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Abstract: Animal studies as early as the 1920s suggested that vitamin A deficiency leads to squamous
cell metaplasia in numerous epithelial tissues including the skin. However, humans usually die from
vitamin A deficiency before cancers have time to develop. A recent long-term cohort study found that
high dietary vitamin A reduced the risk of cutaneous squamous cell carcinoma (cSCC). cSCC is a form
of nonmelanoma skin cancer that primarily occurs from excess exposure to ultraviolet light B (UVB).
These cancers are expensive to treat and can lead to metastasis and death. Oral synthetic retinoids
prevent the reoccurrence of cSCC, but side effects limit their use in chemoprevention. Several proteins
involved in vitamin A metabolism and signaling are altered in cSCC, which may lead to retinoid
resistance. The expression of vitamin A metabolism proteins may also have prognostic value. This
article reviews what is known about natural and synthetic retinoids and their metabolism in cSCC.
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1. Introduction

Cutaneous squamous cell carcinoma (cSCC) is a form of keratinocyte carcinoma, also
known as non-melanoma skin cancer. The primary extrinsic etiological factor for the devel-
opment of cSCC is the chronic lifetime exposure to solar ultraviolet light radiation (UVR)
and to indoor artificial UV light-induced tanning [1,2]. Among the solar UVR components,
UVB (290–320 nm) is considered mostly responsible for UV-induced carcinogenesis [1].
However, cSCC can also form from papilloma virus (PV) infection [2,3]. Precancerous
lesions include warts, actinic keratosis (AK), keratoacanthomas (KA), and porokeratosis [4].
While cSCC is seen in the upper cells of the epidermis, this cancer originates from aberrant
regulation of hair follicle stem cells [5–8]. Keratinocyte carcinomas are the most common
form of cancer in humans, with over 1 million Medicare patients treated annually in the
U.S. [9]. A population-based study conducted in Minnesota revealed a rise of 263% in cSCC
incidence between 1976–1984 and 2000–2010 [10]. Americans spent $4.8 billion per year
on nonmelanoma skin cancer treatment between 2007 and 2011 and $1.68 billion per year
(2013) on treating the precursor lesion AK [11,12]. Standard treatment of cSCC is surgical
removal and/or radiation, which is effective in most patients. The “cure” is temporary:
91% of patients who have cSCCs surgically removed develop an additional tumor within
10 years, and high-risk patients have greater tumor recurrence [13]. Metastasis of cSCC
occurs in 2–5% of all cSCC patients and 4–16% of high-risk patients: the mortality rate of
metastasized cSCC is over 70% [14–16]. In the southern half of the U.S., death from cSCC
is similar to several other cancers and higher than melanoma, renal, and oropharyngeal
carcinomas [15]. This high risk is due to the presence of an aggressive tumor, multiple
tumors, or immunosuppressed patients [17]. In immunosuppressed organ transplant recip-
ients, the risk of cSCC is 65 times greater than the general population. Early detection of
high-risk aggressive tumors leads to better treatments.

Retinoids are a family of natural and synthetic vitamin A derived compounds. Nat-
ural forms include retinyl esters, retinol, retinal, and retinoid acid (RA; Table 1). Retinyl
esters are the main storage form and dietary source from animals [18]. Additional dietary
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sources include the provitamin A carotenoids: beta-carotene, alpha-carotene, and beta-
cryptoxanthin. Retinol, bound to retinol binding protein 4 (RBP4), is the predominate circu-
lating form of vitamin A [19] and its circulating concentrations are tightly controlled [20].
11-cis retinal, 9-cis RA, and all-trans RA are the active forms of vitamin A. Skin also contains
a unique retinoid: 3,4-didehydroretinol (ddRetinol), with its corresponding ester (ddretinyl
ester), aldehyde (ddretinal), and carboxylic acid (ddRA) [21–23]. Several synthetic retinoids
have also been developed and are used in the treatment of many dermatological diseases
including cSCC (Table 2) [4,24]. The purpose of this article is to review the interactions
between these retinoids and cSCC.

Table 1. Natural retinoids [21–23,25–37].

Retinoid Function Binding Protein Synthesizing
Enzyme

Transcription
Factor

Catabolizing
Enzyme

Maximum
Absorption

Retinyl esters Diet and storage LRAT and
DGAT1

Retinol Circulation RBP1-4 325 nm

Retinal Active in vision RBP1 and 2 SDRs 383 nm

All-trans-RA
Active in

transcription for most
functions

CRABP 1,
CRABP 2,

and FABP5

ALDH1A1,
ALDH1A2,
ALDH1A3

RARA,
B,
G

CYP26A1,
B1,

and C1
350 nm

ddretinyl esters Storage form CYP27C1, LRAT

ddretinol RBP1 and RBP4 CYP27C1 350 nm

ddretinal Active in vision, shifts
light wavelength

CYP27C1,
RDH1/16,

RDH10
401 nm

dd-RA
Active in

transcription for most
functions

CRABP2 CYP27C1 RARA, B, G,
RXRA 370 nm

Table 2. Clinical uses of retinoids [4,38,39].

Retinoid Brand Name Category: Form Major Use

Retinol, Retinal,
Retinyl esters Cosmetic

Tretinoin (atRA) Retin ATM 1st gen: topical Acne vulgaris, fine wrinkling, mottled
hyperpigmentation, and tactile roughness skin

Isotretinoin (13cRA) AccutaneTM, Isotrex 1st gen: oral Nodulocystic acne and recalcitrant acne

Acitretin (Etretinate) NeotigasonTM,
SoriataneTM 2nd gen: oral Severe plaque and pustular psoriasis

Tazarotene ZoracTM, TazoracTM 3rd gen: topical Acne vulgaris and psoriasis
(less than 20% body surface area)

Adapalene DifferinTM 3rd gen: topical Acne vulgaris

Bexarotene TargretinTM 3rd gen: oral and topical Cutaneous T-cell lymphoma

Talarozole RambazoleTM Cyp26 inhibitor Ichthyosis

Alitretinoin 3rd gen: oral and topical Topical: AIDS-associated actinic keratosis
Oral: chronic eczema in Europe

2. Vitamin A Metabolism and Signaling

RA synthesis occurs in, or near, the cells in which it will ultimately be used. Precise
spatial and temporal control of RA levels in skin is achieved by regulating a few key steps in
cellular vitamin A metabolism. Retinol enters the cell by passive diffusion or the transport
proteins known as stimulated by RA6 (STRA6) [40] and RBP receptor 2 (RBPR2) [41]. In
the skin, most retinol that enters the keratinocyte is stored as retinyl esters by the action
of lectin:retinol acyltransferase (LRAT) [42,43] or acyl-CoA:diacylglycerol acyltransferase
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1 (DGAT1) [44]. The remaining retinol is reversibly oxidized into retinal by retinol dehy-
drogenases of the short chain dehydrogenase/reductase (SDR) superfamily [27,45]. Five
members of this family that localize to the skin include dehydrogenase reductase SDR fam-
ily member 9 (DHRS9) [46–49], retinol dehydrogenases 1/16 (RDH1/16) [34,50], RDHE2,
RDHE2-similar [51,52], and RDH10 [35,53]. Cellular retinol binding proteins (RBP 1-2)
deliver retinol to LRAT and these SDRs [26]. DHRS3 is also in this SDR superfamily, but
catalyzes the reverse reaction to prevent RA toxicity [54]. Retinal is subsequently oxidized
to RA by retinal dehydrogenases 1–3 (ALDH1A1, 2, and 3) [26]. Cellular RA binding
protein 1 (CRABP1) guides RA to its catabolism process, which is achieved by the action
of cytochrome P450 26 family members (CYP26A1, B1, and C1) [26,55–58]. However, the
function of RA metabolites is still a subject of controversy [59–61]. These CYP26 enzymes
maintain RA levels through an inhibitory feedback loop [62]. High levels of RA directly
induce CYP26A1 and CYP26B1 in the skin [63–65], which then degrades this excess RA.
During development, CYP26 family members create boundaries to reduce the spread of
RA [66]. On the other hand, cellular RA binding protein 2 (CRABP2) protects RA from
degradation by CYP26 enzymes, while it chaperones RA to the nucleus and channels it to
retinoic acid receptors alpha (RARA) to enhance transcriptional activity [67–69]. It is not
known if CRABP2 may also bind RARB and RARG, as only RARA was tested. A spatial
and temporal correlation was also established between CRABP2 expression and RA syn-
thesis [70–72]. The actions of RA binding proteins may not be as clear-cut, as CRABP2 also
binds CYP26B1 to facilitate RA catabolism in vitro [58]; and CRABP1 carries RA into the
nucleus and releases RA for binding to RARs without channeling it directly [67]. These
additional functions may be necessary because these proteins do not always localize to the
same cells [26,73]. Since retinoids are hydrophobic, retinoid metabolons form to complex
the enzymes and binding proteins [26]. Each metabolon has a complete set of enzymes
and binding proteins, but different family members of these proteins can form different
metabolons to allow for differential regulation. All components necessary for RA synthesis,
degradation, and signaling localize to the skin [47,73–76].

ddRetinol is irreversibly synthesized from retinol in keratinocytes [77–79]. Cytochrome
P450 family member 27C1 (CYP27C1) is the sole enzyme required for ddretinoid synthesis
in zebrafish [29]. CYP27C1 localizes to human skin mitochondria and converts retinol
to ddretinol in vitro [22,23]. However, Cyp27c1 is not present in the mouse genome [80]
even though ddretinoids increased in skin tumors from UVB-induced cSCC in hairless
mice [81]. Like retinol, ddretinol binds CRBP1 and RBP4 [32], is esterified by LRAT [33],
and is oxidized into retinal by RDH1/16 [34], and possibly RDH10 [35]. In addition, ddRA
binds CRABP2 [36]. It is unclear if DHRS9 converts ddretinol to ddretinal, and whether
ALDH1A1, ALDH1A2, or ALDH1A3 converts ddretinal to ddRA.

RARs are RA dependent transcription factors of the nuclear hormone family [82,83]
that regulate the expression of >500 genes involved in differentiation, cell cycle control,
and apoptosis either directly or indirectly [84]. RA also regulates its own metabolism by
regulating STRA6, RBP1, LRAT, DHRS9, DHRS3, RDH1/16, ALDH1A3, and CRABP2 as
well as CYP26A1 and CYP26B1 discussed above [50,64,65,85–91]. Note that RA signaling
is not this simple as RA can activate four additional signaling cascades. First, RA binding
to membrane associated RARs leads to the phosphorylation of p38 MAPK [92]. This
leads to the phosphorylation of MSK1, which goes on to phosphorylate and activate
RARs in the nucleus. MSK1 and MAPKs also phosphorylate histones on target genes,
corepressors, and coactivators. The overall effect is to increase the transcriptional activity
of RA/RAR target genes. However, this signaling cascade also phosphorylates additional
transcription factors leading to the activation of additional genes. Second, CRABP1 with
RA directly binds RAF (rapidly accelerated fibrosarcoma) to modestly activate ERKs
(extracellular signal-related kinases) [93]. RAF is a key component of epidermal growth
factor (EGF) and other growth factor signaling. The EGF receptor is a tyrosine kinase,
which activates rat sarcoma virus oncogene (RAS), which then binds and activates RAF.
CRABP1 with RA also inhibited the binding of RAS to RAF, which led to a reduction of
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EGF and mutant overactive RAS induced ERK activation. Third, the entrance of retinol
into the cell through STRA6 also triggers a signaling cascade by phosphorylating JAK2 [94].
Phosphorylated JAK2 goes onto phosphorylate STAT3 or STAT5 depending on the cell,
which activates additional sets of genes. Fourth, when RA exceeds the capacity to bind
CRABP2, it can bind fatty acid binding protein 5 (FABP5), which directs RA to peroxisome
proliferator-activated receptor beta/delta (PPARB/D) and increases genes involved in
proliferation [95,96]. However, other groups refuted this role of RA [97,98]. These multiple
signaling pathways lead to diverse and sometimes confusing effects of RA, especially when
given at pharmacological doses.

The role of ddretinoids in mammalian skin is unclear. ddRA binds RARs at an
affinity similar to RA [99]. Physiological levels of all-trans ddRA (10−7–10−9 M) activate
RARB-RXRA heterodimers and RXRA-RXRA homodimers to a greater extent than all-trans
RA [100]. Note that these reporter assays used the RARE from RARB, but work from Lo-
raine Gudas’ laboratory shows that receptors work differently on different genes [101,102].
More recent studies in cultured keratinocytes reveal that pharmacological levels of ddRA
and RA (10−3 M) regulated the same genes [88] while physiological concentrations (10−9 M)
of ddRA and RA regulate different genes [103]. These studies suggest that ddRA is synthe-
sized in skin and may alter a different set of genes based on the dose and receptor used.
It is unclear if ddRA also binds PPARB/D in skin. It is also unknown which genes ddRA
activates in vivo, as most of this work was done in monolayers of cultured cells and RA
has different effects in vivo than in vitro [104].

3. Retinoids and Cutaneous Squamous Cell Carcinoma (cSCC)

Vitamin A deficiency leads to squamous cell metaplasia in numerous epithelial tissues
including the skin, hair, and sebaceous gland [105,106]. Topical RA inhibited papilloma for-
mation in the chemical carcinogenesis mouse model where 7,12-dimethylbenz(a)anthracene
(DMBA) initiates and 12-O-tetradecanoylphorbol-13-acetate (TPA) promotes tumorigenesis
(Table 3) [107]. RA must be provided with or exactly 1 h prior to TPA to be effective. Topical
RA inhibited ornithine decarboxylase activity [107], AP-1 activity [108], and EGF signal-
ing (B-RAF/MEK/ERK MAP kinase pathway) upstream of STAT3 (Figure 1) [109,110].
However, microarray analysis also identified 31 genes related to cytokines and 12 genes
related to WNT (wingless-type MMTV integration site) signaling that were regulated by
RA, but were not studied further [109]. The inhibition of EGF signaling may be occurring
via CRABP/RA binding to B-RAF, as CRABP1 binds B-RAF and inhibits EGF signaling [93].
In addition, RA treatment in DMBA/TPA exposed female Crabp2tm1Ipc null mice failed
to reduce tumors [111]. These Crabp2tm1Ipc null mice also have a larger number and size
of tumors, increased proliferation (Krt8 and Ki67), and reduced differentiation (Krt1/10).
In addition, transfection of CRABP2 into HaCaT, FaDu, and A431 cells reduced EGF signal-
ing. De Luca and colleagues showed that dietary RA inhibited both the promotion and
progression of high-risk tumors promoted by mezerein [112], the progression of TPA pro-
moted tumors [113], but had no effect when only DMBA was used [114]. The mechanism
for this effect has not been determined. DMBA treated female and male mice that over-
expressed CYP26A1 developed papillomas early and spontaneously developed invasive
cSCC [115]. Retinoid metabolism proteins also increased in a DMBA-induced model of KA
regression before WNT signaling was reduced [116]. High pharmacological levels (10uM)
of RA increased two WNT inhibitors to reduce WNT signaling. This RA treatment resulted
in regression of both KA and cSCC. These studies suggest that in DMBA/TPA-induced
cSCC, exogenous RA inhibits tumor promotion by blocking overactive EGFR/RAS sig-
naling, WNT signaling, and possibly other mechanisms. In addition, low endogenous
RA levels lead to tumor promotion in the absence of a chemical tumor promoter, reduced
differentiation, and increased proliferation. This suggests that maintaining endogenous
RA levels is critical to the prevention of cSCC.
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Figure 1. Interactions between retinoid metabolism and cutaneous squamous cell carcinoma (cSCC). This figure shows
how both exogenous retinoic acid (RA) regulates epidermal growth factor (EGF) and Wingless-type MMTV integration
site (WNT) signaling, and cSCC reduces the expression of key retinoid metabolism proteins. Items in red are increased in
cSCC, items in green are decreased in cSCC. Arrows indicate signaling pathways. The blue blocked line indicates inhibition.
? indicates that it is unclear how STRA6 impacts STAT3 in the context of cSCC.

DMBA/TPA treatment leads primarily to RAS mutations, which are much less com-
mon in human cSCC [117]. The vast majority of cases of human cSCC are caused by
chronic UVB exposure and TP53 mutations, which can be recapitulated in mice [117,118].
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Results from the photocarcinogenesis model of cSCC using UVB or UVA&B treated hairless
mice are even more confusing. Topical RA accelerated [119], inhibited [120], or had no
effect [121] on photocarcinogenesis. These differences could be due to timing or dose of RA.
These variable effects of RA may also be due to differences in the background strain of the
hairless gene mutation, as different mouse strains have different susceptibility to cSCC and
different levels of endogenous retinoids [122,123]. Oral retinol or the second-generation
aromatic retinoid etretinate at two high doses also did not alter photocarcinogenesis in
hairless mice [124]. These studies suggest a complex relationship between UVB, cSCC
development, and RA signaling. In addition, chronic UV exposed hairless mice may be
resistant to retinoids. This resistance limits studies needed to identify the mechanisms for
how RA impacts UVB-induced cSCC. UVB exposure leads to TP53 mutations, reduced
NOTCH signaling, excess COX2 activity, increased WNT signaling, and immunosuppres-
sion (Figure 1) [118,125–129]. RA regulates most of these pathways in other cells [130–137].
Therefore, RA may also regulate some of these pathways in UVB-induced cSCC.

In humans, oral acitretin (Soriatane, a derivative of etretinate) prevented cSCC reoc-
currence in organ transplant patients, who have a high risk of cSCC reoccurrence [138]. In
non-transplant patients, oral acitretin significantly reduced the number of tumors, but not
the incidence or time to development of cSCC [139]. The authors argue this may be due to
a small sample size. Acitretin is also used to treat AKs to prevent them from developing
into cSCC [24,140]. Oral isotretinoin (Accutane; 13-cis RA) prevented reoccurrence of cSCC
in xeroderma pigmentosum patients and BCC in patients with nevoid basal cell carcinoma
(BCC syndrome) [39]. However, oral isotretinoin with interferon alpha was not effective
at preventing the reoccurrence of cSCC in patients with aggressive disease [141]. Both
of these oral retinoids have significant side effects that include mucocutaneous defects,
skeletal hyperostosis, altered lipid profiles, hepatotoxicity, numerous ocular defects, and
teratogenesis [39,142]. Furthermore, acitretin has the potential to be esterified to etretinate
in the presence of alcohol [24]. Etretinate has the longest half-life at 80–160 days and can
stay in the skin up to two years [143]. In contrast, the half-life of acitretin is 50 h, isotretinoin
is 10–20 h, bexarotene is 7–9 h, and tretinoin is 40–60 min. Thus, the conversion of acitretin
to etretinate significantly increases the amount of time the drug is in the body. It is rec-
ommended that women on acitretin wait a minimum of three years after treatment before
attempting to become pregnant, and avoid drinking alcohol while on acitretin and for two
months after treatment stops. If isotretinoin were as effective as acitretin, it would be better
to give to women of childbearing age. Unfortunately, no studies have directly compared the
chemopreventative effectiveness of isotretinoin to acitretin, nor do we completely under-
stand their mechanisms of action. Topical RA (tretinoin/Retin A) used to treat acne vulgaris
and skin wrinkling has fewer systemic side effects, but has limited efficacy in clinical stud-
ies, and potentially increased cSCC [144,145]. A recent prospective cohort study found that
high dietary vitamin A was associated with reduced risk of cSCC [146]. However, 26–28
years of follow-up of the Nurses’ Health and Health Professionals Follow-up studies were
needed, as 10–14 years of follow-up was not significant [147]. In addition, levels of vitamin
A were several magnitudes greater than the RDA [146]. High total dietary vitamin A,
dietary retinol, total retinol, beta-cryptoxanthin, lycopene, and lutein/zeaxanthin were
all associated with reduced risk of cSCC, but beta-carotene was not significant. Thus, in
humans consuming excess dietary vitamin A is protective, but exogenous oral retinoid
treatments are limited to only patients at high risk for cSCC due to detrimental side effects.
In addition, resistance to retinoid treatments can occur. Understanding retinoid resistance
and the mechanisms by which retinoids act could help produce more targeted treatments.
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Table 3. Summary of exogenous retinoid effects on cutaneous squamous cell carcinoma (cSCC).

Author (Year) Animal Model/
Study Population Tumor Induction Retinoids Effect

Verma et al. (1979) [107] Female CD-1 mice DMBA/TPA
Topical RA (applied 1

h before TPA
treatment)

- Inhibition of ornithine
decarboxylase activity
- Decreased number of
papillomas

Verma et al. (1979) [107] Female CD-1 mice DMBA/TPA
Topical RA (applied

24 h before TPA
treatment)

- No inhibition of ornithine
decarboxylase activity
- No decreased number of
papillomas

Chen et al. (1995) [112] Female SENCAR mice DMBA/MEZ High dietary RA - Inhibition of tumor
promotion and progression

Chen et al. (1995) [112] Female SENCAR mice DMBA/TPA High dietary RA Inhibition of tumor
progression

Chen et al. (1994) [114] Female SENCAR mice DMBA High dietary RA
- Decreased papilloma
formation, but not
progression

Passeri et al. (2016) [111] CRABP-II-knockout
C57BL/6 mice DMBA/TPA Enhance skin carcinogenesis

Halliday et al. (2000) [119] Skh:HR-1 (albino) Solar simulated Ultraviolet
radiation Topical RA Enhance skin carcinogenesis

Halliday et al. (2000) [119] Skh:HR-2 (lightly
pigmented)

Solar simulated Ultraviolet
radiation Topical RA Increased skin

carcinogenesis

Kligman et al. (1996) [120] Hairless mice Solar simulated Ultraviolet
radiation (UVB + UVA) Topical tretinoin Inhibition of skin

carcinogenesis

Kligman et al. (1981) [121] lightly pigmented
variety mice Ultraviolet light - Topical RA No effect on skin

carcinogenesis

Kelly et al. (1989) [124] Skh-hr1 broad-band light (280–700 nm) - Oral vitamin A
- Etretinate

No effect on skin
carcinogenesis

Harwood et al. (2005)
[138]

Organ transplant
patients Oral acitretin Prevention of cSCC

reoccurence

Kadakia et al. (2012) [139] Non-transplant patients Oral acitretin

- Reduction of the number of
tumor
- No effect on incidence and
time of cSCC development

Brewster et al. (2007) [141] Aggressive cSCC
patients

Oral isotretinoin
(13-cis RA) with
interferon alpha

No effect on cSCC
reoccurrence

Weinstock et al. (2012)
[144] cSCC patients Topical tretinoin Ineffective on cSCC risk

reduction

Weinstock et al. (2009)
[145] cSCC patients Topical tretinoin Increased mortality

Fung et al. (2003) [147]
Nurses’ Health and
Health Professionals

Follow-up studies

High dietary vitamin
A (10–14 years

follow-up)

No effect on cSCC risk (short
follow up period)

Kim et al. (2019) [146]
Nurses’ Health and
Health Professionals

Follow-up studies

High dietary vitamin
A (26–28 years

follow-up)
Reduced risk of cSCC

4. Altered Vitamin A Metabolism in cSCC

Both UVA and UVB light reduced retinol and retinyl esters levels in the skin of
SKH-1 hairless mice, rabbits, and cultured human keratinocytes [103,148–150]. However,
UVB exposure reduces ddretinyl esters less than retinyl esters in cultured human ker-
atinocytes [103]. In addition, UVB exposure induced ddretinol synthesis in an in vitro
assay [103]. Patients with cSCC and AK also have increased ddretinol/retinol ratios in
skin [151]. The exact role of ddretinoids in skin following UVA/B exposure is unclear.
Tafrova et al. argue that physiological doses of ddretinoids better protect against high dose
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UVA/B-induced apoptosis [103]. In contrast, Torma et al. argued that ddretinoids have
similar effects as retinoids and regulate similar genes [88,152]. They argue that ddretinoids
are just a backup system in the skin. Note that ddretinol is increased by etretinate and
reduced by isotretinoin [153,154]. Since the etretinate derivative acitretin is better at cSCC
prevention than isotretinoin, the ddretinoids may be better at protecting the skin from UV
damage and cSCC prevention. However, future studies are needed to better identify the
role of ddretinoids in the skin.

Many vitamin A metabolism proteins are altered in cSCC. RBP1 was reduced with
increased severity of cSCC [111]. LRAT activity and expression was reduced in cultured
human cSCC cell lines [155–157], and following acute exposure to UVB [158,159]. This
reduced LRAT activity leads to increased retinol, ddretinol, RA, and ddRA [156]. How-
ever, LRAT mRNA levels increased following chronic UVB, but were not altered in the
BCC or cSCC tumors from Ptch1+/−/SKH-1 mice [160]. LRAT mRNA also increased in
trichoblastomas (hair follicle tumor) caused by mouse papillomavirus (MmuPV1) [161].
DHRS9 increased following acute UVB in SKH-1 mice and MmuPV1-induced trichoblas-
tomas [158,159,161]. In contrast, DHRS9 message levels decreased following chronic
UVB exposure in DMBA/TPA and UVB-induced cSCC and in cultured skin cancer stem
cells [160,162]. DHRS3 message levels also decreased following chronic UVB and in cSCC
tumors from Ptch1+/−/SKH-1 mice [160]. ALDH1A2 moved from the lower epidermis
(basal layer) to the upper epidermis (granulosum layer) following acute UVB in SKH-1
mice [158,159]; but mRNA levels in whole tissue homogenates were not altered by chronic
UVB or in cSCC tumors from Ptch1+/−/SKH-1 mice [160]. ALDH1A1 and ALDH1A2 were
also greater in regressing KAs than in cSCC [116]. CRABP2 increased following acute
UVB in SKH-1 mice, DMBA-induced KAs that were regressing, and MmuPV1-induced
trichoblastomas [116,158,159,161]. However, CRABP2 decreased in human cSCC lesions as
well as DMBA/TPA and UVB-induced cSCC tumors, and following chronic UVB exposure
in mouse models [111,160]. In contrast, Collins and Watt [73] found high immunoreactivity
of CRABP2 in DMBA/TPA induced papillomas and cSCC, but they did not quantify their
results. The expression of CYP26A1 increased in the middle of the epidermis (spinosum
layer) following acute UVB in SKH-1 mice [158,159]; human sun exposed skin; and the pre-
cursor lesion actinic keratosis (AK) [163]. CYP26B1 was also increased as DMBA-induced
KAs were regressing [116]. In contrast, CYP26A1 decreased in human malignant cSCC
lesions [163]; and CYP26A1 and CYP26B1 mRNA levels decreased after chronic UVB expo-
sure and in cSCC tumors from Ptch1+/−/SKH-1 mice [160]. RARA increased within the
upper epidermis (granulosum layer) while RARB decreased following acute UVB in SKH-1
mice [158,159]. RARA and RARB were also greater in regressing KAs than in cSCC [116]. In
contrast, RARB and RARG were reduced following chronic UVB, but not in cSCC tumors
from Ptch1+/−/SKH-1 mice [160]. RARA, RARB1′, and RARG message levels were also
lower in human cSCC lesions than BCC lesions [164]. Combined, these studies suggest
that the expression of many RA synthesis and degradation enzymes, binding proteins, and
receptors are altered by cSCC, with increased levels seen in early disease and reduced levels
seen as the disease progresses. Reduced DHRS9 and CRABP2 in cSCC suggest reduced
synthesis of RA in cSCC. Additional evidence for reduced RA in cSCC is the reduction
of RA target genes LRAT, DHRS9, DHRS3, CRABP2, and CYP26A1 [50,64,65,85–91]. This
reduced RA could lead to less differentiation, more proliferation, and ultimately more se-
vere cSCC, as was seen in the Crabp2tm1Ipc null and Cyp26a1 overexpressing mice [111,115].
Understanding how retinoid metabolism is altered in cSCC allows one to target therapies
to increase endogenous RA and/or ddRA synthesis. This may produce fewer side effects if
RA/ddRA is made in the specific cell it is needed.

5. Retinoid Resistance

Retinoid resistance is common in cancer, and understanding the specific mechanisms
involved in each cancer will result in better treatments [165–167]. Resistance occurs by
several mechanisms, which boil down to less RA available in the cell or altered RA signaling.
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Less RA occurs by reduced retinol uptake, reduced RA synthesis, excess RA catabolism, or
increased retinol efflux. As discussed in the last section, DHRS9 and CRABP2 decreased
in cSCC [111,160,162]. The drop in DHRS9 message levels seen in DMBA/TPA induced
cSCC was due to an increase in the long noncoding RNA AK144841, which inhibits
Dhrs9 [168]. In addition, UV exposure reduced retinol and retinyl esters levels, [148,149],
but it is unknown if this is due to altered influx or efflux in the cell or direct damage
to these light sensitive molecules. Altered retinoid signaling can occur by reducing the
CRABP2:FABP5 ratio to direct RA to PPARD/B, reducing RARs, or altering the expression
of coactivators [166,169]. Collins and Watt [73] saw high levels of CRABP2 and FABP5 in
DMBA/TPA-induced cSCC. However, others found reduced CRABP2; and Crabp2tm1Ipc

null mice developed more severe cSCC [111,160]. COLO16 human cSCC cultured cells
are resistant to RA and expressed little CRABP2 [170]. Raising the CRABP2:FABP5 ratio
by increasing CRABP2 and/or reducing FABP5 did not make these cells sensitive to
RA. Retinoid resistance also occurred in Crabp2tm1Ipc null mice [111]. Additional studies
are needed to better determine changes in the CRABP2:FABP5 ratio in cSCC. Retinoid
resistance is caused by the hypermethylation of DNA in the promoter of RARs and other
genes, resulting in gene silencing in many cancers [171]. In a mouse model of oral SCC,
Tang et al. [172] found that combining a methyltransferase inhibitor with low dose RA
resulted in reduced tumor number and grade. Methylation induced gene silencing is
a physiological mechanism used to regulate hair follicle stem cells as well as terminal
differentiation in the epidermis [173]. DNA methyltransferase 1 (DNMT1), DNMT3a,
DNMT3b, 5-methyl cytosine, global methylation, and methylation activity were all seen
in the epidermis of SKH-1 mice and they were all increased with UVB exposure in a
time dependent manner [174]. Increased methylation was also seen in biopsies from
human patients with cSCC. These results suggest that increased methylation induced
gene silencing occurs during photocarcinogenesis. Increased methylation was seen in the
CRABP2 promoter in humans with higher-grade cSCC tumors [111]. Methylation may also
explain the reductions in RARB and RARG following chronic UVB, however, we did not
find any alterations in the methylation status of RARB 48 h after an acute dose of UVB
(Suo and Everts, unpublished observation). The lack of reduced RARs in UVB-induced
cSCC suggests that methylation of RARs may not be the major mechanism of retinoid
resistance in cSCC. The RAR coactivator tripartite motif protein 16 (TRIM16) was decreased
in human AK and cSCC due to increased protein degradation [175]. In contrast, topical
treatments with the histone deacetylase inhibitor valproic acid did not impact the effects
of topic tazarotene or isotretinoin in UV exposed C3.Cg/TifBomTac hairless mice. Thus,
altered coactivators, but not corepressors, may be involved. Overall, these studies suggest
that altered retinoid metabolism and signaling in cSCC may limit the use of retinoids to
treat this cancer. To date, we see long noncoding RNA, increased DNA methylation, and
reduced coactivators contributing to this resistance. However, future studies to identify
mechanisms involved may find better treatments than just retinoids alone.

6. Prognostic Value of Altered Vitamin A Metabolism

Altered levels of RA metabolism proteins may have prognostic potential in cSCC,
however, limited studies have been done specifically in cSCC. Increased LRAT is associated
with poor prognosis in melanoma [176] and colorectal cancer [177]. However, reduced
LRAT was seen in invasive bladder cancer [178]. Reduced DHRS9 was associated with
reduced capacity to synthesize RA in colon cancer cells [179] and poor prognosis in patients
with colorectal and oral cancers [180,181]. Thus, the reduction of DHRS9 in cSCC may also
predict outcomes. ALDH activity is high in cancer stem cells (CSC; aka tumor initiating cell)
and is used to isolate these cells from a number of solid organ tumors [182–186]. Human
tumors with increased ALDH1A1 positive cells measured at the protein level are associated
with increased risk of recurrence in non-small cell lung cancer [187], enhanced invasiveness
in nasopharyngeal carcinoma [188], and poor survival in bladder cancer [189], papillary
thyroid carcinoma [190], head and neck cancer [191], esophageal SCC [192], colorectal can-
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cer [193], and breast cancer [194]. On the other hand, high ALDH1A1 levels predicted better
outcomes in gastric cancer [195]. Reduced ALDH1A2 predicts poor outcomes in prostate
cancer [196] and oropharyngeal SCC [197]. Oropharyngeal SCC with high levels of both
ALDH1A2 and CRABP2 predicted better outcomes [197]. High ALDH1A3 leads to poor
outcomes in gliomas [198], glioblastoma [199], gallbladder [200], and gastric cancers [195].
However, high ALDH1A3 mRNA predicted both greater survival and improved reaction to
B-RAF/MEK inhibitor treatment in B-RAF-mutant metastatic melanoma [201]. In addition
to increasing RA levels, ALDH activity protects CSC by reducing reactive oxygen species
and metabolizing chemotherapy drugs [185,186]. Increased RARG was associated with
poor prognosis in colorectal cancer [202] and hepatocellular carcinoma [203]. Overall,
these studies suggest that LRAT, DHRS9, ALDH1A1, ALDH1A2, ALDH1A3, and RARG
levels may be useful biomarkers of numerous advanced cancers that are more likely to
recur and/or metastasize, leading to poor survival. In general, higher levels of LRAT,
ALDH1A1, ALDH1A3, and RARG predicted poor outcomes, while lower levels of DHRS9
and ALDH1A2 predicted poor outcomes. High LRAT leads to greater storage of retinyl
esters and less RA synthesis [156]. Lower DHRS9 and ALDH1A2 also suggest lower RA.
However, ALDH1A1 and ALDH1A3 have multiple roles and their increased expression
does not mean there is increased RA in these tumors. It is not known which retinoid
metabolism protein may be predictive of poor outcomes in cSCC. Finding markers that can
predict outcomes allows for more targeted therapy. Plus, retinoid responsiveness may be
better predicted by knowing the expression levels of CRABPs and RARs.

7. Summary and Conclusions

In summary, the research suggests that retinoids do prevent cSCC. However, this
requires decades of excess consumption of vitamin A from animal and plant sources.
Intake of vitamin A supplements and beta-carotene were not beneficial. Pharmacological
levels of synthetic retinoids had mixed effects, with low dose acitretin being the most
beneficial to organ transplant patients. Retinoid metabolism and signaling is altered in
cSCC, which may explain some of these mixed effects of exogenous retinoids. Retinoid
treatments inhibit EGF and WNT signaling, but other mechanisms may also be involved.

8. Gaps and Future Directions

While much is known about the interactions between retinoids and cSCC, there is
still more to learn. We still do not know all of the mechanisms by which retinoids act,
especially in the areas of UVB-induced cSCC and immunosuppression. The physiological
role of ddretinoids in vivo is also still not clear. It is also not clear how UVB and cSCC
development alter retinol and retinyl esters levels as well as their metabolism to RA. Long
noncoding RNA and DNA methylation reduced DHRS9 and CRABP2, respectively, but
it is not known if restoring these proteins will reverse cSCC. Restoring CRABP2 was not
beneficial in one cell model of cSCC [170], but this should be tested in vivo. Future studies
could combine retinoid treatments with methylation inhibitors, as was successful in other
cancers [172]. Park et al. identified a compound that specifically bound CRABP1 and
inhibited mutant RAS signaling [93]. Should we focus on developing specific ligands for
CRABP1 and/or CRABP2 in place of RARs? If we know how other proteins in retinoid
metabolism are regulated, we could similarly target them to increase endogenous RA
and/or ddRA synthesis. This may produce fewer side effects than exogenous retinoids as
RA/ddRA would be produced locally where needed. Wu et al. found a compound that
increased the expression of some retinoid metabolism genes [160].

Finally, future studies are needed to identify altered retinoid metabolism proteins that
have prognostic value in determining patients who might benefit from synthetic retinoid or
other treatments. For example, if a patient had a RAS mutation and expressed CRABP1 or
CRABP2, then retinoid treatments may be beneficial to specifically reduce this overactive
EGF signaling. However, treatment may not be effective if the CRABPs are low, or RAS is
not overactive.
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