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Abstract: Three different types of entropy weight methods (EWMs), i.e., EWM-A, EWM-B, and
EWM-C, have been used by previous studies for integrating prediction models. These three methods
use very different ideas on determining the weights of individual models for integration. To evaluate
the performances of these three EWMs, this study applied them to developing integrated short-term
traffic flow prediction models for signalized intersections. At first, two individual models, i.e., a
k-nearest neighbors (KNN)-algorithm-based model and a neural-network-based model (Elman),
were developed as individual models to be integrated using EWMs. These two models were selected
because they have been widely used for traffic flow prediction and have been approved to be able to
achieve good performance. After that, three integrated models were developed by using the three
different types of EWMs. The performances of the three integrated models, as well as the individual
KNN and Elman models, were compared. We found that the traffic flow predicted with the EWM-C
model is the most accurate prediction for most of the days. Based on the model evaluation results,
the advantages of using the EWM-C method were deliberated and the problems with the EWM-A
and EWM-B methods were also discussed.

Keywords: entropy weight method; traffic flow forecasting; k-nearest neighbors algorithm; neural
network

1. Introduction

The entropy weights method (EWM) is a commonly used information-weighting
method in decision making. It has been widely used in comprehensive evaluation studies
that use different evaluation indexes [1–3]. In these studies, the weights of different indexes
are determined according to the degree of dispersion. The smaller the entropy value, the
greater the degree of dispersion of the index, and the greater the influence of the index on
the comprehensive evaluation. Therefore, it should be signed with a greater weight [2].
Recently, EWM has been used in integrating different prediction models to get better
predictions [4–6]. In these studies, the weights of different models, which quantitatively
measure the importance of each model, were determined based on the degree of dispersion
of the prediction errors. However, there are two different opinions on determining the
weight of an individual model. Some studies believe that a smaller information entropy
value means that the data are provided by many useful attributes, so a larger weight should
be assigned and vice versa [4,7]. On the contrary, some studies suggest that a smaller
entropy value of the prediction error indicates that the variation degree and uncertainty
of model prediction is greater, and thereby, a smaller weight should be assigned to this
model and vice versa [5,8–10]. One recent study [6] indicates that there is a nonlinear
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relationship between the entropy value and model accuracy level. Both low-accuracy and
high-accuracy prediction models can result in small entropy values of the model prediction
errors. Thus, the weight cannot be assigned based on the entropy value alone. To address
this problem, they proposed a new entropy weight method for model integration. The
prediction accuracy level of each individual model was incorporated into the calculated
weights to reduce the impact of the model with less accuracy, which results in the improved
prediction accuracy of the integrated model.

These three different EWMs have all been used by researchers for integrating predic-
tion models [4–7]. They use very different ideas on determining the weights of individual
models for integration. However, there is a lack of research that compares the performance
of these different methods and identifies the best EWM for integrating prediction models.
To address this problem, in this research, these three different entropy-based methods
were applied to develop an integrated model to predict the short-term traffic at signalized
intersections. Their performances were compared and analyzed based on the results of
this study.

Short-term traffic flow prediction is crucial for advanced traffic management, espe-
cially for complex urban roadway networks. The main challenge in studying traffic flow
problems is that the traffic flow data are unevenly distributed, highly dimensional, and
dynamic changing [11]. Entropy analysis has been applied to traffic and transportation
planning since the 1980s [12,13]. Previous studies applied entropy-based methods to
identify different levels of the orderliness of traffic flow in a roadway network for the
purposes of incident detection, roadway safety analysis, and driving behavior analy-
sis [11,14–18].

In this study, at first, two individual traffic flow prediction models, i.e., a k-nearest
neighbors (KNN)-algorithm-based model and a neural-network-based model (Elman),
were developed because these two types of models have been widely used for traffic flow
prediction and have been approved to be able to achieve good performance [19–23]. After
that, three integrated models were developed by using the three different entropy-based
methods. The developed models were evaluated by comparing the predicted traffic flow
rates with the traffic data collected at a real-world signalized intersection. Finally, the
model performance was analyzed, and conclusions and recommendations of this study
were provided.

2. Literature Review
2.1. Entropy Weight Method (EWM)

The EWM is one of the weighting methods that measures the dispersion level of dif-
ferent information sources in decision making. It has been widely used in comprehensive
evaluation studies where the weights of different indexes are determined according to the
entropy value of the different evaluation indexes. For example, Dang and Dang [2] used a
multi-standard decision-making method to evaluate the environmental quality of the Orga-
nization for Economic Cooperation and Development countries. The weights and method
standards were determined based on the entropy weight method. Zhao et al. [1] developed
an entropy-based model to predict automobile engine fault diagnosis. The weight of each
factor in the evaluation was determined based on entropy. In all these comprehensive
evaluation studies, a smaller entropy value of the indicator means a greater degree of
dispersion, thereby it has a greater impact and should be assigned a greater weight.

Except for comprehensive evaluation studies, researchers also applied EWM methods
for integrating different prediction models to improve prediction accuracy. In these studies,
the weights of different models were determined based on the entropy of the model
prediction errors. There are two different opinions on determining the weight of each
individual model. Some studies believe that a model with a smaller entropy value of
prediction error should be assigned a greater weight. For example, in a study [4], to predict
the critical frequency of the ionosphere, authors used the entropy method to assign weights
to the two single prediction results of Union Radio Scientifique Internationale and the
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International Radio Consultative Committee to develop an integrated prediction model. In
this study, it was stated that a small information entropy value means the data are provided
by many useful attributes, so a large weight should be assigned to this model. In another
study [7], to increase the prediction accuracy of software reliability failure data, authors
established an interacted prediction model using the EWM. In this study, it was believed
that if the value of information entropy is smaller, the uncertainty is smaller, and greater
weight should be given. It can be concluded that for the above papers, the basic idea for
assigning weights to different models is that the smaller the entropy value of the prediction
error of an individual model, the greater the weight should be assigned. This type of EWM
is referred to as type A EWM (EWM-A) in this study.

On the contrary, some other studies believe that a smaller entropy value of the predic-
tion error indicates that the variation degree and uncertainty of model prediction is greater,
thereby a smaller weight should be assigned to this model. For example, to accurately
predict the Normalized Vegetation Difference Index (NDVI) in the Yellow River basin,
Huang et al. [5] developed a forecasting model by combining three individual models, i.e.,
multilinear regression (MLR), artificial neural network (ANN), and support vector machine
(SVM) models. The method used to determine the weight is EWM. The idea is that if the
prediction error of a single prediction model varies greatly, the entropy value of the model
is small, indicating that the model does not perform well and should be given a small
weight. In another study, Sun et al. [8] used the same EWM to assign weights to the gray
GM (1,1) model and the gray Verhulst model for predicting the bearing capacity of anchor
bolts. Chen and Li [9] also used the same EWM to develop an integrated prediction model
for unit crop yield prediction. To predict sintering energy consumption, Wang et al. used
this EWM to assign weights to two sintering energy consumption models [10]. For all the
above papers that used EWM for model integration, the basic idea for assigning weights to
different models is that if an individual model has a smaller entropy value of prediction
error, the prediction variance in a model is larger, and a smaller weight should be assigned
to it. This type of EWM is referred to as type B EWM (EWM-B) in this study.

Besides these two commonly used EWMs, recently, Shan and Zhang [6] proposed
another EWM-based method for model integration. The authors indicate that there is a
nonlinear relationship between the entropy value and model accuracy level. Both low-
accuracy and high-accuracy prediction models can result in small entropy values of the
model prediction errors. Thus, the weight cannot be assigned based on the entropy value
alone. To address this problem, they proposed using a weighted entropy of the model
prediction error, and the prediction accuracy level of the individual model was incorporated
into this weighted entropy. In this way, the impact of the model with low accuracy can be
reduced and the integrated model can be improved. This type of EWM is referred to as
type C EWM (EWM-C) in this study.

In this paper, three integrated traffic flow prediction models were developed by
using these three different types of EWMs, introduced above. Regarding the individ-
ual models, traffic flow forecasting has been intensively studied. Both parametric and
non-parametric models were developed. Among all these models, the K-Nearest Neigh-
bor (KNN) Algorithm and Artificial Neural Network (ANN) were approved to have
good performance in predicting short-term traffic flow [19–23]. Following is a brief
introduction to the literature that used these two methods for developing traffic flow
prediction models.

2.2. Short-Term Traffic Flow Forecasting—K-Nearest Neighbor (KNN) Algorithm

The K-Nearest Neighbor Algorithm (KNN), a classic non-parametric regression method,
has been widely used in short-term traffic forecasting. It has been approved to be able
to achieve good performance [24–28]. In these studies, several KNN-based models were
developed by improving the basic KNN algorithm. In summary, the KNN algorithm can
be improved in four aspects:
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1. Extended state vector. State vector describes the criterion by which the current
data are compared with historical data. Usually, the state vector X(t) is defined as
X(t) = [S(t), S(t − 1), . . . , S(t − n)], where S(t), S(t − 1), . . . , S(t − n) denote the traffic
flow rates at time intervals t, t − 1, . . . , t − n, respectively. Some research [25–28]
added spatial factors (such as the upstream and downstream intersection traffic flow
rates) to extend the dimension of the state vector.

2. Improved distance measurements. The common method of measuring “proximity” in
non-parametric regression is to use Euclidean distance [29,30] or weighted Euclidean
distance [29] to calculate the distance between state vectors. There are other distance
measuring methods that have been utilized by researchers, such as Manhattan dis-
tance [29–32], Hassanat distance [33,34], and Chi-square [35]. Improvements include
using the weighted Euclidean distance by considering different factors. For example,
Yu et al. suggested that weights should be assigned based on the close degree between
time components in the state vector and the forecasting time [26]. Habtemichael and
Cetin also recommended giving more weight to the recent measurements and less to
the older ones [36].

3. Improved methods for determining the K value. Based on the calculated distance, the
K nearest neighbors can be identified. The KNN model is sensitive to the selected K
value, and the K value affects the model accuracy [37]. Previous studies have used
different methods to determine the K value based on average absolute percentage
error, relative error, and root mean square error [24–28,38–40].

4. Enhanced prediction algorithm. For the KNN method, the model prediction is mainly
based on the simple average or weighted average of the K nearest neighbors. There
are different methods to determine the weights. For example, ref. [25–27] used the
inverse distance as the weight, and ref. [28] used the Gaussian function to determine
the weights of the selected neighbors.

2.3. Short-Term Traffic Flow Forecasting—Artificial Neural Network (ANN)

Artificial neural network (ANN) is another widely used forecasting method. It has
non-linear mapping and non-parametric characteristics and has great application potential
in traffic flow prediction [41]. Many researchers have applied the ANN or Back Propagation
(BP) neural network to predict traffic flow rate or congestion levels [27,42–51]. Recently,
a dynamic feedback neural network called Elman was used in traffic flow prediction
and showed improved results [19–23]. Elman neural network adds a context layer to the
network, which makes the output of the network at the current moment not only depend
on the current inputs but also related to the inputs at the previous moment using a memory
function. This feature makes the Elman model outperform the traditional BP model [21].

3. Methodology
3.1. Data Description

We selected a signalized intersection in China to collect the data used for the model
training and validation. Traffic information from 1 October 2018 to 1 April 2019, at this
intersection, was collected, for a total of 156 days. The collected traffic data include:

• Traffic flow rates by signal cycle;
• Queue length;
• Signal timing plan;
• Weekend or not.

At this study intersection, traffic signal cycle lengths are 1.5 min in some periods
and 2 min in others; therefore, traffic flow data are aggregated at 6 min intervals, and the
traffic flow rate here is the vehicles arriving at the intersection every 6 min. The data were
separated into two groups, the training group and the validation group. The validation
group contains six days of traffic data (27 March–1 April) and the training group includes
the rest of the data. The data were also grouped into weekday data and weekend data.
Since the traffic patterns are different during the week, one prediction model was developed
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for each day of the week. Note that there are no data available on Tuesday to develop a
prediction model due to system maintenance.

3.2. Model Development

At first, two individual models were developed, one KNN-based and one ANN-based
model. In our previous study [21], three individual models, i.e., basic KNN, BP, and Elman
models were developed. The model evaluation results showed that the Elman model
outperformed the BP model. Thus, the Elman model was selected as an ANN-based model
for model integration in this study. A detailed introduction of this model can be found
in our previous published paper [21]. In addition, in this study, we improved the basic
KNN model developed by Qu et al. [21] in three different ways, including using weighted
distance measurement, optimizing the K value, and improving the prediction algorithm.
The KNN model developed in this study is referred to as the improved KNN model. After
developing the two individual models, i.e., Elman model and the improved KNN model,
the three different EWM methods that we introduced before will be used for integrating
these two individual models. Finally, the results of different types of integrated models
will be compared to identify the best EWM method for integrating different prediction
models. In the following sections, the development of the improved KNN algorithm and
three EWM-based integrated models will be introduced first.

3.2.1. Improved K-Nearest Neighbor’s Algorithm

In Qu et al. [21], a basic KNN model was developed. In this research, an improved
KNN model was developed by using weighted distance measurement, optimizing the K
value, and improving the prediction algorithm.

1. Weighted Distance Measurement: The model developed in this research is to forecast
the vehicle arrival rate at the intersection 30 min later based on the arriving rates in
the previous 3 h. Therefore, the prediction model can be mathematically expressed
as follows.

f (xt−29, . . . xt−1, xt ) = xt+5 (1)

where,
t is the current time interval;
xt is the arrival traffic flow rate during the current time interval.
Since the traffic flow rate is at a 6 min interval, the vector ( xt−29, . . . xt−1, xt) repre-
sents the arrival travel flow rates during the previous 3 h and xt+5 represents the
predicted traffic flow rate that will arrive at the intersection in half an hour. According
to Habtemichael and Cetin [36], the time factor should be considered in the traffic
flow prediction, which means when calculating the similarity between current and
historical traffic flow data, more weight should be given to the more recently collected
traffic flow data. According to this idea, the following weighted Euclidean distance
is used:

dij =

√√√√ T

∑
t=T−29

ωt ×
(
xit − yjt

)2

(2)

ωt =
Wt,norm

T
∑

t=T−29
Wt,norm

(3)

where,
xit is the number of vehicles arriving at the tth time interval on the ith day in the
historical dataset;
xjt is the number of vehicles arriving at the tth time interval on the jth day in the
prediction dataset;
ωt is a time-related weight coefficient;
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Wt, norm is the normalized temporal distance between the endpoint of tth time interval
and the prediction time point, which can be expressed as follows:

Wt,norm =
Wt −Wmin

Wmax −Wmin
(4)

where,
Wt is the temporal distance between the endpoint of tth time interval and the predic-
tion time point (in the number of time intervals as the unit);
Wmax is the longest temporal distance from the prediction time point;
Wmin is the shortest temporal distance from the prediction time point.

2. Optimized K Value Based on the distance calculated in Equation (2), the K nearest
neighbors (the K historical days that have the traffic conditions most similar to the
traffic condition at the targeted time t of the prediction day) can be selected. In the
basic KNN model that was developed by Qu et al. [21], a given k value (K = 10) was
used. To improve the model prediction, in this study, different K values from 7 to 15
were tested and the K values that resulted in the lowest prediction error were selected
for predicting the traffic flow rate at the study intersection.

3. Improved Prediction Algorithm In the basic KNN model developed by Qu et al. [21],
the average traffic flow rate of the selected K days was used for prediction. In this
study, the weighted average method is used and the neighboring distance is used
as the weight. The basic idea is that if the traffic condition of the selected day is
more similar to the predicted day, it should contribute more to the predicted traffic
flow rates. Thus, the weighting coefficient of each neighbor can be calculated by
Equation (5).

wi =
1/dij

∑ 1/dij
(5)

where dij represents the weighted Euclidean distance between the ith similar historical
day and the prediction day (jth day) and is calculated by using Equation (2). Then,
the predicted traffic flow at the given time t + 5 can be estimated using Equation (6).

x̂t+5 =
k

∑
i=1

wixi(t+5)
∗, (6)

where x∗i(t+5) represents the number of vehicles arriving 30 min after the target time t
during the ith historical day that was one of the selected K nearest neighbors.

3.2.2. Integrated Prediction Models Based on Entropy Weight Method

The three different EWM methods that we introduced before will be used for integrat-
ing the two individual models, i.e., improved KNN and Elman models. Following are the
introductions of these three EWMs.

1. Entropy Weight Method A (EWM-A) As mentioned in the literature review section,
the EWM-A method is based on the idea that the smaller the entropy value of the
prediction error of an individual model, the greater the weight should be assigned to
it and vice versa. According to Bai et al. (2020), by using the EWM-A method, the two
selected individual models can be integrated through the following process:
Step 1: Calculate the absolute error weight of the individual model at time t by
Equation (7).

pst =
|est|

m
∑

t=1
|est|

(s = 1, 2, · · · , n; t = 1, 2, · · · , m) (7)

where,
est = |ŷst − yt|,
s indicates different models,
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n is the number of individual models (n = 2 in this study),
t represents the time, m is the number of prediction time points,
ŷst is the predicted value of the sth individual model at time t,
yt is the observed value.
Step 2: Calculate the entropy value of the sth individual model:

Hs = −k
m

∑
t=1

pst ln pst (s = 1, 2, · · · , n) (8)

If Pst = 0, then Pst ln Pst = 0, k = 1
ln m

Note that, according to the entropy concept, Pst in Equation (8) should be a probability
of an event. However, according to Equation (7), Pst is a ratio of a prediction error to
the sum of prediction errors instead of a probability. This is a critical problem with
this type of EWM and will be discussed more in the model evaluation part.
Step 3: Calculate the weight of the sth individual model:

ωs =
1− Hs

n−
n
∑

s=1
Hs

(s = 1, 2, · · · , n) (9)

In this study n = 2, thus, ωs becomes:

ωs =

{ 1−H1
2−H1−H2

s = 1
1−H2

2−H1−H2
s = 2

(10)

Note that, 0 ≤ ωs ≤ 1, ∑n
s=1 ωs = 1.

Step 4: Integrate the predictions of individual models based on the calculated weights:

Ŷ =
n

∑
s=1

ωsŷs (11)

where ŷs is the predictions of the sth individual model.
2. Entropy Weight Method B (EWM-B) Different from the EWM-A method, the EWM-B

method is based on the idea that if an individual prediction model has a smaller
entropy value of the prediction error, the variation degree and uncertainty in this
model are greater, thereby a smaller weight coefficient should be assigned to this
individual model. According to Huang et al. [5], the procedure of integrating the
developed improved KNN model and Elman model based on EWM-B are as follows.
Step 1: Calculate the relative error weight of the individual prediction model:

pst =
|est|

m
∑

t=1
|est|

(s = 1, 2, · · · , n; t = 1, 2, · · · , m) (12)

where,
est = |ŷst − yt|,
s indicates different models,
n is the number of individual models (n = 2 in this study),
t represents the time,
m is the number of prediction time points,
ŷst is the predicted value of the sth individual model at time t,
yt is the observed value.
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Step 2: Calculate the entropy value of the sth individual model:

Hs = −k
m

∑
t=1

pst ln pst (s = 1, 2, · · · , n) (13)

If Pst = 0, then Pst ln Pst = 0, k = 1
ln m

Step 3: Calculate the variation degree of the sth model:

Ds = 1− Hs (s = 1, 2, · · · , n) (14)

where, 0 < Hs < 1
Step 4: Calculate the weight coefficient of the sth individual model:

ωs =
1

n− 1

1− Ds
n
∑

s=1
Ds

 (s = 1, 2, · · · , n) (15)

Note that, in this study n = 2, thus:

ωs = 1− Ds
2
∑

s=1
Ds

= 1− 1− Hs

2− H1 − H2
=

{ 1−H2
2−H1−H2

s = 1
1−H1

2−H1−H2
s = 2

(16)

Compared with the weight coefficients of EWM-A given in Equation (10), it can
be seen that the weight coefficients of two individual models are simply swapped
in EWM-B.
Step 5: Integrate the predictions of individual models based on the calculated weights:

Ŷ =
n

∑
s=1

ωsŷs (17)

where,
ŷs is the predictions of the sth individual model.

3. Entropy Weight Method C (EWM-C) In information theory, entropy is a measure
of the uncertainty associated with a random variable. In the model integration, if
we calculate the entropy based on the relative error of the individual prediction
model as shown in Equation (7), both low and high accuracy of prediction models
could all lead to a small entropy value because the error is relative to other errors.
To address this problem, Shan and Zhang [6] proposed to use a new EWM-based
method (EWM-C) for model integration to take into account the prediction accuracy
levels of the individual models. In this method, they used a weighted entropy of the
model prediction error, and the prediction accuracy level of the individual model was
incorporated into this weighted entropy. In this way, the impact of the model with
low accuracy can be reduced and the prediction accuracy of the integrated model
can be improved. Following is the detailed procedure for integrating the prediction
models using the EWM-C method.
Step 1: Calculate the prediction accuracy of the sth individual model:

ast = 100%(1−
∣∣∣∣yt − ŷst

yt

∣∣∣∣) (s = 1, 2, · · · , n; t = 1, 2, · · · , m) (18)

where,
ast is the prediction accuracy of the sth individual model at time t,
s indicates different models,
n is the number of individual models (n = 2 in this study),
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t represents the time, m is the number of prediction time points,
ŷst is the predicted value of the sth individual model at time t,
yt is the observed value.
Step 2: Establish the matrix of model prediction accuracy
Then, the matrix of the prediction accuracy of different individual models can be
expressed as follows:

Anm =

a11 · · · a1m
...

. . .
...

an1 · · · anm

 (19)

Note that, the row vector As = (as1, as2, . . . , asm) represents the accuracy of the sth
individual model S = (1, 2, . . . , n).
Step 3: Establish the matrix of accuracy level frequency
First, round the number in the matrix Anm down to its integer (for example, 87.15%
rounded down to 87%). Then, by counting the number of different accuracy levels,
the following matrix of the accuracy level frequency can be established.

Rnm =

r11 · · · r1m
...

. . .
...

rn1 · · · rnm

 (20)

where rst represents the number of occurrences of ast (integer part) in the row s.
Step 4: Calculate the weighted information entropy of the sth model
Then, the weighted information entropy of the sth model, i.e., Es, can be calculated by
Equation (21).

Es = −
m

∑
t=1

wst pst log pst (s = 1, 2, · · · , n) (21)

where,
pst =

rst
m
∑

t=1
rst

(22)

wst =


1 ast < X%

1− Nst
m
∑

t=1
Nst

ast ≥ X%

 (23)

Nst is the number of ast greater than the accuracy level X% in the sth row in matrix A
(in this study X% = 80%).
Step 5: Calculate the weight coefficient of the sth individual model:
The weight coefficient of the individual model can be calculated based on the Es
calculated in Step 4 as follows:

ωs =
1

ZEs
(s = 1, 2, · · · , n) (24)

where,
Z is a normalization factor that ensures that all weights sum to 1.
Thus, when n = 2, the weight of the two individual models can be calculated as:

ωs =

{ E2
E1+E2

s = 1
E1

E1+E2
s = 2

(25)
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Step 6: Integrate the predictions of individual models based on the calculated weights:

Ŷ =
n

∑
s=1

ωsŷs (26)

where,
ŷs is the predictions of the sth individual model.
According to the three different EWM-based methods introduced above, different
integrated models were developed for each day of the week except Tuesday. The
weight coefficients estimated by using different EWM-based methods are presented
in Table 1.

Table 1. KNN model and Elman model weight distribution table.

Weight Wed. Thu. Fri. Sat. Sun. Mon.

EWM-A
ω1 0.5579 0.5955 0.6189 0.5280 0.5277 0.5599
ω2 0.4421 0.4045 0.3811 0.4720 0.4723 0.4401

EWM-B
ω1 0.4421 0.4045 0.3811 0.4720 0.4723 0.4401
ω2 0.5579 0.5955 0.6189 0.5280 0.5277 0.5599

EWM-C
ω1 0.5673 0.5974 0.5738 0.5052 0.4954 0.5602
ω2 0.4327 0.4026 0.4262 0.4948 0.5046 0.4398

Note: ω1 represent the weights of the improved KNN model. ω2 represent the weights of the Elman model.

4. Model Evaluation

For model evaluation purposes, the developed improved KNN model, Elman model,
and the three EWM-based integrated models were applied to the test date, which includes
6 days of traffic flow data collected from 27 March 2019 to 1 April 2019 (Wednesday to
Monday). The prediction starts at 3:30 am on each day and after that, a prediction is
generated every six minutes. Figure 1 shows the predicted traffic flow rates of different
models on 27 March 2019 (Wednesday) and 31 March 2019 (Sunday), along with the
observed traffic flow rates on these two days. It can be seen that the traffic flow at this
intersection fluctuates more during the weekday. The traffic remains heavy during the
weekend while there is an obvious morning peak during the weekdays.

Figure 1. Cont.
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Figure 1. Traffic flow predictions for a weekday and a weekend.

Figure 1 shows that overall the integrated models can predict the trend of traffic flow
rate very well. The prediction results of the two individual models have more variance
than that of the integrated models. The predicted traffic flow rates of the three integrated
models are in the middle of the predicted values of the two individual models. This proves
that the integrated model combines the predictions of the improved KNN model and the
Elman model.

Next, a performance measure called Mean Square Error (MSE) was used to evaluate
the prediction accuracy. MSE measures the differences between the predicted traffic flow
rate and observed data and can be calculated as follows:

MSE =

n
∑

s=1
(ŷs − ys)2

n
, (27)

where,
ŷs represents the predicted traffic flow rate in the sth time interval;
ys represents the observed traffic flow rate in the sth time interval;
n represents the total number of time intervals in the forecast period.
A smaller MSE value represents a better model performance. MSEs of the models

developed for different days are calculated and presented in Table 2. In addition, the
results for the three traffic flow prediction models, i.e., Basic BP, KNN, and an integrated
model (Elman + KNN) developed in our previous study [21] were included in Table 2 for
comparison purposes.

Table 2 shows the improved KNN model outperforms the Elman model on most
days. It was also found that the three EWM-based integrated models have better pre-
diction accuracy than the individual models in most cases. This is reasonable because
the integrated model can utilize the information provided by both individual models,
which leads to improved model prediction accuracy. From Table 2, it can also be seen
that, overall, the developed EWM-based integrated models outperform all three models
developed in our previous study. In Table 2, we use the bold numbers indicating the best
predictions for different days of the week. It is clear that the performance of the integrated
model developed using EWM-C is the best on most days and has the lowest average MSE.
The accuracy level of the model developed using EWM-A is slightly lower than the one
developed using EWM-C. Among the three integrated models, the EWM-B method has
the worst performance and it even performs worse than the individual model (improved
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KNN model) on Wednesday and Thursday (marked in red). The common problem with
the EWM-B and EWM-A methods is that the Pst in entropy is defined as the ratio of a
prediction error to the sum of prediction errors in this model (please see Equation (7)).
Thus, if the error in the prediction model increases proportionally, its Pst will not change. In
other words, the prediction errors est and 100est will result in the same Pst and same weight
coefficients, which is unreasonable. In addition, according to the definitions of entropy, the
Pst should be a probability instead of a proportion of overall prediction errors. On the other
side, in the EWM-C method, the Pst is defined as the probability of the prediction error at a
given accuracy level (please see Equation (22)). This definition of Pst avoids the problem in
EWM-A and EWM-B. In addition, the model accuracy level was directly considered in the
weight coefficients given in Equation (23). Thus, more weight will be given to the model
with a higher accuracy level, and thereby, the integrated model predictions are more likely
to be more accurate than those of the individual models.

Table 2. Comparison of MSE of different models.

Model 3.27
(Wed.)

3.28
(Thu.)

3.29
(Fri.)

3.30
(Sat.)

3.31
(Sun.)

4.1
(Mon.) Average

BP *
Elman 769.8010

794.0899
544.7767
511.1533

309.5437
262.9230

286.7621
273.4558

212.2913
211.9528

363.5728
319.3155

414.4679
395.4817

KNN *
Improved KNN

670.9806
310.5000

534.8592
378.8010

231.0146
226.3252

243.3155
298.1456

218.4417
187.6456

284.1707
256.7816

363.7971
276.3665

KNN + Elman * 749.3786 406.6602 251.74272 261.9806 216.8980 274.3980 360.1764

EWM-A
EWM-B
EWM-C

308.9466 372.3883 208.5777 253.0825 179.5485 248.2718 261.8026
320.8932 398.7524 215.8252 250.0631 181.1650 255.8544 270.4256
307.3204 371.4563 208.4223 253.0146 180.6845 248.2718 261.5283

* The models developed by Qu et al. [21].

5. Conclusions and Recommendations

This study investigated the use of the entropy weight method for integrating individ-
ual prediction models to improve prediction accuracy. Three different types of entropy
weight methods, i.e., EWM-A, EWM-B, and EWM-C, were introduced and applied to
develop integrated models for short-term intersection traffic flow prediction. A real-world
signalized intersection was selected to collect data for this research. Two individual models,
i.e., the improved KNN and Elman models, were developed at first. After that, three
integrated models were developed using the three different EWMs. By comparing the
performances of the developed models, it was found that the EWM-C model produced
more accurate predictions than the other two integrated models. Although EWM-A and
EWM-B have been used by many previous studies for model integration purposes, there is
a critical problem with the definitions of entropy weight. The entropy should be defined
based on the probability of prediction errors instead of the ratio of a prediction error to the
sum of prediction errors. This problem will result in unreasonable weight coefficients for
the models with different accuracy levels. Thus, both methods, i.e., EWM-A and EWM-B,
are not recommended for integrating prediction models. On the other side, in EWM-C,
entropy was defined based on the probability of the prediction error at a given accuracy
level. This definition avoids the most critical problem in the EWM-A and EWM-B meth-
ods and the prediction accuracy level of the individual model was incorporated into the
calculated weights. As a result, more weight will be given to the model with a higher
accuracy level, which results in improved prediction accuracy. Thus, the EWM-C method
was recommended for integrating prediction models.

In this study, we only investigated the three existing EWMs. In the future, more
research is needed to investigate how to improve the current EWMs to develop a better
EWM for model integration purposes. For example, different thresholds for the model
accuracy level in calculating the entropy for EWM-C need to be tested. In addition, the
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method for integrating more than two models also needs to be investigated. Furthermore,
in this study, the traffic data were only collected at one signalized intersection, and due to
the lack of traffic flow information on upstream and downstream intersections, the spatial
factors cannot be considered in the developed model. In the future, it is necessary to collect
more data from more intersections to further refine the developed model.
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