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Abstract

A modern color filter array (CFA) output is rendered into the final output image using a

demosaicing algorithm. During this process, the rendered image is affected by optical and

carrier cross talk of the CFA pattern and demosaicing algorithm. Although many CFA pat-

terns have been proposed thus far, an image-quality (IQ) evaluation system capable of com-

prehensively evaluating the IQ of each CFA pattern has yet to be developed, although IQ

evaluation items using local characteristics or specific domain have been created. Hence,

we present an IQ metric system to evaluate the IQ performance of CFA patterns. The pro-

posed CFA evaluation system includes proposed metrics such as the moiré robustness

using the experimentally determined moiré starting point (MSP) and achromatic reproduc-

tion (AR) error, as well as existing metrics such as color accuracy using CIELAB, a color

reproduction error using spatial CIELAB, structural information using the structure similarity,

the image contrast based on MTF50, structural and color distortion using the mean deviation

similarity index (MDSI), and perceptual similarity using Haar wavelet-based perceptual simi-

larity index (HaarPSI). Through our experiment, we confirmed that the proposed CFA evalu-

ation system can assess the IQ for an existing CFA. Moreover, the proposed system can be

used to design or evaluate new CFAs by automatically checking the individual performance

for the metrics used.

1. Introduction

An improvement in the structure and operation, a technique for reducing the pixel size, and a

wide dynamic range in CMOS image sensors have recently become important issues for the

development of smaller advanced cameras. The most representative Bayer CFA is often used

to implement a single sensor for color images [1]. Camera manufacturers are developing CFAs

with different colors and structures to improve the picture quality. Factors evaluating the cam-

era quality include the color accuracy, color difference, image contrast, and dynamic range etc.

The development of new image sensors, particularly CFAs, means the development of CFA

elements and structures that have a better IQ in terms of the human visual system (HVS) than

previously developed CFAs. Therefore, successfully developing a new image sensor requires

the evaluation criteria of the image rendered through the image-processing pipeline. The
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pipeline typically consists of demosaicking, noise reduction, white balance, CFA interpolation,

color conversion, and gamma correction for rendering the sensor data. However, an overall

picture quality assessment of a newly developed CFA often occurs later than the design of the

new CFA. In addition, an evaluation of the IQ after the CFA development is conducted by

measuring the IQ evaluation items developed thus far, either one by one or in groups. This is

because some CFAs are not applicable before the image processing pipeline process, or there

are no comprehensive HVS-based IQ evaluation systems after the pipeline. The framework for

analyzing the image characteristics of CFAs, the Image Systems Engineering Toolbox (ISET),

was first developed by Wandell et al. [2–4]. The ISET is a camera simulation software that

receives spectral information from scenes and illuminants, and creates rendered images

through optical modeling such as camera lenses and camera sensor simulation. The ISET soft-

ware has been verified using data of various devices. [5, 6]. In the present study, an IQ analysis

of the major CFAs developed to date using existing and newly proposed metrics on the frame-

work was conducted.

Color images are acquired through multiple sensors or a single sensor. Although multiple

sensors can acquire high-quality images, they have problems in terms of size and price because

they require as many sensors as the number of color planes constituting the color image. As a

result, mobile devices acquire color images using a single sensor. To produce color images

from a single sensor, an array of color filters is attached over a single sensor [7, 8]. The color

arrangement within a single sensor has only a one-color channel signal at a particular location,

and the color components of the other two channels are therefore lost. Thus, to obtain a full

RGB three-channel color image from a single-color sensor, the two-color channel signals lost

at a particular location must be interpolated. This color interpolation process is called demo-

saicing [7]. In this paper, bilinear [9], laplacian [10], adaptive laplacian [11], projection onto

convex sets (POCS) [12] interpolations are considered for evaluating CFAs.

Many CFA patterns with different primary colors have been developed to date, as

highlighted in [13], namely, RGB [1, 14–17], RGBE [18, 19], CMY [16, 20–23], and RGBW

[24–30] CFAs. The CFA pattern affects the resolution, sharpness, aliasing, reconstruction

errors, and dynamic range of the sensor captured image. The captured image is intrinsically

affected by an optical feature of the CFA patterns as well as the spectrometry and response

characteristic of the image sensor. However, it is also related to the HVS.

The mean squared error (MSE) obtained by averaging the squared intensity differences

between an original image and its reproduction is the most widely used image-quality metric

(IQM). IQMs based on the MSE are easy to calculate and have obvious physical differences.

However, they are not very well matched with the perceived visual quality (e.g., [31–36]). In

addition, the root mean square (RMS) metric does not include any information about the

device used to present the images. In other words, the RMS error value is not a calibrated

value. Because display technologies intrinsically have non-linear transfer functions, the dis-

played image looks different on a display. For example, each display has a different display

gamma. Therefore, un-calibrated images are not suitable for measuring the perceptual differ-

ence. In addition, HVS-based IQ evaluation metrics have been studied from the past.

To solve the problem of a non-reflection of the cognitive quality of an MSE-based method,

numerous IQMs have been proposed [37, 40–45]. CIELAB for measuring color reproduction

errors was designed to approximate human-vision based color discrimination and aspires to

achieve perceptual uniformity. However, it turns out that color discrimination is determined

by numerous factors, including the spatial pattern of the image and the visual processing [38,

39]. S-CIELAB, a spatial extension of CIELAB, was presented by adding a color separation and

spatial filtering procedure to CIELAB to account for human spatial-color sensitivity [40, 41].

Meanwhile, the structural similarity (SSIM) was presented to consider the image degradation
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as the perceived change in structural information [42]. The SSIM is based on the assumption

that the HVS is highly adapted to extract structural information from the visual field. In addi-

tion, the modulation transfer function (MTF) or spatial frequency response (SFR) describes

the image resolution and perceived sharpness as the objective assessment of the imaging per-

formance of an optical system [43–45]. Recently, IQ assessment methods closely correlated

with HVS, such as MDSI [46] and HaarPSI [47], were presented. MDSI measures the struc-

tural and color distortion using combination of gradient similarity (GS) and chromaticity sim-

ilarity. HaarPSI evaluates local similarities as well as entire similarities using the coefficients

obtained from Haar wavelet decomposition.

Gasparini etc proposed a no-reference metric for measuring demosaicing artifacts through

psycho-visual experiments [48]. Using a psycho-visual comparison test adopting a single or

double stimulus method, it analyzes the subjective evaluation of the demosaicing artifacts.

Then, it introduce a no-reference metric for demosaicing artifacts based on measures of blurri-

ness, chromatic and achromatic distortions that are able to fit psycho-visual experiments.

While the method focuses on a no-reference metric definition of subjective (perceptual) IQ

assessment for demosaicing methods in a given CFA structure, this paper introduces a combi-

nation of proven metrics for automatic and objective IQ evaluation for CFA structures as well

as demosaicing methods. This paper proposes a CFA IQM system for quantitatively evaluating

the existing CFAs or CFAs to be developed in the future. The metrics for measuring the CFA

performance include 1) a color error using the CIELAB color metric in the Macbeth Color

Checker (MCC), 2) the color reproduction error (visible distortion) using S-CIELAB, 3) the

SSIM, 4) the MTF5033 (SLANTED-BAR), 5) the moiré robustness using a MSP [49, 50], 6) an

AR error using a GRAY-BAR, 7) structural and color distortion using MDSI, and 8) perceptual

similarity using HaarPSI. CIELAB, S-CIELAB, SSIM, MTF50, MDSI, and HaarPSI are existing

IQMs, and MSP and AR are newly proposed metrics in this study.

2. Materials and methods

2.1. Kind of CFAs

Various CFAs used commercially or for research are shown in Fig 1. A mosaic of Bayer CFA

arranges RGB color filters on a square grid of photo-sensors, the pattern of which is 50%

green, 25% red, and 25% blue [1]. First, the figure includes RGB1 (Yamanaka CFA [14]),

RGB2 (Lukac CFA [15]), RGB3 (vertical stripe CFA [16]), RGB4, (diagonal stripe CFA [16]),

and RGB5 (modified Bayer CFA [15,17]). There are no known studies addressing the

Fig 1. Test CFAs for performance comparison: (a)–(f) RGB-, (g)–(i) CMY-, and (j)–(l) RGBW-based CFAs.

https://doi.org/10.1371/journal.pone.0232583.g001

PLOS ONE Image-quality metric system for color filter array evaluation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232583 May 11, 2020 3 / 24

https://doi.org/10.1371/journal.pone.0232583.g001
https://doi.org/10.1371/journal.pone.0232583


performance issues for other RGB CFAs except for Bayer CFA (RGB2–RGB6) in such a com-

prehensive and systematic manner. In addition, CMY1 uses CFA of secondary colors, again to

allow more of the incident light to be detected rather than absorbed [16]. CMY2 (Switchable

CMY, RGBCY CFA [20]) has a pair of CMY CFAs that can switch between multiple sets of

color primaries (namely, RGB, CMY, and RGBCY) in the same camera. These CFA shift struc-

tures and switchable primaries are known to be useful for improving the optimal color fidelity

and signal-to-noise ratio in various types of scenes. CMY3 (CGMY CFA [21–23]) is a CFA pat-

tern using subtractive colors, such as cyan, magenta, yellow (C, M, Y), and green to deal with

low light conditions. An RGBW1 (RGB and White (W)) matrix is a CFA pattern that includes

a white (or transparent or panchromatic) filter element with high sensitivity [24–27]. Panchro-

matic pixels generate the luminance information, whereas chromatic pixels such as R, G, and

B produce the color information. RGBW2 is a CFA in which RGB pixels and panchromatic

pixels diagonally alternate in a minimal repeating unit of 4 × 4 pixels [28, 29]. RGBW3 [30]

has first and second lines, which filter elements for luminance components disposed in each

line and are offset from the filter elements for the luminance components in an adjacent line,

where the first line includes filter elements for two-color components, and the second line

includes filter elements for a single-color component.

2.2. Proposed CFA IQ evaluation system

To simulate the proposed CFA IQ evaluation system, we used ISET [5,6] with bilinear [9],

laplacian [10], adaptive laplacian [11], and POCS [12] demosaicing. As mentioned in section

1, the proposed CFA evaluation system consists of eight metrics for respective evaluations of

the color accuracy, color reproduction, structural information, image contrast, moiré phenom-

enon, and noise. Fig 2 shows the imaging pipeline for the proposed CFA IQ evaluation system.

In the proposed system, the CFA structure and demosaicing method are changeable, and the

CFA IQ evaluation results are plotted on the polar coordinates.

Fig 3 shows the test input images used for the proposed CFA IQ evaluation system: a)

SLANTED-BAR (ISO 12233 resolution chart) [51] for calculating the image contrast using

MTF50, b) MCC [52] for measuring the color error using CIELAB, c) PUPPY [53] for measur-

ing the color reproduction error (visible distortion) using S-CIELAB, analyzing the structural

information using SSIM, structural and color distortion using MDSI, and perceptual similarity

using HaarPSI, d) LINEAR-CHIRP for analyzing the moiré robustness using MSP, and e)

GRAY-BAR for analyzing the noise robustness. Applying an appropriate and high-quality ini-

tial dataset is essential to accurately assessing the system performance. Of the test input images,

PUPPY is the only multipectral scene. The sensor response of multispectral scenes is calcu-

lated, then CIE XYZ value at each pixel location is computed by the ISET camera simulator.

Fig 2. Proposed CFA IQ evaluation system.

https://doi.org/10.1371/journal.pone.0232583.g002
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MCC color image was created based on the Gretag-MCC [52]. The rest of the test input images

are color images created by patterns generated by the algorithm. PUPPY has a 32-bit resolu-

tion and a spectral wavelength of 400–700 nm, and are illuminated by a D65 illuminant with a

mean luminance of 100 cd/m2 (varying mean luminance with 3, 6, 12, 50, 100, 200, 400 cd/m2

for the S-CIELAB and SSIM experiments using PUPPY). The field of view (FOV) is 2˚ for a

SLANTED-BAR, 30˚ for MCC, and 10˚ for PUPPY, LINEAR-CHIRP, and GRAY-BAR. The

resolution is 636 × 720 for SLATED-BAR, MCC, and PUPPY, and 500 × 500 for LINEAR--

CHIRP and GRAY-BAR.

2.2.1. Color error using CIELAB with MCC. The Delta E metric, calculated by CIE

L�a�b�, is one of the extremely well-known perceptual color fidelity metrics [37]. The spectral

power distribution derived from the radiant power emitted by two light sources is transformed

into CIE XYZ values. The CIE XYZ represents the spectral sensitivity of the three types of cone

cells that are sensitive to the RGB primary colors. This means that the CIE XYZ values are a

device-invariant representation of color. The CIE XYZ values are transformed into a L�a�b�

space, in which an equal perceptual color difference corresponds to an equal distance. The per-

ceptual color difference between the reference (ideal) image and the rendered image can then

be calculated by taking the Euclidean distance of the two images in the L�a�b� space [54]. The

color difference is represented by ΔE� units. To evaluate the color accuracy of an ideal image

(using an ideal sensor) and a CFA output image, MCC shown in Fig 3(B) is rendered under

the D65 illuminant used in the proposed system. In addition, CIELAB ΔE� is calculated as the

Euclidean distance between two colors. Three numerical values are L� for the lightness and a�

and b� for the green–red and blue–yellow color components. The metrics for the MCC patches

include the color error, the lightness error for the six gray patches, and the xy chromaticity.

2.2.2. Color reproduction error (visible distortion) using S-CIELAB. S-CIELAB Delta

E describes how a spatial pattern causes a visual difference based on the assumption of a color-

pattern separability, whereas the CIELAB Delta E metric estimates the magnitude of the differ-

ence between two color stimuli in a uniform color space. To apply the CIELAB Delta E metric

to color images, the spatial patterns of the image are considered [40, 41, 55]. Fig 4 shows the

S-CIELAB procedure. The S-CIELAB includes the color separation and spatial-filtering pro-

cess convolving with kernels of different sizes and shapes before the CIELAB step. The S-CIE-

LAB Delta E metric extends the CIELAB to include the spatial sensitivity, and represents the

visibility of the distortion in an image.

S-CIELAB is largely composed of three steps. The first step is a color separation step, in

which the original (ideal) image and test (rendered using a CFA) image are transformed into

the luminance, red/green, and blue/yellow components [56]. The second step is a spatial filter-

ing step in which the respective separated components are filtered using spatial filters based on

the spatial sensitivity of the human eye. Finally, the third step is the CIE-XYZ transformation

Fig 3. Test input images used in the proposed CFA IQ evaluation system: (a) SLANTED-BAR, (b) MCC, (c) PUPPY, (d)

LINEAR-CHIRP, and (e) GRAY-BAR.

https://doi.org/10.1371/journal.pone.0232583.g003
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of the filtered components before the CIELAB step. S-CIELAB can obtain a DE�s map using the

CIELAB color difference equation. The error map describes where the test image is visually

distorted as compared to the original image.

The S-CIELAB difference between the original (ideal) image and the test (rendered) image

estimates the reproduction error and visual distortion. Except for the three steps added in

S-CIELAB, the reproduction error calculation of S-CIELAB is the same as that of CIELAB.

The S-CIELAB difference describes the spatial sensitivity as well as the color sensitivity. The

S-CIELAB difference is the same as the CIELAB for a uniform region, although it finds a visual

difference more accurately than the CIELAB for a complex pattern region. The color differ-

ence of S-CIELAB is expressed in DE�s units in this study. To evaluate the color reproduction

of a CFA output image and an ideal reproduction, we use the PUPPY image shown in Fig 3

(C).

2.2.3. Structural information using SSIM. Under the hypothesis in which human visual

perception (HVS) is greatly adapted to retrieve structural information from a scene, SSIM was

devised for a quality assessment based on a degradation of the structural information [42]. Spe-

cifically, the SSIM index is used for measuring the similarity between the original (ideal) and

target images (output images by CFA). The peak signal-to-noise ratio and MSE based metrics

do not reflect HVS. By contrast, the SSM takes account the perceived image degradation based

on the loss of structural information. The structural information of the image signifies the

strong dependencies between pixels owing to their spatial closeness. Such spatial dependencies

maintain significant information regarding the structure of an object in any visual scene.

The system diagram of the SSIM is shown in Fig 5. The SSIM system separates the similarity

measurement into three comparisons: luminance, contrast, and structure. For x (ideal image)

and y (CFA output image), two nonnegative image signals, a luminance comparison function l
(x,y), a contrast comparison function c(x,y), and a structural comparison function s(x,y) are

Fig 4. S-CIELAB model.

https://doi.org/10.1371/journal.pone.0232583.g004

Fig 5. SSIM procedure.

https://doi.org/10.1371/journal.pone.0232583.g005
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calculated. Then, the three comparisons are combined, and the SSIM index between image x
and y is obtained as follows:

SSIMðx; yÞ ¼ ½lðx; yÞ�a � ½cðx; yÞ�b � ½sðx; yÞ�g: ð1Þ

In the case of α = β = γ = 1, a specific form of the SSIM index is as follows:

SSIMðx; yÞ ¼
ð2mxmy þ c1Þð2sxy þ c2Þ

ðm2
x þ m

2
y þ c1Þðs

2
x þ s

2
y þ c2Þ

: ð2Þ

where constants C1 = (K1L)2 and C2 = (K2L)2. In addition, I is the dynamic range of the pixel

values (255 for 8-bit grayscale images) and K1<<1, K2<<1. To evaluate the structural infor-

mation of an ideal image and the output images by the CFAs, the PUPPY image shown in Fig

3(C) is used.

2.2.4. Image contrast using MTF50 by slanted-bar. The MTF is calculated using ISO

12233 (slanted-bar) with ISET [41, 42]. The MTF accurately describes the image contrast

attenuation for each spatial frequency. To obtain the MTF of an imaging system, the ISO

12233 examines a slanted edge for all color channels [45]. The luminance MTF can be derived

by combining the respective MTF for all color channels. The edge response function can be

expressed as the integrated line spread function (LSF) through a differentiation. A Fourier

transformation of the LSF provides the corresponding MTF. Accordingly, the method analyzes

the edge response for computing the MTF through the LSF.

The slanted-bar method specified in ISO 12233 integrates the line measurements at the

edge location. The measurements solve the down-sampled trouble of the imaging system using

a super-sampled edge. Fig 6(A) shows a rectangular region near the slanted edge. The deriva-

tive for horizontal lines for all color channels is integrated into the edge response of the imag-

ing system. Through the edge response, the luminance MTF of the system as well as the LSF

and MTF for all color channels are derived.

Fig 6(B) shows the MTF for all color channels and the luminance MTF of the system. The

horizontal and vertical axes indicate the spatial frequency in cycles per millimeter at the sensor

surface and the contrast reduction, respectively. The contrast reduction on the vertical axis

represents the SFR in the ISO standard. The red, green, blue, and black lines represent the

MTF for the R, G, and B channel and the luminance MTF, respectively. The luminance MTF

is calculated by the weighted sum (luminance = 0.3R + 0.6G + 0.1B) of the respective color

channels. In addition, the Nyquist sampling frequency (cycles/mm), MTF50, and percent alias

are shown in the figure. The MTF50 indicates the spatial frequency where the luminance MTF

Fig 6. (a) Created slanted-bar and (b) its corresponding MTF50 curve.

https://doi.org/10.1371/journal.pone.0232583.g006
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becomes 0.5. In addition, the percent alias, namely, the percentage of aliasing, is calculated as

the area under the right luminance MTF at the Nyquist frequency. The Nyquist frequency is

indicated by the vertical red line in the figure. To analyze the image contrast for a rendered

image using a CFA, the SLANTED-BAR image shown in Fig 3(A) is applied.

2.2.5. Moiré robustness using MSP through a linear chirp. CFA-output images can be

degraded by the appearance of a moiré pattern occurring in the digital imaging system. A

color moiré has artificial color banding that can appear in images with repetitive patterns of

high spatial frequencies [49, 50]. The color moiré is the result of aliasing (image energy above

the Nyquist frequency) in an image sensor. It is actually difficult to quantitatively estimate a

moiré phenomenon because it is spatially irregular and its color band is varied. Thus, we use a

linear-chirp pattern (gradually narrowing the widths of the black and white stripes) with a low

to high spatial frequency for quantitatively estimating the moiré robustness. The linear-chirp

signal is a sinusoidal wave that increases linearly in terms of frequency. Because a moiré phe-

nomenon is an unintended color band, we analyze it using the square root of the sum of the

square of only a� and b�,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða�Þ2 þ ðb�Þ2
q

(an ab color value is considered a moiré) for the cen-

tral horizontal line in the linear-chirp pattern. In addition, it is filtered using a one-dimen-

sional (1 × 5) mean filter to reduce the surrounding noises. Then, a moiré value of higher than

a threshold is regarded as the MSP toward a low frequency to a high frequency, because tiny

moiré in a low-frequency region does not affect the human eye.

Fig 7 shows an example of a moiré measurement using a linear-chirp pattern. We can see

that an unintended color band occurs in a high-frequency region of the CFA output image in

Fig 7(A), even though the input linear-chirp pattern shown in Fig 3(D) consists only of black

and white stripes. Fig 7(B) shows an ab color image for the CFA output image. In the ab color

image, the low-frequency region has little unintentional color value and thus has little moiré

phenomenon, whereas the high color value in the high-frequency region means that the moiré

Fig 7. (a) CFA output image for LINEAR-CHIRP image, (b) ab color (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða�Þ2 þ ðb�Þ2
q

) image for CFA output image,

(c) color value for central horizontal line, and (d) mean color value of 5 × 5 block for central horizontal direction on ab
color image.

https://doi.org/10.1371/journal.pone.0232583.g007
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phenomenon is severe. Fig 7(C) and 7(D) represent the color value for the central horizontal

line and the average color value of a 5 × 5 block for the central horizontal direction on the ab
color image. We can confirm that the moiré value becomes higher toward a high frequency.

As shown in Fig 7(C), the moiré is extremely irregular in nature regardless of the frequency

band. Nevertheless, it can be seen in Fig 7(D) that the moiré increases gradually from low fre-

quency to high frequency through the average color value of the block for the central horizon-

tal direction. The blue and red curves indicate the respective resulting moiré curves by the

ideal sensor and arbitrary CFA. We increased the block size to 15 × 15 to better understand

the moiré characteristics of each CFA. Using a threshold for the average color value of the

block, the MSP for each CFA is analyzed. In addition, the MSP is expressed in units of spatial

frequency (cycles per degree).

2.2.6. Achromatic reproduction using gray-bar. The AR error of achromatic color is

measured by the difference in luminance for the central horizontal line of the ideal and CFA

output images for GRAY-BAR shown in Fig 3(E). The brightness of the GRAY-BAR decreases

for the vertical line in the image. The original GRAY-BAR image is degraded owing to the

change in luminance and noise during the rendering process through the CFA. The luminance

value of the central horizontal line of the output image rendered by an arbitrary CFA for the

GRAY-BAR contains a partial luminance change and white noise compared with the output

image by the ideal sensor. The AR error for any CFA is measured by looking at the average dif-

ference in luminance for the central horizontal line between the GRAY-BAR rendered by an

ideal sensor and the CFAs.

2.2.7. Structural and color distortion using MDSI. The MDSI utilizes gradient and chro-

minance features to measure structural and color distortion [46]. A gradient-chromaticity sim-

ilarity map is made by combining these two similarity maps. First, for reference (ideal) and

distorted (CFA) images, R and D, GS is obtained by

GSðxÞ ¼
2GRðxÞGDðxÞ þ C1

G2
RðxÞ þ G2

DðxÞ þ C1

; ð3Þ

where C1 is a constant to control numerical stability. The gradient-color similarity (GCS) is

calculated as the follows:

GCSðxÞ ¼ aGSðxÞ þ ð1 � aÞCSðxÞ; ð4Þ

where GSðxÞ and CSðxÞmeans the enhanced gradient and color similarity function [46]. And

the MDSI is defined as the follows:

MDSI ¼
1

4

XN

i¼1

jGCS1=4

i �
1

N

XN

i¼1

GCS1=4

i

 !

j

" #1=4

; ð5Þ

2.2.8. Perceptual similarity using HaarPSI. The HaarPSI was presented for yielding full

reference IQ assessments [47]. The HaarPSI evaluates local similarities as well as entire similar-

ities between two images by using the coefficients obtained from a Haar wavelet decomposi-

tion. For two grayscale images f1, f2, the local similarity is computed based on a 2D discrete

Haar wavelet transform as the following;

HSðkÞf1 ;f2
½x� ¼ la

1

2

X2

j¼1

SðjðgðkÞj � f1Þ½x�j; jðg
ðkÞ
j � f2Þ½x�j;CÞ

 !

; ð6Þ

where C>0, k2{1,2} selects either horizontal or vertical Haar wavelet filters and S represents
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the similarity. The HaarPSI is computed by

HaarPSIf1 ;f2 ¼ l� 1

a

X

x

X2

k¼1
HSðkÞf1 ;f2 ½x� �W

ðkÞ
f1 ;f2
½x�

X

x

X2

k¼1
WðkÞ

f1 ;f2
½x�

0

@

1

A

2

; ð7Þ

where W means a weight map which is derived from the response of a single low-frequency

Haar wavelet filter.

2.2.9. Normalization of metrics and its combination. The polar coordinate was selected

to observe the entire performance of the test CFAs. To quantitatively and visually evaluate the

test CFAs, the measured eight metrics should be normalized with the dynamic range of [0, 1].

The smaller the value of the color difference ΔE by CIELAB with the MCC image is, the color

difference (color reproduction error) ΔEs by S-CIELAB and MDSI with the PUPPY image,

and the AR error ΔN with the GRAY-BAR image, the better the reproduction performance

and structural (and color) similarity for the color and luminance by the CFAs. By contrast, the

larger the SSIM and HaarPSI value from the PUPPY image, the MTF50 value from the SLAN-

TED-BAR image, and the MSP value from the LINEAR-CHIRP image are, the better the struc-

tural information preservation, perceptual similarity, image contrast, and moiré robustness

performance of the CFAs. First, ΔE, ΔEs, and ΔN measured using CIELAB, S-CIELAB, AR,

and MDSI are normalized to give a higher score to the smaller difference value as in the follow-

ing:

nDE ¼ ðDEmax � DEÞ=ðDEmax � DEminÞ

nDEs ¼ ðDEs:max � DEsÞ=ðDEs:max � DEs:minÞ

nDN ¼ ðDNmax � DNÞ=ðDNmax � DNminÞ

nMDSI ¼ ðMDSImax � MDSIÞ=ðMDSImax � MDSIminÞ

; ð8Þ

where the min and max values of each of the above metrics are ΔEmax = 6, ΔEmin = 2.2, ΔEs.max

= 9.5, ΔEs.min = 2.5, ΔNmax = 1.0, ΔNmin = 0.5 and MDSImin = 0.5, MDSImin = 0. By contrast,

the measured SSIM, MTF50, MSP, and HaarPSI for the structural information, image contrast,

and moiré starting point are normalized to give a higher score to a bigger measurement value,

as in the following:

nSSIM ¼ ðSSIM � SSIMminÞ=ðSSIMmax � SSIMminÞ

nMTF50 ¼ ðMTF50 � MTF50minÞ=ðMTFmax � MTFminÞ

nMSP ¼ ðMSP � MSPminÞ=ðMSPmax � MSPminÞ

nHaarPSI ¼ ðHaarPSI � HaarPSIminÞ=ðHaarPSImax � HaarPSIminÞ

; ð9Þ

where the min and max values of the respective metrics are SSIMmax = 1, SSIMmin = 0,

MTF50min = 110, MTFmin = 30, MSPmax = 150, MSPmin = 20, and HaarPSImax = 1, and HaarP-

SImin = 0. The SSIM is originally calculated as [0, 1]. The min and max values used to calculate

the score of each metric were empirically derived by considering the distribution of the mea-

sured values of the test CFAs for each metric.

3. Results and discussion

We simulated the performances of all test CFAs with eight metrics with the text input images.

The bilinear, laplacian, adaptive laplacian, and POCS demosaicing method for each CFA is

used in the proposed system. Figs 8 to 15 and Table 1 show comparisons between test CFAs by
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bilinear demosaicing, while Figs 16 and 17 and Tables 2 and 3 show overall comparisons

between test CFAs by all the demosacings used in this paper.

Fig 8 shows the color difference for the color patches for the test CFAs using the CIELAB

metric and MCC. In the CIELAB plane, the blue circles indicate the measured value, and the

small red lines show the distance from the measurement to the ideal value. All of the test CFAs

commonly show larger color difference in the blue color region. In addition, CMY1 and

CMY2 show large color difference even in the red-yellow region. In the mean Delta E of

Table 1, the RGBW CFAs showed the smallest color difference of (2.58~2.63), and the color

difference of the RGB CFAs (2.93~2.97) were smaller than the CMY CFAs (2.61~3.70). It can

be seen that the RGB CFAs have larger color difference compared with the RGBW or CMY

CFAs. In the mean Delta L for the lightness (luminance) error, the RGBW CFAs were the

smallest at 2.13–2.16, and the RGB CFAs have the highest lightness error at 4.01~–4.06,

whereas CMY CFAs range at 3.86~–3.97.

Fig 9 shows the chromaticity of test CFAs for the MCC. As in the CIELAB color plane of

the test CFAs mentioned above, all test CFAs have larger color difference in greenish-blue

region even in the chromaticity. Bayer and RGB CFAs have larger color difference in red (or

pink) and greenish-blue region, whereas CMY1 and CMY2 among the CMY CFAs have larger

color difference in yellow, red, and greenish-blue region. We can see that the CMY3- and

RGBW-CFAs among the test CFAs have a relatively smaller color difference for all colors of

the MCC.

Fig 8. Color difference error of 24 color patches for test CFAs.

https://doi.org/10.1371/journal.pone.0232583.g008
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Fig 10 shows the color reproduction error (DE�s ) using S-CIELAB and the structural infor-

mation results using the SSIM for the test CFAs. S-CIELAB typically predicts a lower visibility

of the color differences for textured regions. Qualitatively, these predictions are consistent

with the measurements of human spatial-color sensitivities. In the color reproduction error,

RGB CFAs (3.24~3.50) performed better than the CMY CFAs (5.28~6.09) and RGBW CFAs

(3.61~3.80). All of the CFAs commonly have a remarkable color difference for blue (see the

blue block region of the lower-right corner in the respective output images). In addition,

CMY1 and CMY2 show a particularly larger color difference even in the red (puppy doll

region in the output images) and yellow (yellow panel regions in the upper-left corner in the

output images) color region. These results are similar to the color error result of CIELAB

described above because S-CIELAB is consistent with the basic CIELAB calculation for large

uniform areas.

Because the SSIM measures the structural similarity of the luminance, contrast, and struc-

ture between an ideal image and the output image, the closer it is to 1, the better the IQ of the

output image is, which is contrary to CIELAB and S-CIELAB. All test CFAs obtained almost

equally excellent SSIM values (0.73~0.79) except for CMY3. In the results of CIELAB and

S-CIELAB, CMY3 showed better (smaller) color error and color reproduction error perfor-

mance for bluish-green or greenish-blue (upper-center panel region in the output images)

color. So we can deduce that CMY3 obtained a poor SSIM value because the structural com-

parison function among the similarity functions of the SSIM has a lower value (i.e., poor

Fig 9. xy chromaticity diagram of test CFAs for MCC.

https://doi.org/10.1371/journal.pone.0232583.g009
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structural similarity), compared to the luminance comparison function or the contrast com-

parison function.

Fig 11 shows the MTF50 of R, G, B, and K (black) color for the test CFAs. The MTF mea-

sures the contrast reproductivity, which is the ability to resolve the black and white vertical

lines in the rendered SLANTED-BAR image. In general, the contrast reproducibility decreases

as the spatial frequency increases. In the figure, the small vertical red line (at 227 cycles/mm)

indicates the Nyquist frequency.

As described in section 2.2.4, the luminance MTF indicates that the G color among the

RGB colors has the largest weight. As a result, the overall distribution of the luminance MTF

for K color is similar to the MTF distribution of the G color. On the other hand, the weights of

the R and B color are smaller than that of the G color. Additionally, the MTF distributions of

these two colors are similar to each other. Although a CFA is composed of the same elements,

the MTF results vary depending on the location and structure of the elements. In the MTF

result for R and B color, RGB1, RGB2, and RGB4 among the RGB CFAs, CMY1 and CMY2

among the CMY CFAs, and RGBW1 among the RGBW CFAs show a significant contrast

reproductivity. In the MTF results for the G color, RGB1, RGB2, RGB4, and RGB5 among the

RGB CFAs, CMY2 and CMY3 among the CMY CFAs, and RGBW2 and RGBW3 among the

RGBW CFAs show a superior resolution capability. As a result, we confirmed that Bayer

(79.20), RGB1 (75.00), RGB2 (77.60), RGB5 (75.20), CMY2 (78.80), and RGBW1 (74.20) show

an excellent contrast reproducibility according to the spatial frequency.

Fig 10. Color reproduction error using S-CIELAB and structural information results using SSIM for test CFAs.

https://doi.org/10.1371/journal.pone.0232583.g010
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During the simulation of the moiré phenomenon, the illuminant used was D65, and the

mean luminance was set to 100 cd/m2. Fig 12 shows the image output by the test CFAs, where

ab (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða�Þ2 þ ðb�Þ2
q

) calculates the color of the output image, the original color values for the

center-horizontal line of the ab color image, and the filtered color values using a one-dimen-

sional (1 × 5) mean filter for the original color values of the center horizontal line. The test

CFAs cause unintended color bands or moiré phenomena within the high spatial frequency

region of the sinusoidal, or a linear-chirp pattern. The LINEAR-CHIRP image does not origi-

nally contain any color. However, rendering using the CFA causes unintended color to appear

in the high spatial frequency band. In the ab color image, the darker red region indicates that

the moiré is severe. The original color value for the central horizontal line of the ab color

image contains a lot of noise owing to the high-frequency effect. To analyze the moiré color

band more quantitatively, a one-dimensional 1 × 5 mean filter was applied to the original

color value for the central horizontal line of the ab color image. Bayer, RGB2, RGB4, RGB5,

and RGBW1 show gentle color values rising from the low to high spatial frequency band,

which indicates robustness to the moiré, as compared to the other test CFAs. It is also note-

worthy that, even though all CFAs include the same elements, the moiré pattern differs

depending on the location and structure of the elements. RGB1 and RGB3 in the RGB CFAs,

CMY2 and CMY3 among the CMY CFAs, and RGBW2 and RGBW3 among the RGBW CFAs

have already caused a moiré phenomenon even within a relatively lower spatial frequency

band than the other test CFAs.

Fig 13 shows the mean color value curves of the central horizontal line of the ab color

image using (a) 1 × 5 and (b) 1 × 15 mean filters, and the MSP results for the test CFAs. As

shown in the Fig 13(A), as the spatial frequency increases, the moiré worsens. To more quanti-

tatively evaluate the moiré characteristics, we plotted the mean color value curve using 1 × 15

mean filter as shown in Fig 13(B). In the figure, the small red horizontal line indicates the

Fig 11. MTF50 of (a) R (red), (b) G (green), (c) B (blue), and (d) K (black) color for test CFAs.

https://doi.org/10.1371/journal.pone.0232583.g011
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Fig 12. Output image of test CFAs for LINEAR-CHIRP image, ab color image for output image, color value for center

horizontal line of color image, and filtered color value using one-dimensional (1 × 5) mean filter for the color value.

https://doi.org/10.1371/journal.pone.0232583.g012
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Fig 13. Mean color value curves using (a) 1 × 5 and (b) 1 × 15 mean filters and MSP results for test CFAs.

https://doi.org/10.1371/journal.pone.0232583.g013

Fig 14. Luminance value curve and mean AR error value for test CFAs.

https://doi.org/10.1371/journal.pone.0232583.g014
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threshold applied to the filtered color value for detecting the MSP where the moiré starts to

occur. The threshold was empirically set at 25. While Bayer (120 cpd), RGB4 (118 cpd), and

RGBW1 (138 cpd) show higher MSP performance, RGB3 (50 cpd), CMY3 (33 cpd), and

RGBW2 (55 cpd) show a very poor MSP performance.

Fig 14 shows the luminance value curve for the center horizontal line of the output image.

The respective output gray-bar images rendered by each test CFA contains some noise. How-

ever, the overall condition is excellent. We can see the mean AR error value (i.e., mean noise

value), namely, the mean of the absolute difference of the luminance values of the central hori-

zontal line for the gray-bar images rendered by the ideal imaging system and the test CFAs. It

Fig 15. MDSI and HaarPSI results for test CFAs.

https://doi.org/10.1371/journal.pone.0232583.g015

Table 1. Mean delta E for 24 color patches and mean delta L for 6 achromatic patches for test CFAs.

Metrics Bayer RGB1 RGB2 RGB3 RGB4 RGB5 CMY1 CMY2 CMY3 RGBW1 RGBW2 RGBW3

Mean ΔE 3.00 2.95 2.93 2.94 2.97 2.95 3.70 3.69 2.61 2.58 2.63 2.60

Mean ΔL 3.96 4.01 4.03 4.06 4.01 4.06 3.95 3.86 3.97 2.16 2.15 2.13

https://doi.org/10.1371/journal.pone.0232583.t001
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should be noted that the mean AR error value of CFAs with the same elements, unlike other

metrics (for example, MTF50 or MSP), is similar despite the change in structure and location

of the elements. As a result, the mean AR error (0.7527) of CMY CFA is somewhat higher than

that of Bayer CFA (0.6234), RGB CFA (0.6511), and RGBW CFA (0.6289). In addition, RGB4

in the RGB CFAs has the lowest mean AR error whereas CMY3 shows the highest one.

Fig 15 shows the MDSI and HaarPSI results for the test CFAs. MDSI means that the closer

to 0, the higher the structural and color similarity. All test CFAs show relatively good MDSI

values. The closer the GCS is to 1, the higher the structural and color similarity between the

original and rendered image. Most CFAs have a lower GCS near indigo (or blue) color, which

means that the similarity is lower in the area. MDSI values are similar for each CFA, however

the GCS distribution is different (especially in the red and blue color regions). Based on this

phenomenon, it can be deduced that MDSI value may vary according to color distribution of

the input image. For each test CFAs, HaarPSI ranges 0.60 to 0.75. Total images rendered show

entirely high HaarPSI value because the degree of distortion is weak compared to the original

image. In perceptual similarity comparison, RGB-based CFAs show higher HaarPSI values,

while CMY or RGBW-based CFAs have rather lower HaarPSI values.

Table 2 shows the results of each metric for test CFAs using different demosaicing methods.

The red box represents the highest scoring CFAs in the demosaicing and metrics. RGB4 for

bilinear demosaicing, RGBW1 for laplacian demosaicing, Bayer for adaptive laplacian

Fig 16. Polar coordinate visualization for test CFAs (magenta dotted line: Bilinear, cyon dotted line: laplacian, green dotted line: adaptive laplacian, blue dotted line:

POCS, and red solid line: average).

https://doi.org/10.1371/journal.pone.0232583.g016
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demosaicing, and RGB5 for POCS demosaicing have the highest number of red box (best met-

ric-score). Also, regardless of demosaicing methods, Bayer, RGB1~RGB5, CMY1~CMY3, and

RGBW1~RGBW3 CFA have seven, two, zero, one, three, three, one, one, four, seven, two, and

two red boxes respectively.

Fig 16 shows a polar coordinate visualization of the test CFAs through the proposed CFA

IQ evaluation system. It can be seen that the performance of the test CFAs can be easily visual-

ized. Table 3 shows the performance comparison of test CFAs as the average of the normalized

metrics mentioned in section 2.2.9. Bayer shows the best performance for adaptive laplacian

demosaicing and obtained higher metric scores of 0.0203~0.1228 compared to the other test

CFAs. On the other hand, RGBW1 shows the best performance for bilinear, laplacian, and

POCS demosacing and received superior metric socres of 0.0026~0.2323, 0.003~0.1014,

0.0084~0.1611 for the respective demosaicing methods. For all the demosaicing methods used

in this paper, the best CFA was RGBW1 and acquired higher scores of 0.0228 to 0.1081 com-

pared to the other test CFAs. Based on the analysis in Table 3, the CFA ranks for the respective

and total demosaicing methods are shown in Fig 17. We can see that the metric score differ-

ence between the worst and the best CFA for each demosaicing method is significant.

As a result, the proposed CFA IQ evaluation system can be useful for analyzing the IQ char-

acteristics of existing CFA structures or for evaluating the IQ when developing a CFA with a

new structure. The respective metrics used in this paper are an example of analyzing a CFA.

The existing or proposed metrics used in this paper evaluate quantitatively and objectively the

images rendered by CFAs. In future research, we will incorporate the psychophysical (subjec-

tive) assessment factors into CFA image quality assessment, considering various experimental

methods such as participants (experts and non-experts), experimental images, experimental

settings such as background illumination and gamma correction of a monitor, and online or

in-situ site selection.

Fig 17. CFA ranks for (a) blinear, (b) laplacian, (c) adaptive laplacian, (d) POCS, and (e) total demosaicing methods.

https://doi.org/10.1371/journal.pone.0232583.g017
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4. Conclusions

This paper presented a novel CFA IQ evaluation system that enables a comparative study of

the IQM of output images rendered through various CFA patterns. Although many CFA pat-

terns have been developed over the past few decades, it remains a challenge to design and

Table 2. Comparison results of all metrics for test CFAs according to demosaicing methods.

Metrics Bayer RGB1 RGB2 RGB3 RGB4 RGB5 CMY1 CMY2 CMY3 RGBW1 RGBW2 RGBW3

Bilinear ΔEs 3.58 3.25 3.47 3.50 3.24 3.46 5.28 5.28 6.09 3.61 3.79 3.80

SSIM 0.73 0.79 0.75 0.74 0.78 0.76 0.76 0.78 0.66 0.75 0.76 0.76

MSP 120.00 68.00 88.00 50.00 118.00 85.00 75.00 74.00 33.00 138.00 55.00 65.00

MTF50 79.20 75.00 77.60 60.80 74.40 75.20 70.90 78.80 70.00 74.20 60.00 65.20

ΔE 3.00 2.95 2.95 2.94 2.97 2.95 3.70 3.69 2.61 2.58 2.60 2.60

ΔL 0.62 0.67 0.67 0.66 0.59 0.67 0.72 0.74 0.80 0.63 0.62 0.63

MDSI 0.34 0.34 0.34 0.34 0.33 0.34 0.37 0.37 0.40 0.35 0.36 0.36

HaarPSI 0.75 0.75 0.75 0.74 0.75 0.75 0.68 0.69 0.60 0.70 0.68 0.68

Laplacian ΔEs 3.67 3.38 3.75 5.10 4.14 4.50 4.87 4.41 5.86 2.79 3.34 4.13

SSIM 0.69 0.67 0.81 0.80 0.64 0.84 0.85 0.87 0.78 0.85 0.67 0.81

MSP 55 88 65 85 86 105 79 88 45 110 89 77

MTF50 98 84.2 94.40 77.0 81.52 67.80 69.8 65.6 74.00 83.00 89.00 87.60

ΔE 2.93 2.93 3.31 3.60 3.65 3.55 2.94 2.97 2.39 2.80 3.52 3.68

ΔL 0.75 0.79 0.63 0.78 0.77 0.87 0.61 0.54 0.59 0.84 0.75 0.59

MDSI 0.36 0.32 0.43 0.28 0.37 0.41 0.43 0.34 0.32 0.30 0.30 0.25

HaarPSI 0.66 0.75 0.68 0.68 0.65 0.69 0.63 0.72 0.69 0.66 0.71 0.72

Adaptive Laplacian ΔEs 3.74 3.14 3.01 4.23 5.21 3.79 5.17 4.96 5.64 3.18 2.64 3.21

SSIM 0.68 0.65 0.76 0.64 0.59 0.79 0.89 0.78 0.86 0.63 0.87 0.70

MSP 147 78 89 92 95 93 85 87 69 95 93 89

MTF50 104.4 63.00 74.00 82.6 88.23 79.3 63 72.2 65.40 92.8 95.2 85.20

ΔE 2.95 3.12 3.51 3.12 3.14 3.15 3.24 3.31 3.34 3.11 3.83 2.97

ΔL 0.81 0.85 0.75 0.83 0.69 0.62 0.60 0.64 0.55 0.74 0.84 0.78

MDSI 0.36 0.41 0.37 0.31 0.41 0.29 0.35 0.38 0.30 0.25 0.23 0.31

HaarPSI 0.65 0.71 0.66 0.75 0.70 0.59 0.71 0.76 0.66 0.64 0.69 0.79

POCS ΔEs 4.08 3.98 4.11 3.38 6.13 3.29 4.38 5.33 6.28 3.38 4.63 3.31

SSIM 0.63 0.76 0.63 0.85 0.71 0.88 0.68 0.86 0.68 0.72 0.77 0.79

MSP 70 89 96 98 91 85 71 69 75 115 75 95

MTF50 111.8 73.80 84.80 74.0 73.64 83.40 78.40 69.0 76.40 72.6 87.4 96.00

ΔE 2.94 3.21 2.54 3.33 2.89 2.79 2.94 3.20 2.53 2.56 2.75 3.15

ΔL 0.80 0.73 0.81 0.69 0.86 0.74 0.67 0.55 0.62 0.61 0.63 0.67

MDSI 0.35 0.39 0.39 0.23 0.35 3.36 0.46 0.31 0.42 0.32 0.27 0.25

HaarPSI 0.67 0.68 0.74 0.71 0.63 0.78 0.68 0.69 0.75 0.74 0.65 0.62

https://doi.org/10.1371/journal.pone.0232583.t002

Table 3. Performance comparison of test CFAs by normalized metrics.

Demosaic Bayer RGB1 RGB2 RGB3 RGB4 RGB5 CMY1 CMY2 CMY3 RGBW1 RGBW2 RGBW3

Bilnear 0.7391 0.6853 0.6995 0.6648 0.7526 0.6958 0.5965 0.6064 0.5299 0.7552 0.6495 0.6637

Laplacian 0.6820 0.6755 0.6849 0.6235 0.6145 0.6082 0.6554 0.7066 0.6488 0.7096 0.6733 0.7047

Adaptive laplacian 0.7195 0.5967 0.6515 0.6428 0.6463 0.6992 0.6637 0.6603 0.6495 0.6959 0.6973 0.6918

POCS 0.6724 0.6486 0.6637 0.7096 0.5827 0.7149 0.6361 0.6671 0.6437 0.7438 0.6978 0.7354

Total 0.7033 0.6515 0.6749 0.6602 0.6490 0.6795 0.6379 0.6601 0.6180 0.7261 0.6795 0.6989

https://doi.org/10.1371/journal.pone.0232583.t003

PLOS ONE Image-quality metric system for color filter array evaluation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232583 May 11, 2020 20 / 24

https://doi.org/10.1371/journal.pone.0232583.t002
https://doi.org/10.1371/journal.pone.0232583.t003
https://doi.org/10.1371/journal.pone.0232583


analyze new CFA patterns for improving the IQ and color reproduction. The proposed CFA

evaluation system includes newly devised metrics such as MSP and AR, as well as existing met-

rics such as CIELAB, S-CIELAB, SSIM, MTF50, MDSI, and HaarPSI, to evaluate CFA patterns

and demosaicing methos from various perspectives of color accuracy, color reproduction

error, AR, structural information, image contrast, moiré robustness, structual distortion, and

perceptual similarity for rendered output images. To analyze the CFA IQ performance more

precisely, any parameters concerning the applied metrics can be modified, or novel quantita-

tive metrics can be added in the evaluation system.
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