vot-
ing score is calculated as follows:

score = 〠
N

i=1
vf i 24

and

vf i =
1, if f i ≥ Ti
0, if f i<Ti

25

If the score is larger than N/2, the image is classified into
grade i. Otherwise, the grade is decided by t, the feature with
the maximum information gain.

3. Results and Discussion

3.1. Data Description. In our experiment, retinal images from
the Beijing Institute of Ophthalmology, Tongren Hospital,
are tested to evaluate the proposed grading algorithm. This
database consists of images with different resolutions which
include 1396× 1124, 1572× 1308, 1704× 1496, 2036× 1696,
2196× 1740, 3048× 2432, and 3380× 2592 pixels. In total,
1355 retinal images of the right or left eyes from more than
1000 patients (all are Chinese) aged 20–80 in China were
tested. In this database, most are 45-degree retinal images
which are centered on the macula and only 15 retinal images
are centered on the optic disc. These retinal images are
graded by two experienced ophthalmologists according to
the criterion [10] described in Section 1. Our automatic
grading is compared with this clinical grading.

3.2. Experimental Results and Discussion. In total, 1355 reti-
nal images are collected to evaluate our automatic blurriness
grading system and the dataset includes 433, 415, 217, 133,

Input retinal images

Grade 1 and 2
candidates 

Grade 0 and 1
candidates 

Grade 2, 3, and 4 candidates

Grade 2 and 3
candidates 

Grade 3 and 4
candidates 

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4 

m2, d v1, m1

v3

v4, m4, d m3, d

v2

Figure 10: The diagram of classification.
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and 157 images with blur level in grade 0, grade 1, grade 2,
grade 3, and grade 4, respectively. The evaluation criteria
and clinical diagnosis are presented in Table 2. The five-
fold cross-validation method is used to evaluate the perfor-
mance of our proposed method. The retinal images of our
database are randomly divided into five subsets. In each fold,
one subset is chosen as a testing set and the other four subsets
are the training data.

The results of all folds are counted. The joint accuracy for
all folds of different types of clinical evaluation compared
with that of manual grading are shown in Table 3, and con-
fusion matrix of five gradings is presented in Table 4. Com-
pared with that of the clinical grading, the joint accuracy of
five-grade grading can reach 81.1%. Screening between non-
cataract and cataract using the proposed algorithms can
achieve an accuracy of 92.8%; specific performance metrics
of recognizing cataract are described in Table 5. In Table 5,
TP, FN, FP, and TN represent true positives, false negatives,
false positives, and true negatives, respectively. According
to the grading criteria [13, 35], the images in grade 0 are
considered noncataract, while the images in grades 1 and 2
correspond to mild and moderate cataract, respectively. The
rest of the images in grades 3 and 4 are classified into severe
cataract. The accuracy reached 83.8% when retinal images
are classified into 4 grades (healthy, mild, moderate, and
severe) [13, 35]. Blurriness in grade 1 will not cause severe
vision loss, while blurriness in grades 2, 3, and 4 will lead to
blindness which needs timely surgery [11]. Hence, it is
important to recognize those images that need surgery.

Ophthalmologists suggest that classification between grade
0 and grade 1 will not influence surgical screening. After
neglecting the classification between grades 0 and 1, the accu-
racy compared with that of manual grading is 88.4%.

By taking clinical grading as the gold standard, the agree-
ment between the automatic cataract grading system and
clinical grading in five-grade grading is measured by kappa
statistic. Kappa coefficient is a statistic which measures
inter-rater agreement for qualitative items [39]. It is applied
extensively in clinical studies [40] and clinical skill assess-
ments [41]. The formula for Cohen’s kappa coefficient is
expressed as follows:

Kappa = po − pe
1− pe

, 26

where po is the observed percentage of agreement which
implies the proportion of ratings where the raters agree and
pe is the expected percentage of agreement which denotes
the proportion of agreements that are expected to occur by
chance as a result of random rating.

The range of kappa is from 0∼1, with larger values indi-
cating better agreement. If the kappa value is greater than
0.61, a study shows that such a classification algorithm is an
applicable method for grading [42]. Table 6 shows that our
kappa value is 0.7435 and variance and P value are both less
than 0.001. It indicates that there is no large deviation
between automatic grading and clinical grading.

Table 3: Results of automatic grading using different types of
clinical evaluation.

Two-class
classification
(noncataract
and cataract)

Surgery
indicator

(combining
grades
0 and 1)

Four-grade
grading

Five-grade
grading of
blurriness

Joint
accuracy

92.8% 88.4% 83.8% 81.1%

Table 4: Confusion matrix of grading.

Graders’ grades
Automated grades

0 1 2 3 4

0 399 34 0 0 0

1 64 314 37 0 0

2 0 33 146 38 0

3 0 0 13 93 27

4 0 0 0 9 148

Table 5: Performance of recognizing cataract.

Measure Description

TPR 0.931 TP/number of cataract images

FPR 0.785 FP/number of noncataract images

Specificity 0.921 TN/(TN+FP)

Sensitivity 0.931 TP/(TP+ FN)

Accuracy 0.928 (TP +TN)/number of all images

Table 6: Statistics of validation experiment in five-grade grading.

Cohen’s kappa Kappa error Variance P value

Test set
(1355 images)

0.7453 0.0142 0.0002 <0.001

Table 2: Evaluation criteria.

Evaluation of grading Definition

Two-class classification
(noncataract/cataract)

Noncataract: grade 0

Cataract: grades 1–4

Surgery indicator

No surgery: grades 0-1

Surgery class 1: grade 2

Surgery class 2: grade 3

Surgery class 3: grade 4

Four-grade grading [13, 36]

Noncataract: grade 0

Mild cataract: grade 1

Moderate cataract: grade 2

Severe cataract: grades 3-4

Five-grade grading of
blurriness [10]

Grades 0, 1, 2, 3, and 4
(refer to Figure 1)
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Vitreous opacity is a common disease which will influ-
ence feature extraction and grading of blurriness. As seen in
Table 7, 23 retinal images are seriously influenced by this
type of inaccurate feature extraction and their grading differ-
ence is more than two grades. A morphological method with
multithresholds is proposed to extract and remove lesions
such as vitreous opacity. Large grading difference is thus
eliminated; 4.4% improvement made is achieved for five-
grade grading of blurriness.

To compare with other algorithms of cataract classifica-
tion using retinal images, we have implemented these algo-
rithms and tested these algorithms using our database. The
comparison results are summarized in Table 8. Due to
small differences between adjacent grades, the Fourier score
proposed in paper [35] describes that the high-frequency
components of an input image cannot achieve a promising
result in cataract screening or grading. Forty features are
extracted in the method [36] to classify the cataract with-
out considering other pathologies. Experimental results
show that there are large grading differences using this
method [36]. For example, maximal deviation by this method
[36] is more than 3 grades. Compared with that of these
methods, the proposed algorithm achieved more promising
results and performed well in processing images with
pathological changes.

Analyzing the grading difference, we found that the pro-
posed algorithm still has limitation in handling images with
the following cases: uneven illumination, blurriness of the
retina due to the small pupil, or large area of lesions.
Figure 11 shows some examples of such cases. Figures 11(a)
and 11(b) display the retinal images with uneven illumina-
tion. In Figure 11(a), the blur of the retina is due to patient’s
small pupil, so ophthalmologists diagnosed this image as cat-
aract in grade 1, while our automatic system considered it as
cataract in grade 2. The uneven illumination of Figure 11(b)
is caused by the operation of taking the picture. The small
vessel can be seen in the bright region, but it is invisible in
the dark area. This image is considered cataract in grade 1
in clinical grading while it is graded into grade 2 by the auto-
matic system. Figures 11(c) and 11(d) show the examples of

retinal blurriness caused by other lesions, so ophthalmologists
tend to classify these images into lighter grades. As
Figure11(c) shows, the lesions cover the main retinal struc-
tures. Our algorithm classified Figure 11(c) as cataract in
grade 3, but ophthalmologists think it is in grade 2. The blurri-
ness of Figure 11(d) is caused by high myopia, so grade 2 is
determined by ophthalmologists and grade 3 is obtained using
our grading system.

Different retinal diseases may appear on a retinal image,
such as macular edema, diabetic retinopathy, peripapillary
atrophy, and vitreous opacity. In our tested database, most
images only have cataract and parts of retinal images have
other pathologies, such asmild diabetic retinopathy and vitre-
ous opacity. Our proposed method performs well in grading
cataract in these images. However, because a large area of
severe pathologieswill affect thedetectionof retinal structures,
grading difference also exists among different ophthalmolo-
gists. Therefore, cataract screening of retinal images with
severe pathologies is still a challenge formanual grading aswell
as automatic grading. Our future work will focus on handling
the retinal images with complicated pathologies. Moreover,
there are causes of blur other than cataract, such as media
opacities in the anterior segment (e.g., cornea opacities) or
posterior segment (e.g., vitreous haemorrhage), the small
pupil, and process of photo taking. The small pupil of patients
will cause blur of retinal images, but it mostly affects the
peripheral regions of the retinal images. Generally, the retinal
images of patients will be photographed with the mode of the
small pupil. For blurriness caused by photo taking, these
images are taken under strict protocol and images with bad
quality will be taken again. At the current stage of research,
our proposed method cannot recognize the causes of blurri-
ness yet. The blur images caused by other media opacities
may affect the grading of cataract. Identifying the cause of
blurriness will be investigated in our future work. There
are still some parameters that are currently set empirically,
which may not be applicable to retinal images with different
fields of vieworother ethnicities. In the futurework, automatic
estimation of the parameters will be studied to improve the
generalization of the proposed approach.

Table 7: Comparison results with vitreous opacity removal.

Surgery indicator
(combining grades 0 and 1)

Grading criteria in
4 grades

Five-grade grading of blurriness
Difference≥ 2

grades
Difference = 1

grade
Accuracy

Grading without improvement 84.8% 80.8% 23 293 76.7%

Grading with removing vitreous
opacity

88.4% 83.8% 0 255 81.1%

Table 8: Performance comparison with other methods.

Technique
Two-class classification

(noncataract and cataract)
Four-grade grading of

cataract
Five-grade grading of

blurriness
Difference≥ 2 grades

Abdul-Rahman et al. [35] 61.9% — — —

Yang et al. [36] 90.1% 77.4% 72.3% 14

Proposed method 92.8% 83.8% 81.1% 0
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4. Conclusion

An approach to evaluate blurriness with vitreous opacity
removal for cataract diagnosis using retinal images is pro-
posed. Three types of features based on image enhancement
using the 2D Gaussian filter are extracted to describe the
blurriness in a retinal image. A decision tree is further pro-
posed to classify the image into five grades. Compared with
other research works in cataract grading using a retinal
image, it is the first time that detection and removal of path-
ological changes are used to improve the grading accuracy.
Using a large amount of clinical images as test data, our sys-
tem can obtain 81.1% accuracy of exact cataract grading and
92.8% accuracy of two-class screening (noncataract and cat-
aract). Kappa value is 0.7435 and variance and P value are
both less than 0.001 in the five-grade grading, which illus-
trates that there are no large differences between our grading
and manual grading. The proposed approach provides an
accurate and universal measure of cataract severity using a
retinal image. The proposed system is currently in the stage
of clinical validation, and it can be applied to mass screening
and remote consultation in the future.
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