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The cerebellar cortex comprises a stereotyped array of transverse zones and parasagittal
stripes, built around multiple Purkinje cell subtypes, which is highly conserved across
birds and mammals. This architecture is revealed in the restricted expression patterns of
numerous molecules, in the terminal fields of the afferent projections, in the distribution
of interneurons, and in the functional organization. This review provides an overview of
cerebellar architecture with an emphasis on attempts to relate molecular architecture
to the expression of long-term depression (LTD) at the parallel fiber-Purkinje cell (pf-PC)
synapse.
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The general hypothesis explored in this review is that the elaborate
molecular architecture of the cerebellar cortex has its counter-
part in the compartmentation of function. In particular, many
forms of synaptic plasticity have been identified in the cerebellar
cortex (e.g., Hansel et al., 2001)—a network property that De
Zeeuw et al. have called “distributed synergistic plasticity” (Gao
et al., 2012). Both long-term depression (LTD) and long-term
potentiation (LTP) have been identified, and these are expressed
at multiple synapses—parallel-fiber to Purkinje cell, mossy fiber
to granule cell, inhibitory interneuron to Purkinje cell (“rebound
potentiation”: e.g., Tanaka et al., 2013) etc.

By way of example, the review focuses on LTD at the par-
allel fiber-Purkinje cell (pf-PC) synapse. A brief consideration
of its opposite –LTP—is also included. Other forms of Purkinje
synaptic plasticity in the cerebellum are not included since so
little is known of their relationship to the stripe architecture.
Therefore, to set the stage the review begins with a brief overview
of the patterning of the main players—Purkinje cells, climbing
and mossy fiber afferents, and granule cells.

OVERVIEW OF ZONE AND STRIPE ARCHITECTURE
PURKINJE CELLS
Several recent reviews have described the architecture of the adult
cerebellar cortex (e.g., Apps and Garwicz, 2005; Apps and Hawkes,
2009; Ruigrok, 2011). In brief, a range of expression markers
expressed in subsets of Purkinje cells have revealed an orthogonal
matrix of transverse zones and parasagittal stripes (Figure 1).
First, the cerebellar cortex is divided by transverse boundaries into
transverse zones. These are most easily recognized in the vermis

but appear to have their counterparts in the hemispheres as well.
Each transverse zone is further subdivided into long narrow
stripes that run parasagittally from rostral to caudal. The most-
studied example is the expression pattern of zebrin II/aldolase
C, which identifies a stereotyped array of zebrin II+ and zebrin
II- stripes (e.g., Brochu et al., 1990; Hawkes and Gravel, 1991;
Ahn et al., 1994; Hawkes and Herrup, 1995; Figures 1A, B). The
combination of multiple such patterns adds up to a cerebellar
cortex with several hundred distinct topographical units (e.g.,
Hawkes, 1997; Hawkes et al., 1997, 1999; Armstrong et al., 2000).

The Purkinje cell expression domains are reproducible
between individuals to a remarkable level—individual stripes
comprised of no more than 100 or so Purkinje cells are faithfully
reproduced (e.g., the P4b+/P5a+ stripes in the hemispheres:
Hawkes and Leclerc, 1987; Figures 1A, B). Indeed, although the
size of a particular zone or stripe may be modified to suit the
animal’s mode of life a common ground plan is conserved across
all mammals studied to date (∼30 species—Sillitoe et al., 2005;
Marzban and Hawkes, 2011) and is also found in birds (Pakan
et al., 2007; Iwanuik et al., 2009; Marzban et al., 2010).

AFFERENT PROJECTIONS
Stripes of Purkinje cells are targets of specific afferent sub-
sets during development and restrict their terminal fields in
the adult, with the result that specific afferent subsets ter-
minate in stripes. Studies over the past 25 years or so have
shown that afferent terminal fields are precisely aligned with
Purkinje cell stripes. These studies have combined immuno-
cytochemistry for stripe antigens with anterograde tracing to
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Hawkes Cerebellar functional architecture

FIGURE 1 | Stripes in the adult mouse cerebellar cortex as revealed by
various Purkinje cell subset markers. (A) On the right is a whole mount
dorsal view of a hemicerebellum immunoperoxidase stained for zebrin
II/aldolase C. On the left is a cartoon view: lobules are numbered with
Roman numerals (V–IX); zebrin II+ stripes as 1–7 (Adapted from Furutama
et al., 2010). (B) A transverse section through the posterior lobe
immunoperoxidase stained by using anti-zebrin II (Adapted from Marzban
et al., 2004). (C) A transverse section through the anterior lobe
immunoperoxidase stained for phospholipase Cβ3 (PLCβ3) (Adapted from
Sarna et al., 2006). (D) A transverse section taken close to that in panel C,
immunoperoxidase stained for PLCβ4 (Adapted from Sarna et al., 2006).
(E) Transverse section through the posterior lobe double
immunofluorescence labeled for GABA type B receptors 2 (GABABR2) (red)
and PLCβ4 (green) (Adapted from Chung et al., 2008). (F) A whole mount
dorsal view of a hemicerebellum from an IP3R1nls-lacZ transgenic mouse
X-gal stained for transgene expression (Adapted from Furutama et al., 2010).

generate detailed topographical maps, in particular relating
afferent terminal fields to zebrin II+/− stripes (e.g., climbing
fibers—Gravel et al., 1987; Voogd et al., 2003; Sugihara and
Shinoda, 2004; Voogd and Ruigrok, 2004; Sugihara and Quy,
2007 etc.; mossy fibers—Gravel and Hawkes, 1990; Akintunde
and Eisenman, 1994; Ji and Hawkes, 1994; Armstrong et al.,
2009; etc.). In some cases, molecular differences have also been
demonstrated between afferent subsets. For example, mossy fibers
that express somatostatin terminate on Purkinje cell stripes that
express the small heat shock protein (HSP25; Armstrong et al.,
2009), and climbing fibers immunoreactive for corticotropin-
releasing factor (CRF) terminate selectively on zebrin II+ Purkinje
cells (Sawada et al., 2008; see Section Corticotropin-releasing
Factor).

Although striped patterns of Purkinje cell gene expression are
aligned with stripes of afferent innervation, the formation and
maintenance of stripes is not contingent upon afferent input:
chemical or surgical afferent lesions do not alter the pattern
(zebrin—Leclerc et al., 1988; Zagrebelsky et al., 1996, 1997; sphin-
gosine kinase 1a—Terada et al., 2004; HSP25—Armstrong et al.,
2001; L7/pcp2—Oberdick et al., 1993; etc.), and subtype pheno-
types are expressed in slice and dissociated cerebellar cultures and

after grafting the cerebellar anlage to an ectopic location (e.g.,
Wassef et al., 1990; Seil et al., 1995).

GRANULE CELLS
Purkinje cell stripe boundaries are also restriction boundaries
for interneurons. Most prominent among these are the granule
cells. First, the analysis of murine chimeras has identified a
reproducible set of lineage boundaries within the granular layer
that align with the transverse boundaries seen in the Purkinje cells
(Hawkes et al., 1999). Multiple expression boundaries are also
found at these locations in the adult and in the external granular
layer during development (reviewed in Armstrong and Hawkes,
2000; Consalez and Hawkes, 2013). This strongly suggests that
different granule cell lineages exploit the underlying Purkinje cell
zonal architecture as the external granular layer spreads to cover
the embryonic cerebellar anlage. Secondly, in the adult granular
layer a complex array of patches and stripes can be revealed (e.g.,
nitric oxide (NO) synthase or its surrogate, reduced nicotinamide
adenine dinucleotide phosphate (NADPH) diaphorase: Hawkes
and Turner, 1994; Schilling et al., 1994; Ozol and Hawkes, 1997;
Hawkes et al., 1998). These also align with the Purkinje cell archi-
tecture. It is difficult to credit that these represent cell autonomous
properties of the granule cells, given the challenges such a model
would present for the targeting of granule cell migration and
settling, so it is more likely that the expression patterns are
secondary to the local environment (e.g., Purkinje cells or mossy
fibers).

FUNCTIONAL CORRELATES OF STRIPES
Given that pretty much everything in the anatomy of the cere-
bellar cortex is stripy, it should be unsurprising that similar
compartmentation is seen by using functional mapping. First,
parasagittal stripes are seen in electrophysiological recordings
from the cerebellar cortex—the 12 A-D2 longitudinal zones
and microzones (e.g., Oscarsson, 1979; for an account of the
baroque terminology of cerebellar architecture, see Apps and
Hawkes, 2009)—and these align with, and are likely the same
thing as, the striped domains of differential gene expression.
Similarly, optical imaging of the cerebellar cortex also reveals a
parasagittally striped functional organization (e.g., Chen et al.,
1996; Ebner et al., 2005, 2012; Gao et al., 2006). In contrast,
recordings of tactile receptive fields in the hemispheres appar-
ently reveal a somewhat different organization—a complex but
reproducible array of functional patches responsive to different
stimulus sites—vibrissae, lips, teeth etc., (“fractured somatotopy”:
reviewed in Welker, 1987). However, when the tactile recep-
tive field boundaries and antigenic boundaries are compared, a
reproducible alignment is found (e.g., Chockkan and Hawkes,
1994; Hallem et al., 1999) that is consistent with the evidence
cited above that mossy fiber afferent terminal fields show stripe
restriction.

Different Purkinje cell stripes receive climbing fibers from
different sources. Consistent with this topography, Paukert et al.
(2010) recently showed that climbing fibers that terminate on
zebrin II+ Purkinje cells release more glutamate per action poten-
tial than do those terminating in zebrin II− stripes. As a result,
climbing fiber-mediated excitatory postsynaptic potentials in
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Purkinje cells decay more slowly in the zebrin II+ stripes, and thus
longer-duration complex spikes are triggered. The implication is
that prolonged climbing fiber-induced depolarization of Purkinje
neurons in zebrin II+ stripes should preferentially enhance Ca2+

influx and thereby facilitate activity-dependent changes in the
strength of both climbing and parallel fiber synapses (Hansel
et al., 2001; Safo et al., 2006; Carey and Regehr, 2009; Mathy et al.,
2009).

Finally, Wadiche and Jahr (2001, 2005) have shown that
Purkinje cells in zebrin II+/− stripes express different com-
plements of excitatory amino acid transporters (EAATs), some
of which are more effective than others. As a result, regional
differences in glutamate transporter expression affect the degree
of metabotropic glutamate receptor (mGluR1) stimulation (see
Section Glutamate Re-uptake).

MOLECULAR CORELATES OF LONG-TERM DEPRESSION AT
THE PARALLEL FIBER-PURKINJE CELL SYNAPSE
The functional differences between stripes derive in two ways.
On the one hand they reflect differences in connectivity (i.e.,
the striped organization of the olivocerebellar and mossy fiber
projections). On the other hand—and central to what follows—
different stripes display distinctly different intrinsic properties,
notably a variety of different forms of synaptic plasticity (e.g.,
reviewed in Hansel et al., 2001). The hypothesis explored in this
review is that the specificity of the afferent topography together
with the molecular heterogeneity of the granule cells and Purkinje
cells constitutes a substrate for multiple plastic adaptations of the
pf-PC synapse. What follows focuses on LTD at the pf-PC synapse
as an exemplar.

Purkinje cells receive 2 glutamatergic excitatory inputs, one
from mossy fibers via pf-PC synapses on dendritic spines and
another from climbing fibers onto the dendritic shafts. Conjunc-
tive stimulation of the parallel fiber and climbing fiber pathways
(1–4 Hz for 1–10 min) results in a long-lasting depression of
transmission at the pf-PC synapse (e.g., recently reviewed in Vogt
and Canepari, 2010; Finch et al., 2012; an excellent history is
provided in Kano et al., 2008). LTD has often been evoked as a
model of cerebellar motor learning, but recent studies cast doubt
on this (Schonewille et al., 2011; Gao et al., 2012).

LTD at the pf-PC synapse is quantitatively different between
stripes: it is easier to induce pf-PC synapse LTD in zebrin II-
than in zebrin II+ Purkinje cells (Wadiche and Jahr, 2001). Little
is known of the molecular basis for differences in LTD across
stripes but it is striking that many molecules whose expression
is in stripes are associated with the putative pathways leading to
LTD (Table 1).

An influential model of the molecular basis of LTD at the
pf-PC synapse, due to Ito (e.g., reviewed in Ito, 1984, 1989,
2002), is summarized in a simplified fashion in Figure 2. In
brief, conjunctive glutamate release from parallel fiber and
climbing fiber terminals acts through mGluR1 to activate
several parallel intracellular signaling pathways—in particular,
one via phospholipase C (PLC) and diacylglycerol (DAG) to
protein kinase C (PKC), and another via inositol triphos-
phate (IP3). The downstream consequence is the internalization

of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid)-sensitive glutamate receptors (AMPAR), and consequent
synaptic desensitization. NO and CRF play supporting roles. It
is instructive to examine the expression patterns of the different
players in this pathway.

SYNAPTIC MARKERS
First of all a reproducible pattern of stripes is revealed in the
molecular layer of the cerebellar cortex by using immunocyto-
chemistry for the synaptic vesicle protein synaptophysin (Hawkes
et al., 1985), with stripes of higher expression alternating with
those of lower expression, both in the granular layer associated
with mossy fiber synaptic glomeruli and in the molecular layer,
associated primarily with pf-PC synapses (Hawkes et al., 1985;
Leclerc et al., 1989). The interpretation of the observation is less
obvious—does stronger staining reflect more antigen per vesicle,
antibody access, more vesicles per synapse, a higher Purkinje cell
spine density . . .? Appropriate comparisons with the expression
patterns of other synaptic markers that might resolve this question
have not been reported. A patchy/striped arrangement of mossy
fiber terminals in the granular layer is reported with other presy-
naptic markers, but in these cases the expression in the molecular
layer appears to be uniform (e.g., dysbindin—Sillitoe et al., 2003;
neuronal nitric oxide synthase (nNOS); see Section Nitric Oxide).
A uniform distribution in the molecular layer may be misleading
in that differential expression of granule cell markers is easier to
discern in the granular layer, where the somata are segregated
into stripes and clusters, than in the molecular layer where the

Table 1 | A list of the synaptic molecules with striped expression
patterns referred to in the text; whether they are preferentially
expressed in zebrin II+ (zII+) or zebrin II− (zII−) stripes (or a mixture of
both); and pertinent citations.

Molecule Stripe
preference

Citations

Synaptophysin zII+/zII− Hawkes et al. (1985); Leclerc
et al. (1989)

Dysbindin zII+/zII− Sillitoe et al. (2003)
nNOS/NADPHd zII+/zII− Yan et al. (1993); Hawkes and

Turner (1994);
Schilling et al. (1994);
Baader and Schilling (1996)

Neuroplastin zII− Marzban et al. (2003)
mGluR1b zII− Mateos et al. (2001)
EAAT4 zII+ Dehnes et al. (1998)
NMDA receptor
(NR2CnlacZ)

zII− Karavanova et al. (2007)

CRF zII+ Sawada et al. (2008)
PLCβ3 zII+ Sarna et al. (2006)
PLCβ4 zII− Sarna et al. (2006)
IP3R-nls-LacZ zII+ Furutama et al. (2010)
PKCδ zII+ Barmack et al. (2000)
GABABR2 zII+ Albin and Gilman (1989);

Luján and Shigemoto (2006);
Chung et al. (2008)

Neurogranin zII− Larouche et al. (2006)
PEP-19 ? Wassef et al. (1992)

Frontiers in Systems Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 41 | 3

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Hawkes Cerebellar functional architecture

FIGURE 2 | A simplified model of some of the signaling pathways
leading to LTD of the pf-PC synapse. Conjunctive glutamate (Glu) release
at the granule cell (gc)/parallel fiber synapse on the Purkinje cell (PC)
dendritic spine and the climbing fiber (from inferior olivary cells: ioc)
synapses on the dendritic shaft activates the metabotropic glutamate
receptor (mGluR1). Glutamate signaling across the synaptic cleft is
modulated by excitatory amino acid transporters (EAAT). A signaling
pathway via Gq proteins activates PLC. In turn, PLC signals via both the

inositol triphosphate receptor (IP3R) and protein kinase C (PKC). The
upshot is the internalization of synaptic AMPA receptors and consequent
LTD. The overall process is also modulated by various other signals
including: presynaptic nitric oxide release (NO); the binding of
corticotropin-releasing factor (CRF) to its receptor (CRF-R1) and insulin-like
growth factor (IGF)-1 binding to its receptor (IGF-1R), both of which signal
via PLC; signaling via postsynaptic GABABR; and calcium influx through
voltage-dependent calcium channels (VDCCs).

long parallel fiber trajectories extensively overlap and smooth out
different expression levels from different granule cell populations.

Structural synaptic proteins are also differentially expressed.
For example, a prominent striped expression pattern is revealed
by immunocytochemical staining for the postsynaptic membrane
glycoprotein neuroplastin (Marzban et al., 2003; note—in the
hippocampus, neuroplastin has been linked to the inhibition of
LTP; Empson et al., 2006). High levels of neuroplastin expression
are preferentially associated with the zebrin II- Purkinje cell
stripes.

GLUTAMATE RECEPTORS
Glutamate released into the synaptic cleft at both the climb-
ing fiber and the pf-PC synapse binds to three types of glu-
tamate receptor in the postsynaptic membrane—metabotropic
(mGluR), GluRδ2 and AMPAR. mGluRs are G protein-coupled
receptors with 7 transmembrane segments that do not form
ion channels but rather signal via intracellular chemical mes-
senger systems. Eight genes coding for different subtypes of
mGluRs have been identified, seven of which are expressed in
the cerebellum. In particular, Purkinje cell mGluR1 is local-
ized in the peri- and extra-synaptic membranes. It is func-
tionally coupled to PLC through which it modulates the IP3

(1,4,5)/Ca2+ signaling pathway and plays a key role in the
induction of pf-PC LTD (reviewed in Knöpfel and Grandes,
2002).

There are at least 4 mGluR1 splice variants with differing
subcellular and cellular distributions (mGluR1a-d: e.g., Conn and
Pin, 1997). In the case of mGluR1b in the cerebellum, expression
is striped in the molecular layer and co-located with zebrin II-
stripe markers (Mateos et al., 2001). mGluR1a is also located in
the Purkinje cell dendritic spine (e.g., Mateos et al., 2000) but
whether or not there is an mGluR subtype restricted to the zebrin
II+ Purkinje cell dendritic spines is not known.

GluRδ2 is also highly expressed in cerebellar Purkinje cells
and is localized specifically to pf-PC synapses (Araki et al., 1993;
reviewed in Hirano, 2006). GluRδ2 neither binds glutamate nor
conducts current but rather regulates mGluR1-mediated synaptic
transmission via PKCγ (e.g., Kato et al., 2012). Loss-of-function
mutations in GluRδ2 result in multiple defects including impair-
ment of LTD (Kashiwabuchi et al., 1995). There is no evidence
that its expression is stripe-restricted (gain-of-function mutation
of the GluRδ2 gene in the lurcher mouse (GridLc/+) results in
striped Purkinje cell degeneration (Zuo et al., 1997; reviewed
in Armstrong et al., 2011) but this likely reflects differential
sensitivity to the insult rather than selective GluRδ2 expression).

GLUTAMATE RE-UPTAKE
The time that glutamate resides in the synaptic cleft, and hence is
available for receptor binding, is governed by EAAT. In particular,
EAAT4 has been implicated at the pf-PC synapse. It is therefore
striking that the expression of EAAT4 is different from stripe
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to stripe with high levels associated with the zebrin II+ stripes
(Dehnes et al., 1998). As a result, regional differences in glutamate
transporter expression affect the degree of mGluR1 receptor stim-
ulation, with the result that pf-PC LTD is dampened in Purkinje
cells expressing high levels of EAAT4 (= zebrin II+; Wadiche and
Jahr, 2005).

CALCIUM INFLUX
One consequence of mGluR1 activation is Ca2+ influx via VDCC
in the postsynaptic dendritic membrane. There is no evidence
that VDCCs are expressed differentially by Purkinje cell subsets
(As for the lurcher mouse, it has been shown that a mutation of
the VDCCα1a channel in the tottering mouse (Cacna1atg) results
in the selective Purkinje cell death of the zebrin II- Purkinje
cell subset, but again the evidence suggests that this is due to
differential sensitivity to an abnormal Ca2+ influx rather than
restricted expression of the α1a channel; Fletcher et al., 1996).

The downstream response to dendritic Ca2+ influx is modu-
lated by calpacitins, notably the 2 Purkinje cell proteins PEP-19
and neurogranin/RC3. Sutcliffe and colleague have proposed that
calpacitins regulate calmodulin availability in dendritic spines
and thus regulates their ability to amplify the mobilization of
Ca2+ in response to metabotropic glutamate receptor stimulation,
releasing calmodulin rapidly in response to large influxes of Ca2+

and slowly in response to small increases. This action is inhibited
by PKC-mediated phosphorylation (reviewed in Gerendasy and
Sutcliffe, 1997; Díez-Guerra, 2010). α-Calmodulin kinase KII is
also shown to be required for LTD at the pf-PC synapse (Hansel
et al., 2006). Neurogranin knockout mice show deficits in the
induction of hippocampal LTP (e.g., Pak et al., 2000) but no
cerebellar phenotype is reported. On the other hand, the much
more abundant PEP19 is directly implicated: in the PEP19 null
mouse both motor learning and pf-PC LTD are impaired (Wei
et al., 2011). During cerebellar development, both PEP19 (Wassef
et al., 1992) and neurogranin (Larouche et al., 2006) expression
is restricted to Purkinje cell subsets. However, in the adult PEP19
expression is uniformly expressed by all Purkinje cells (Mugnaini
et al., 1987) whereas neurogranin has disappeared (Larouche
et al., 2006), so any significance for patterned LTD at the adult
pf-PC synapse is doubtful.

NITRIC OXIDE
In addition to releasing glutamate, parallel fibers also release
NO. NO acts through inhibition of protein phosphatases in the
Purkinje cell dendritic spine and thus enhance AMPAR phos-
phorylation. LTD is abolished in transgenic mice lacking nNOS
(Lev-Ram et al., 1997). There is clear evidence of different stripes
of nNOS in the granular layer of the cerebellar cortex (e.g., Yan
et al., 1993; Hawkes and Turner, 1994; Schilling et al., 1994;
Baader and Schilling, 1996). Similar striping is harder to discern
in the molecular layer, perhaps obscured by the overlapping
parallel fiber populations. The nNOS pathway is activated via N-
methyl-D-aspartate (NMDA)-type glutamate receptors located at
the pf-PC synapse (and/or located in the presynaptic terminals
of inhibitory interneurons; Shin and Linden, 2005). Functional
NMDA receptors are also expressed at climbing fiber-PC synapses,
and channel blocking inhibits LTD (Piochon et al., 2010).

It is noteworthy that NMDA receptor expression, as revealed
by an NRC2 subunit knock-in mouse (NR2CnlacZ), reveals stripes
of granule cells similar to those revealed by PLCβ4 expression
(= zebrin II-; Karavanova et al., 2007). There is no evidence that
Purkinje cell NMDA receptors are expressed in stripes.

CORTICOTROPIN-RELEASING FACTOR
Glutamate release and binding to mGluR1 is also the first step in
signaling via the climbing fiber pathway. In parallel to glutamate
release, climbing fibers also secrete CRF (Barmack and Young,
1990), which plays a permissive role in LTD that is probably medi-
ated through PKC (Miyata et al., 1999). However, not all climbing
fibers express CRF. Whole mount immunocytochemistry shows
that CRF is restricted to (or is expressed at higher levels in) a
striped subset of climbing fiber terminals that terminate in zebrin
II+ Purkinje cell stripes (mouse—Sawada et al., 2008). However,
the significance of this may not be straightforward as previous
studies reported uniform CRF expression (e.g., cat—Cummings,
1989) or expression differences between lobules but not in the
form of stripes (e.g., developing mouse—Overbeck and King,
1999). There is no evidence that G-protein coupled CRF receptor
(CRFR1) expression is similarly striped (e.g., Allen Brain Atlas).

INSULIN-LIKE GROWTH FACTOR 1
As well as releasing CRF, climbing fiber synapses also store and
release IGF-1 (Torres-Aleman et al., 1994). It is not known if
IGF-1 or its receptor tyrosine kinase (IGF1R) is expressed in
stripes in the adult cerebellum (in general in the brain IGF1R is
broadly expressed—it is the ligands that show regional restriction:
e.g., reviewed in D’Ercole et al., 1996). During early postnatal
development, IGF-1 is also expressed in a zebrin II- Purkinje cell
subset, where it acts to block apoptosis (Croci et al., 2011), but it
is unclear whether selective expression is retained in the adult.

PHOSPHOLIPASE Cβ

mGluR1 signals via the Gq subclass of G-proteins to PLCβ

(reviewed in Knöpfel and Grandes, 2002). There are four PLCβ

isoforms, encoded by distinct genes (PLCβ1-4; Bahk et al., 1994).
Strikingly, PLCβ3 and PLCβ4 are expressed by distinct, non-
overlapping subsets of Purkinje cells. PLCβ3 is confined to the
zebrin II+ Purkinje cell subset (Figure 1C) and PLCβ4 expression
is coextensive with the zebrin II- Purkinje cell subset (Figures 1D,
E; Sarna et al., 2006; Marzban et al., 2007) (Unexpectedly, a small
subset of zebrin II+ Purkinje cell stripes in the nodular zone of
the mouse cerebellum (∼ lobules IX and X)—those that express
HSP25—is reproducibly immunonegative for both PLCβ3 and
PLCβ4 (Sarna et al., 2006)—the implication of this is unclear).

PHOSPHOLIPASE A
Parallel to the PLCβ pathway, there is also a signaling pathway
via phospholipase A (PLA)—in particular, the PLA2 isoform:
e.g., Linden, 1995; Le et al., 2010), which acts to break down
phospholipids into arachidonic acid, a potent activator of PK Cγ

(e.g., Shearman et al., 1989). At least 20 PLA2 isoforms have been
identified, three of which have been reported in Purkinje cells
(cPLA2α, sPLA2IIA, and iPLA2; Shirai and Ito, 2004). There is
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no evidence that any of these is restricted to a particular Purkinje
cell subset.

INOSITOL (1,4,5) TRIPHOSPHATE RELEASE
Two signaling pathways leading to LTD lie downstream of PLC.
The first involves IP3 release from intracellular stores to bind to
its receptor on the endoplasmic reticulum (IP3R; e.g., Furuichi
et al., 1989; Maeda et al., 1989). The cerebellar distribution of
IP3R has recently been reported in a transgenic mouse in which
the IP3R promoter was fused to a β-galactosidase reporter and a
nuclear localization signal (IP3R1nls-lacZ; Furutama et al., 1996,
2010; Figure 1F). Transgene expression in the heterozygote reveals
a striking array of Purkinje cell stripes that can be traced continu-
ously through embryogenesis through to adulthood. In general,
IP3R1nls-lacZ transgene expression is restricted to the zebrin
II+ Purkinje cell subset. The extent to which this distribution
reflects any feature of the true restriction of the receptor—perhaps
developmentally—or is a transgene artifact (due to the transgene
insertion, promoter truncation, enhancer trapping, etc.), is ques-
tionable. Immunocytochemistry with antibodies against IP3R do
not show Purkinje cell stripes (e.g., Mignery et al., 1989).

PROTEIN KINASE C (PKC)
An additional second-messenger signaling pathway between glu-
tamate release and the induction of LTD goes via the generation
of DAG by PLC, which in turn activates PKC (Crépel and Krupa,
1988; for a general review of PKC, see Newton, 1995). There are
seven PKC subtypes—three (α, β and γ) activated in a Ca2+/DAG-
dependent manner and 4 (δ, ε, η and θ) Ca2+-independent
(reviewed in Tanaka and Nishizuka, 1994). Activation of Ca2+-
dependent PKC is necessary for induction of LTD at the pf-PC
synapse (e.g., Ito, 1989, 2002; Daniel et al., 1998). LTD induction
at the pf-PC synapse is blocked by the intracellular application
of PKC inhibitors in Purkinje cells (Linden and Connor, 1991).
De Zeeuw et al. (1998) constructed a transgenic mouse in which
a Purkinje cell-specific promoter (pcp2-L7) was used to target
the expression of a broad-spectrum PKC inhibitor (the pseudo-
substrate PKC[19–31]) and thereby showed that PKC activation
in the Purkinje cell is a prerequisite for the induction of LTD.
None of the Ca2+/DAG-dependent PKC isoforms is expressed
selectively by a Purkinje cell subset (e.g., Barmack et al., 2000).

The role(s), if any, of the four Ca2+-independent PKCs in
LTD induction is unclear. However, they deserve attention here
because while most PKC isoform distributions are uniform across
the molecular layer the one exception is PKCδ, whose expression
in the nodular zone of the rat reveals a reproducible striped
expression pattern with higher levels in the zebrin II+ stripes
(Barmack et al., 2000). Furthermore, experimental manipulation
of the cerebellar afferent inputs by labyrinthectomy demonstrated
an activity-dependent targeting of the PKCδ isoform to the pf-
PC synapse (Barmack et al., 2001). PKCδ has been implicated in
hippocampal LTP (e.g., Kim et al., 2013) but no specific role in
cerebellar LTD is known.

GABAB RECEPTORS

LTD at the pf-PC synapse is also modulated by an unusual
form of γ-aminobutyric acid (GABA) receptor signaling. In the

adult cerebellum GABABRs are predominantly located perisy-
naptically at the dendritic spines of Purkinje cells (e.g., Turgeon
and Albin, 1993; Kaupmann et al., 1997; Bischoff et al., 1999;
Kulik et al., 2002; Fritschy et al., 2004; Luján and Shigemoto,
2006). Both GABAA (reviewed in Fritschy and Panzanelli, 2006)
and GABAB receptor classes are expressed in the cerebellum but
only GABABRs have been implicated in pf-PC LTD. GABABRs are
G-protein-coupled receptors formed as heteromers of 2 subunits
(GABABR1/2; Marshall et al., 1999; Möhler and Fritschy, 1999).
Postsynaptic GABABR signaling enhances LTD (Tabata et al.,
2004; Kamikubo et al., 2007), possibly as a Ca2+-dependent cofac-
tor of mGluR1 signaling. The role of GABABRs in the modulation
of LTD is unconventional in that it does not require GABA.
Rather, extracellular Ca2+ binds to the GABABR and constitu-
tively increases the glutamate sensitivity of mGluR1 (Tabata et al.,
2004). The role of GABABR in LTD is relevant for the present
discussion because immunocytochemistry for GABABR2 shows
a strong restriction of receptor immunoreactivity to the zebrin
II+ stripes (Albin and Gilman, 1989; Luján and Shigemoto, 2006;
Chung et al., 2008; Figure 1E).

AMPA RECEPTORS
The ultimate downstream target of PLC signaling, via both
PKC and IP3R, is the phosphorylation (via both PKC and
Src-family protein tyrosine kinases—e.g., Tsuruno et al., 2008)
of postsynaptic AMPA receptors (AMPAR; Ito, 1984; Crépel and
Krupa, 1988; Hirano, 1991; Linden et al., 1991; Matsuda et al.,
2000; Tsuruno et al., 2008; etc.). AMPAR kinetics, agonist affinity
and unitary conductances are unchanged by phosphorylation
(Linden, 2001) but rather there results a reduction in AMPAR
number due to enhanced endocytosis (Matsuda et al., 2000),
which is dependent on phosphorylation at ser-880 in the AMPAR
GluR2 subunit (Chung et al., 2003; reviewed in Shin and Linden,
2005). There is no evidence of selective expression of either Src
kinases or AMPAR by Purkinje cell subsets.

MOLECULAR CORELATES OF LONG-TERM POTENTIATION AT
THE PARALLEL FIBER-PURKINJE CELL SYNAPSE
The opposite process—LTP—countermands LTD at the pf-PC
synapse. This endows the synapse with bidirectional plasticity
(Lev-Ram et al., 2002; Coesmans et al., 2004). Postsynaptic LTP
is induced by parallel fiber stimulation (1 Hz for 5 min: Lev-Ram
et al., 2002, 2003). The signaling pathways implicated resemble
those previously identified for hippocampal LTP (e.g., Jörntell
and Hansel, 2006). Stimulation causes Ca2+ influx via voltage-
sensitive channels, which activates several calmodulin-activated
protein phosphatases (PP1, PP2A and PP2B; Lev-Ram et al.,
2003; Coesmans et al., 2004; Belmeguenai and Hansel, 2005;
Schonewille et al., 2010). In turn, this results in enhanced AMPA
receptor insertion into the postsynaptic membrane (a process
dependent upon NO—Huang et al., 2005; Kakegawa and Yuzaki,
2005). It is not known if this form of pf-PC LTD or the molecules
in the downstream pathways are differentially expressed between
Purkinje cell subsets.

In contrast, another apparent manifestation of pf-PC LTP has
a close relationship to cerebellar stripes. This instance comes from
the flavoprotein autofluorescence imaging of cerebellar activity
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by Ebner and colleagues (e.g., Wang et al., 2009, 2011; Ebner
et al., 2012). By stimulating mouse cerebellar cortex by using
a paradigm that induces LTP at pf-PC synapses, an array of
long-latency patches was revealed that aligns with the zebrin II+
Purkinje cell stripes and shows robust LTP. This form of LTP
is mGluR1-dependent and blocked by application of PLCβ and
ryanodine receptor inhibitors. This is pertinent because both
mGluR1 receptor subtypes (Mateos et al., 2001; III.ii above) and
PLCβ isoforms (Sarna et al., 2006; III.vii. above) are expressed in
stripes. How this expression of LTP relates to that described above,
is unclear.

CONCLUSIONS
In this review, LTD at the pf-PC synapse has been used as an
example of a correlation between the molecular architecture of
the cerebellar cortex and the specialization of cerebellar function.
To recapitulate, the data show two things: first, LTD is mani-
fested differently in different stripes; and secondly, some of the
molecules implicated in the LTD signaling pathways also show
expression patterns restricted to stripes, ranging from convincing
(e.g., mGluR1b, EAAT4, PLCβ3, PLCβ3/4, GABABR2) to intrigu-
ing (e.g., nNOS, CRF), to being of marginal significance at best
(e.g., IP3R; IGF-1; PKCδ: Table 1). While this review has focused
on one aspect of cerebellar function as an exemplar—LTD at the
pf-PC synapse—it would be surprising if the molecular archi-
tecture were not similarly customized to serve other cerebellar
functions. The evidence that LTP at the pf-PC synapse may also
vary across stripes is also briefly reviewed. The conclusion is
thus that cerebellar function has evolved to accommodate the
different requirements of multiple, parallel afferent and efferent
pathways, by customizing key molecular constituents. For exam-
ple, on the afferent side Purkinje cell stripes receive mossy fiber
pathway input from multiple sources and with very different
firing patterns—have pf-PC synapses specialized to accommodate
this? Likewise on the efferent side, do different cortical receiving
areas require different LTD kinetics? Another consideration is that
perhaps stripes work as zebrin II+/− pairs. One hint that this
might be the case comes from the studies of optic flow in the
pigeon cerebellum by Graham and Wylie (2012), which show that
Purkinje cells in zebrin II+/− stripe pairs all respond best to the
same pattern of optic flow. Given that climbing fibers onto zebrin
II+ Purkinje cell stripes release more glutamate than those onto
zebrin II- stripes (e.g., Paukert et al., 2010) it may be that both
slow and fast adapting stripes work in concert as the fundamental
functional unit in the cerebellar cortex.
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