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Universal structures of normal and 
pathological heart rate variability
Alfonso M. Gañán-Calvo1 & Juan Fajardo-López2

The circulatory system of living organisms is an autonomous mechanical system softly tuned with the 
respiratory system, and both developed by evolution as a response to the complex oxygen demand 
patterns associated with motion. Circulatory health is rooted in adaptability, which entails an inherent 
variability. Here, we show that a generalized N-dimensional normalized graph representing heart 
rate variability reveals two universal arrhythmic patterns as specific signatures of health one reflects 
cardiac adaptability, and the other the cardiac-respiratory rate tuning. In addition, we identify at least 
three universal arrhythmic profiles whose presences raise in proportional detriment of the two healthy 
ones in pathological conditions (myocardial infarction; heart failure; and recovery from sudden death). 
The presence of the identified universal arrhythmic structures together with the position of the centre 
of mass of the heart rate variability graph provide a unique quantitative assessment of the health-
pathology gradient.

The heart is the first organic autonomous volumetric pump developed by nature, which allowed the giant leap 
of mobility to living organisms. Contractility and beat rate are basic functions of the heart. Heart rate variability 
(HRV) represents a vital evolutionary degree of freedom of an autonomous organism with a circulatory system1, 
which provides immediate responsive adaptability to oxygen demands. Those demands may have nearly infinite 
variability profiles. However, for economy principles, nature responds to demands creating a limited number of 
structures or patterns instead of infinite solutions. Thus, questions such as to which extent could HRV cling to 
predetermined structures or patterns, whether such structures -if any- would reveal general modes of adaptabil-
ity (health) and failure (pathology), would those structures appear in combination, what would be their relative 
generalized size and weight, would those structures be complementary or antagonistic, etc. are the objects of this 
work.

The complementary respiratory system of mobile organisms living in air is also a volumetric pump (the 
chest-lungs), with another characteristic time softly tuned to that of the heart. The soft link between heart beat 
and breath rates entails a specific HRV that was early identified2–6. Heart beat is also subject to other endog-
enous inputs like digestion7, age and gender8–12, biochemical conditions13–15, or psychic related issues16–19, 
whose characteristic associated time is normally decoupled from that of the autonomous heart beat. When 
such inputs or conditions reach to, or overcome external inputs (including circadian cycle20), the organism may 
exhibit pathological arrhythmias. However, the most life-threatening are those for which the cardiac condition 
is challenged, with characteristic times below that of breath rate16,21–23. We hypothesize that universal specific 
arrhythmic sequences (internal structure) may exist in the human species as a co-evolutionary product of the 
sympathetic-parasympathetic system, and that those sequences might be specific to healthy or pathologic cardiac 
conditions.

The need for non-invasive, precise and specific tools of diagnosis and prognosis is a primary driver in the 
advancement of Medicine. Compact graphical representations of physiological systems have provided an 
immense advantage for physicians in terms of detail and precision in diagnosis. Imaging of internal systems and 
tissues (e.g. echography, CT-scan, or NMR) has changed our lives. This is why in cardiac quantification (CQ), 
echocardiography (echoCG) has represented a major development. Nonetheless, electrocardiographic data series 
provide irreplaceable, complementary information not accessible to echoCG in many aspects like pathologic 
temporal behavior and patterns, ectopic beats, etc. An ambitious, non-trivial task would be to determine the 
optimal measures in a Holter record (HR) time series that can be reduced to a compact graphical representation 
(or graph), similar and complementary to echocardiography in clinical value. A number or preliminary con-
siderations is necessary: in order to emphasize the appearance of generic patterns reflecting either normal or 
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pathological features, and enhance specificity, that graph should reduce to a minimum (i) the individual distinc-
tions in mass/size, gender, age, etc., (ii) long term influences, with times comparable or larger than breath rate, 
and (iii) both exogenous and endogenous influences other than those of cardiac or circulatory origin. That graph 
should keep the complete information provided by the beat sequence (for example, the sequence of all beat to 
beat intervals, or RR intervals) as to be decoded to reconstruct the original extended sequence. To the best of our 
knowledge, no such graph exists to date.

Among the different approaches to study HRV, including tools from dynamical systems and chaos analy-
sis24–28, multiscale entropy analysis29, analysis in the frequency domain30–33, and Markov chains34–36, Poincaré 
maps of RR intervals provide useful compact graphs of a HR37–42. In this work, we postulate that the high stochas-
tic heterogeneity exhibited in general by HRV is a signature of strong internal and presumably universal struc-
tures. Under this thesis, the most suitable tools for HRV would be a normalized time sequence analysis in contrast 
to global, stochastic tools, or Fourier transforms. Indeed, Fourier transform may definitely not be the right tool to 
analyze universal variability patterns, because it essentially analyzes the content of fixed time scales in the whole 
record, thus mixing up patterns of potentially the same nature for high and low beat rates in the same HR.

Poincaré plots (or return maps) of RR series provide a direct time sequence analysis to identify temporal pat-
terns. However, the limited range provided by planar (2D) return maps41 hamper the full potential of this graph. 
In particular, a 2D return map is a planar projection where complex trajectories with multidimensional features 
(i.e. specific arrhythmic sequences) appear superposed and indistinguishable. Here we propose a rational general-
ization (N–dimensions) of return maps using a normalized variability in terms of a moving average of N–order. It 
addresses the above mentioned demands for an ideal representation of cardiac function in terms of compactness 
and completeness, and the normalization proposed reduces to a minimum the exogenous or accidental influ-
ences. This procedure can be applied to any component of the QRS complex, although in this work we focus on 
the analysis of the principal component, the RR series. In this work, we have explored the range from order N =  2 
to N =  100, observing that global variability quantifiers like the one introduced in the following (that we call pri-
mary variability) consistently exhibits a minimum for N =  5 in the case of healthy individuals. This might be due 
to the fact that the average cardiac rate is approximately five times that of breath rate in our species, which induces 
a subharmonic of order five in the HRV, thus maximizing the global compensation when N =  5. If this hypothesis 
is correct, deviations from the normal condition should be optimally distinguished at this order.

Fortunately, N =  5 yields the most complete, graphically representable graph of all orders: we will show that 
five subsequent normalized differences with respect to a local five-point average in a data series (e.g. RR intervals) 
provide a sequential information vector in four dimensions that can be graphically represented in 3D+  color to 
yield a compact, clinically descriptive and valuable comparative tool. This graph allows the identification of uni-
versal sequence patterns whose density distribution and combinations may provide an immediate and complete 
information on the condition of a cardiac system. In particular, we have identified up to five ubiquitous sequences 
particularly visible in our proposed graph, but not exclusively present when N =  5: indeed, all of them can be 
found at larger orders and their general expressions for any N–order have been obtained. The universality of 
those sequences is verified in a series of HR databases with 133 records grouped into four basic conditions with 
distinctive features of: (i) normal sinus rhythm (NSR) at normal activity or at supine rest, watching the movie 
“Fantasia”; (ii) ischemic cardiopathy (myocardial infarction, MI); (iii) heart failure (HF); and (iv) recovery from 
sudden death (SD). We show that the percentage of appearance of each sequence, and a properly defined primary 
variability provide an univocal and specific set of measures of physiological cardiac condition for those cases in 
the publicly available databases explored.

A HR is a set of M consecutive values corresponding to the RR intervals measured, that can be expressed as 
{Xi}i=1, ..., M. We propose that the optimal way to study the general variability, independently of the particular state 
of the heart rate, is the use of the generalized distance from a particular point to the identity line (line of zero var-
iability43), that distance made non-dimensional with the average heart rate = ∑ =

−X M Xi
M

i1
1  (see suppl. info). 

The identity line can be defined as {1, ..., 1}t, where t is any real positive number. Healthy hearts dance approxi-
mately around that line, but never sit on it (even in the extreme cases of more relaxed or more extenuating situa-
tions with apparent constant RRs, there is a mathematically non-zero variability). One can easily verify that the 
expression of the k- component of the local normalized vector distance from any normalized i–point 
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with i =  1, …, M −  N +  1. In addition, only N −  1 of the N components of vector Δ i would provide relevant infor-
mation, since the extra component gives a redundant information once the other N −  1 components are known. 
Obviously, this is because the vector distance always belongs to the plane whose normal vector is {1, ..., 1}/N1/2. In 
other words, the vector Δ i always sits on a (N −  1)-dimensional subset (a fixed plane), and thus its true inform-
ative dimension is N −  1. Besides, one can also define a locally normalized vector distance to the identity line as:

δ = /〈 〉 − ≡ /〈 〉 − . ( )+ , = ,..., −
+ , = ,..., −
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1 .
Figure 1 shows examples of all this with N =  4, using a simple color code (0–1 hue code) as the fourth dimen-

sion. Both Δ i and δi provide compact representations of the HRV [see Fig. 1(a,b)], with certain differences (other 
than the obvious): while Δ i represents globally normalized variability, thus reflecting the actual, yet normalized 
extension of variability, δi is a measure of local variability everywhere along the record. Although the appearance 
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of both graphs differ only slightly in reality (see Fig. 1(a,b)), one has that Δ i often superposes certain features that 
appear as continuous regions [Fig. 1(a)], while δi exhibits their internal structure better [Fig. 1(b)]. Furthermore, 
δi results in a more compact [Fig. 1(b)], limited representation of variability that reflect universal features more 
clearly than Δ i. In many cases, this leads to the identification of different discrete modes of the same variability 
form, with different locally normalized amplitudes depending on the local average beat rate [Fig. 1(b)]. However, 
in this work we fundamentally use Δ i to show the true universality of basic cardiac patterns in the human species, 
leaving the nuances of δi to further studies. Besides, the appearance of specific structures (streaks or lines) that 
appear in both Δ i and δi is anticipated in Fig. 1.

Figure 2 shows the graph of three HRs according to the proposed procedure, for N =  5: Fig. 2(a) belongs to a 
normal healthy subject, and Fig. 2(b,c) belong to two patients with chronic HF. While the healthy subject show 
the same dull, compact feature around the origin as in Fig. 1(b), the subjects with HF show distinctive spatial lines 
which are subsequently visited following preferred sequences. Some immediate conclusions can be drawn. In first 
place, the lines exhibited are fundamentally straight. In some cases [e.g. Fig. 2(b)], a flat feature joins smoothly a 
space between two lines. There is a particular view angle (projection angle on the plane of view) that systemati-
cally reduces the main straight lines and planes to just three in all these cases [see Fig. 2(c)]. Using this view angle, 
we give the projections of all HRs in the databases cited in Material and Methods (NSR, NRS-Fantasia, MI, HF, 
and SD) in the supplementary information.

As it can be expected, the normalized Poincaré sections of the variability of the NSR database (suppl. info.) are 
relatively centered and homogeneously distributed around zero, showing a mathematical compensation within 
(apparently) a random series, i.e. a roughly spherical core with random (approximately Gaussian) distribution. A 
more detailed observation reveals that all cases show in reality a clear structure in the fourth dimension (color) 
along a specific direction. This direction, interestingly, is exactly the same for all individuals, independently of 
the shape of the distribution of points. This fact points to the existence of a subharmonic, probably related to the 
cycle of breath, reflecting an automatism of the sympathetic-parasympathetic system. This effect is comparatively 
rare or nearly absent in the individuals with MI, and cannot be appreciated in HF and SD. The existence of some 
individuals in the NSR database (about 12%) exhibiting features present in HF is subsequently quantified and dis-
cussed. The Fantasia database shows the same features (suppl. info.44,45) as those in the NSR database, and nearly 
the same percentage of subjects with features of HF. Besides, elder healthy subjects clearly show less variability 
than young people.

Nearly 70% of subjects of the HF database (suppl. info.46), and many of the SD studied (suppl. info.47) show 
the same distinctive lines previously mentioned. The percentage of subjects with homogeneously distributed 
clouds of points reverse as compared with NSR: less that 20%. On the other hand, the repetitiveness of patterns 
and their extension point to universal features of HRV. Finally, the SD database used in this study show patterns 
distinctively variable, and conspicuously more irregular than any other group. Some of them exhibit the same 
lines as those of HF, but most of them show a very complex or an apparently chaotic structure (see suppl. info.).

As a first feature of the graph here proposed (either in terms of Δ i or δi), one observes that it is centered 
around the origin by definition, being the density of points in different areas the specific signatures of variability. 
Thus, a primary measure of variability for a Nth-order subharmonic and its global compensation (for example, 
in a 24-hour HR for a circadian framework) would be the norm of the normalized vector defining the center of 
mass of the graph made by Δ i. However, our experience shows that the whole record of subsequent vectors Δ i 

Figure 1. Representation of the distance vectors for a particular case of heart failure (a) {Δ i}, and (b) {δi}. Some 
characteristic lines in this specific case and their mathematical expressions are shown. Also, zoom-in of the 
central regions of the graph are provided with smaller dot sizes to appreciate details.
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Figure 2. (a) 4-dimensional plot of the locations of the M −  3 vectors Δ i (i =  1, ..., M −  3) of a normal HR  
(a healthy adult). (b,c) Same for two subjects with chronic heart failure (three view angles each). The plots in  
(b,c) at the right show the universality of patterns when projected with the appropriate angle. (d) Identification 
of the main lines in heart failure in two different subjects with HF.
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for i =  1, ..., M −  N produces an improper compensation due to the inherent nature of a Poincar’e plot: observe 
that the same arrhythmic RR interval Xi appears as a common component Δ i−k,k in N −  1 vectors Δ i−k (where 
Δ i−k,k is the k–component of vector Δ i−k, with k =  0, ..., N −  2) around the identity line, which often produces a 
global apparent compensation. To avoid that, one may extract a subset of the whole series taking the index i in 
steps of N, i.e. i =  {1, 1 +  N, 1 +  2N, ...}), where each Xi appears just once. The distance from the center of mass 
of this subset to the origin, whose graph is nearly indistinguishable from that of the whole series except in their 
different densities, is given by:
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where Δ i,k is the k–component of vector Δ i. This coefficient, that we term primary variability (PV), can be rep-
resented for each subject as a function of N. Our experience shows that Φ N is about 10 to 100 larger than the 
distance to the origin of the center of mass of the complete original set, which drastically amplifies the signifi-
cance of Φ N as defined. It is also dependent on the number of beats in the series (see suppl. info.). In general, the 
minimum variabilities correspond to NRS (Fantasia), closely followed by MI. Besides, the maximum variabilities 
correspond to both SD and HF, being their distribution rather similar (see suppl. info.). Just in between, one has 
the NSR under normal activity. PV will be shown as a new quantitative measure with extraordinary distinctive 
values among cardiac conditions in combination with the graph here proposed and the arrhythmic structures 
subsequently deciphered.

In the following we provide a first classification of distinguished patterns that can be grouped into universal 
sequences. Moreover, we will show that the density of points along those lines provides a definitely valuable 
measure of cardiac condition. Indeed, when applied to the databases publicly available here used, our procedure 
yields a highly descriptive specificity for each group. As a first approach, in this work we limit ourselves to the 
identification of the most simple primary arrhythmic sequences that can be expressed in the form of a line as

= , , ... , , ( )A a a a t{ } 4N1 2

parametrized by an arbitrary variable t. Of course, the vector position of an actual point (beat) sitting approxi-
mately on an identified arrhythmic line may have any positive real t value. This reflects the ultimate essence of 
our idea: an arrhythmic line (or anomaly) in our normalized graph, which can be mathematically and universally 
expressed, gathers all arrhythmia of the same nature, independently of beat rate and variability strength. To calcu-
late the density of points along the lines (sequences) present, several primary sequences have been deciphered and 
will be described in the following. These findings do not exclude the existence of other more complex sequences, 
with specific features associated, that can be sought for in future works.

One immediate way to assess the density of points corresponding to a specific sequence is to quantify its pres-
ence (in %) along the recorded RR series, as explained in Materials and Methods (see Numerical Methods). Given 
that the presence of a certain sequence is obviously not exact neither uniform amongst conditions and individu-
als, one needs to use statistical means. To do that, a convenient way to represent the distribution of the presence 
of a sequence under a given condition is plotting the value of Fi =  i/M versus yi for the corresponding database. 
Here, yi is the percentage of presence of sequence A1, i is the rank of a particular subject based on his/her score 
y, and M is the total number of RRs recorded. This will be given for each sequence, and analyzed in combination 
for each condition.

Arrhytmia A1.- A normal subject with NSR should exhibit an intrinsic capability to respond to any demand 
of the organism by regular accelerations or decelerations of the heart beat rate promoted by the sympathetic/
parasympathetic system. This capability should be reflected in the appearance of the simplest form of HRV, that 
can be expressed as a linear ramp:

= ± ( + )/ − , ( )
±

= ,...,A t N k1 { 1 2 } 5N k N1

where the positive (+ ) or minus (− ) sign apply for an accelerating or decelerating beat rate, respectively. For 
example, for N =  4 under accelerating beat rate, one has = . , . , − . , − .+A t1 {1 5 0 5 0 5 1 5}5 ; for N =  5 and deceler-
ating beat rate, = − , − , , ,−A t1 { 2 1 0 1 2}5 ; etc., where larger t values indicate a steeper ramp up of the heart beat, 
without any change in the functional structure of this variability.

This is the dominant form of HRV in a normal subject, as shown by its average presence (see Table 1) in the 
corresponding database (MIT BIH, NSR database). In fact, it is reflected by a slightly ellipsoidal shape around 
the origin in the direction of the line A15 of any 4-dimensional graph of the fifth-order Poincaré map of HRV of a 
normal subject with NSR, as here proposed [see Fig. 2(a)].

More importantly, when the presence of this form of HRV decreases, other forms of pathologic arrhythmia 
subsequently described increase roughly in the same proportion. This fundamental finding points to a basic 
organic fact: this arrhythmia is in reality the basic degree of freedom of HRV reflecting the adaptability of a healthy 
organism. If any pathologic condition depresses or limits this degree of freedom, other forms of HRV raise to 
compensate that disability. Interestingly, these alternative forms are usually not arbitrary, particularly in condi-
tions such as those classified as HF. Indeed, they are rather universal. Consequently, the specific form of these 
alternative HRV patterns should have ties to the specific condition that an organism undergoes, opening the door 
to new ways of non-invasive rapid diagnostics.

Arrhythmia B1 (compensated ectopic beat). The 4-dimensional HR graphs of subjects with HF usually exhibit 
three lines (Fig. 2(d)) that can be readily identified as (see Fig. 2(d)):
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= − , , , , = , − , , , = , , − , . ( )B t B t B t1 { 1 1 0 0} 1 {0 1 1 0} 1 {0 0 1 1} 61 2 3

First, observe that these three sequences in reality belong to a single class of the type

... , , , − , , , , ... . ( ){ 0 0 1 1 0 0 } 7

Second, the average value of the four components is zero for any N >  2, and therefore these sequences can be 
termed as compensated. This means that the last point of the Nth-order Poincaré section sits approximately on 
the identity line, i.e. Δ i,N−1 =  0. In other words, the sequence can be also termed as terminated, since the last beat 
interval lasts the same time as the local (moving) average. Interestingly, the number of beats with nearly zero 
variability around the sequence {− 1, 1} is in most cases larger than two (i.e., the line {1, 0, 0, − 1} does not clearly 
appear). Thus, one may conclude that there is a specific sequence described by the following line:

= ... , , , , − , , , , , ... ( )B t1 { 0 0 0 1 1 0 0 0 } 8

with a clear ubiquity. In the suppl. info. we show the consistency of the choice N =  5 as an optimum, convenient 
index to exhibit the presence of this sequence in a HR.

This type of arrhythmia is definitely characteristic and drastically dominant in HF condition, with a median 
of y close to one order of magnitude larger than in either SD or MI, and yet it is dominant in these cases as well. 
Interestingly, while the primary variabilities (PVs) of both HF and SD are large and very similar, what distinc-
tively distinguishes HF from SD is a much larger presence of B1 in the former. These arrhythmias correspond to 
compensated, isolated ectopic beats; in this work, we do not attempt to link their specific cardiac origin or clas-
sification as premature ventricular complexes, atrial ectopic beats, etc. This analysis may provide a new ground 
for an overarching classification based on the inherent, strongly compensated nature of these arrhythmias and 
their reducibility to a single universally expressible structure. Besides, they are comparatively rare or absent in the 
NSR database. Consistently, ectopic beats can be shown in records of normal individuals, but are relatively rare. 
However, awaked subjects recorded at supine resting (Fantasia) exhibit more presence of this type of arrhythmias 
than normal subjects under normal activity. Notwithstanding this, the dominance of B1 in HF calls for a future 
revision on the diagnostic value48 (and references therein) of the presence of ectopic beats in combination with 
the capability to smoothly adapt (presence of linear ramps A1) to demands of normal activity. Indeed, one may 
observe in Table 1 the strong inverse correlation between the presence of compensated ectopic beats B1 and linear 
ramps A1 (± ). The opposite combination of the presences of both A1 and B1 is clearly illustrated in Table 1, and 
particularly in Fig. 3.

Arrhythmia B2 (regular paroxysmal tachycardia I). One may also graphically find the sequence described by 
[see Fig. 1(a,b)]:

= , − , − , − . ( )B t2 {4 1 1 1} 91

An additional line appearing in many cases [e. g. see Fig. 1(c,d)] is:

= − , − , − , − . ( )B t2 { 1 1 1 1} 102

First, the appearance of these sequences introduces an additional source of randomization, combined with A1. 
This provides some extra adaptivity that would otherwise be severely limited (a stronger insufficiency would 
appear) as the presence of linear ramps A1 (normal adaptability) decreases. Secondly, neither one of those 
sequences is compensated. This means that one should consider higher order N values to seek for compensated or 
terminated sequences. In this case, both B21 and B22 are in reality part of the compensated sequence:

= , − , − , − , − , ( )B t2 {4 1 1 1 1} 11

which in reality belongs to a sixth-order Poincaré section (i.e. N =  6). Interestingly, one finds that the compen-
sated sequences described by lines of the type:

= ( − ), − , ..., − , ( )−B N t2 { 2 1 1} 12N 2

Arrhythmia 
type

NSR (normal 
activity) Fantasia MI SD HF

A1+ 1.21849 0.841977 0.682145 0.355535 0.23905

A1− 0.725413 0.657101 0.502548 0.264764 0.188382

A2+ 0.417186 0.576313 0.320071 0.33573 0.158211

A2− 0.630867 0.58272 0.379129 0.284021 0.175146

B1 0.354003 0.568972 1.7985 1.48564 5.59225

B2 0.431622 0.32933 0.339216 0.493797 0.772125

Φ 5 10.1739 2.4295 1.7567 41.2053 48.9619

Table 1.  Average presence (in %) of the different arrhythmia types found in the databases. Also given, the 
average primary variability Φ  (M =  4200) for each database. We have used N =  5 and tolerance = .0 1  for all 
calculations in this Table.
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e.g.

= , − , − , − , −
= , − , − , − , − , −
= , − , − , − , − , − , −
= , − , − , − , − , − , − , − , ( )

B t
B t
B t
B t

2 {4 1 1 1 1}
2 {5 1 1 1 1 1}
2 {6 1 1 1 1 1 1}
2 {7 1 1 1 1 1 1 1} 13

5

6

7

etc., have all nearly equivalent presences as B1 in HF, although they decrease as N increases. This sequence is 
hardly distinguishable as N increases above 10. In reality, the one with maximum presence is B2 (this is why we 
term this type of arrhythmia generically as B2 instead of B24). An analysis of the presence of this arrhythmia 
in HF shows that it is as ubiquitous as B1, with different dominance ratios of one over the other, depending on 
the subject. This sequence is compatible with a regular paroxysmal tachycardia after a pause attributable to an 
atrioventricular blocking, in some cases leading to a Stokes-Adams syndrome (as the initial pause increases). 
Its average presence is given in Table 1 (and its distribution in suppl. info.). Again, like in the case of type 1, this 
arrhythmia type 2 is characteristic of HF. Notice that this type of arrhythmia represents a noticeable pause, fol-
lowed by a proportional series of faster beats to compensate the pause.

Arrhythmia B3 (regular paroxysmal tachycardia II).- Several alternative sequences to B2 can be identified as:

= − , , − , − , − ,
= − , − , , − , − ,
= − , − , − , , − ,
= − , − , − , − , , ( )

B t
B t
B t
B t

3 { 1 4 1 1 1}
3 { 1 1 4 1 1}
3 { 1 1 1 4 1}
3 { 1 1 1 1 4} 14

2

3

4

5

or

= − , , − , − , − , − ,

= − − , , − , − , − ,

= − , − , − , , − , − ,

= − , − , − , − , , − ,

= − , − , − , − , − , , ( )

,

,

,

,

,

B t
B t
B t
B t
B t

3 { 1 5 1 1 1 1}
3 { 1 1 5 1 1 1}
3 { 1 1 1 5 1 1}
3 { 1 1 1 1 5 1}
3 { 1 1 1 1 1 5} 15

5 2

5 3

5 4

5 5

5 6

Figure 3. (a) The different regions of normal and HF conditions found in this study: NSR (normal activity -n.a.-, 
green; Fantasia, cyan); HF (magenta). (b) The different regions occupied by the four conditions found in this 
study in the multivariate space ( ), ( ), (Φ )+A B{log 1 log 1 log }10 10 10 5 : NSR (n.a., green; Fantasia, cyan); MI (blue); 
SD (red); HF (magenta). For better clarity, left panel provides three conditions (NSR n. a., MI and HF), the 
central panel four (NSR n. a., MI, SD and HF), and the right panel all conditions studied. N =  5.
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etc., that can be expressed for a general index N as:

= − , ... , − , − ( ), − , ..., − . ( )− , = , .., −B t N position i3 { 1 1 2 1 1} 16N i i N2 2 2

For a given N, all sequences B3 for different i indexes have similar presence, but significantly smaller than B2. 
Again, for N =  6, we simply drop the sub-index N −  2 =  4 since that is the most common form of this arrhythmia. 
It might be assimilated to intermediate situations joining two subsequent sequences corresponding to regular 
paroxysmal tachycardia with relative pauses as in B2. Interestingly, this arrhythmia is less characteristic of HF; in 
reality, it is as present in HF as it is in SD (with a nearly identical probability distribution). Moreover, it is signifi-
cantly more present in NSR than in subjects with MI and in NSR (Fantasia).

A peculiar sequence appears in some cases as “shadows” of arrhythmias B2 in some cases [see for example 
Fig. 2(d)], which can be identified as the lines:

= − = − = −B t B t B t3 { 4, 1, 1, 1, 1} , 3 {1, 4, 1, 1, 1} , 3 {1, 1, 4, 1, 1} , (17)1 2 3

which can be written, in general, as

= , ... , , − + ( ), , ... , , ( )− , = ,.., −B t N position i3 {1 1 2 1 1} 18N i i N2 2 2

a sequence somehow complementary of B3N−2,i. Given the complexity of these types of arrhythmia, we are not 
providing a quantitative analysis of them.

Arrhythmia A2 (breath-related). A relatively ubiquitous sequence, yet having much smaller presence than B1 
or B2 in HF or SD, appears as the sub-dominant form of arrhythmia in normal or asymptomatic subjects. That 
compensated sequence can be described by the following line:

π= ± ( / ) , ( )
±

= ,..., −A t k N2 {sin 2 } 19k N1 1

which represents a sinusoidal modulation of the beat rate along an interval of N beats. This type of arrhythmia 
with mathematical compensation should also reflect a physiological compensation. Given that it is statistically 
more common with N =  5 than with any other order, one may conclude its relationship with the breath rate. 
Whether it is more common during sleep than in normal activity is a subject of further investigations. Its pres-
ence is analyzed in Table 1 and in suppl. info. It is relatively dominant over the pathologic types in NRS. However, 
it is significantly less common in subjects with HF and SD. One may conclude that this arrhythmia is, like A1, 
characteristically non-pathologic. In other words, its presence is compatible with a good cardiac health condition.

The combination of densities of each identified arrhythmia may eventually constitute a valuable signature 
characteristic of a specific condition, which may open new ways to explore diagnostics means beyond the scope 
of this work. A summary of the results is provided in Table 1 (and in suppl. info.). Table 1 quantifies the average 
presence of the arrhythmias analyzed (except those of type 3) and the PVs in the different groups used in this 
study. A fundamental finding is the inverse relationship between the presence of certain types of arrhythmia that 
we term “healthy”, and others that we term “pathologic”. In particular, as far as the data in the public sources that 
we have used are reliable, arrhythmia A1+ and B1 are antagonistic: indeed, the relative presence of one over the 
other reverses as one considers normality or pathologic conditions. A discrete plot of a universal map where both 
presences are analyzed for NSR and HF is given in Fig. 3. Observe that the separation between NSR and HF pro-
vided by these two indexes is rather drastic.

In addition, PV values complete the set of characteristic variables that provide the most distinctive signature 
of each condition: observe in Table 1 that the combinations of the presences of each arrhythmia and the PVs 
configure a unique and strongly differentiated signature. Observe that what distinguishes MI from SD is precisely 
their respective PV, small for MI and large for SD. An approximate plot of the multivariate probability density 
functions for each condition in the space ( ), ( ), (Φ )+A B{log 1 log 1 log }10 10 10 5  would be given by the density of 
points in that space corresponding to each condition. That is given in Fig. 3(b). The clinical value of this rep-
resentation could be enormously significant. In fact, specific cardiotherapeutic drugs aimed at targets such as the 
sympathetic/parasympathetic system (beta-adrenergic-blocking drugs), or maybe the neuro-hormonal 
renin-angiotensin-aldosterone axis (ARBs, etc.), etc. may definitely displace the location of a certain subject in a 
predetermined direction that, to achieve therapeutic impact, should point to the NSR region. Finally, the potential 
prognostic value of results obtained from HRs applying our procedures becomes evident. The observation of the 
4-dimensional graph of a HR here proposed allows the easy, immediate identification of anomalies in healthy 
people. A detailed analysis of some cases is given in suppl. info. Further clinical studies should expand in depth 
and width the analysis and results here briefly outlined, introducing new features and identifying new general 
arrhythmic patterns in relation with other pathologies and conditions not necessarily of a specific cardiac origin 
(e.g. diabetes, hyper- o hypothyroidism, etc., or even psychic conditions).

To conclude, we have proposed a quantitative procedure not only to provide a universal representation of the 
heart rate variability, but also a potentially powerful clinical tool to precisely qualify its cardiac condition, risks, 
and probably other related health issues. In this work, among many probably existing different universal sequence 
types, we have mathematically described some salient ones with relatively simple structure, identified as five 
general types of arrhythmia. The existing classifications of available databases according to cardiac conditions 
have allowed us to determine the signatures of NSR, MI, HF and SD as related to these basic types of arrhythmia. 
As a fundamental result, we have quantitatively shown that two of these arrhythmias are characteristic of health, 
while three are pathologic. Their relative presence in a subject may eventually be related to specific conditions as 
growing clinical evidence based on this methodology builds up in the future. Besides, the temporal evolution in 
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a subject of the arrhythmic structures now visible through our methodology may provide invaluable information 
on his/her condition and/or clinical evolution. We believe that the potential of these results in simple, ambulatory 
and non-invasive clinical diagnosis and prognosis could be vital.

Methods
Local filtration and representation of variability. An immediate way to achieve a compact representa-
tion of a complete HR series with a total number M of RR intervals, i.e. {Xi}i,1,..., M, is to consider each element Xi 
(RR interval) as a point in a N–dimensional Poincaré map. Taking N =  4, a graphical representation of the M −  4 
sequential sets of 4 consecutive RR intervals [{Xi+k}k=0, ..., 4]i=1, ..., M−4 in the HR would serve that purpose (see 
Fig. 1a). However, this representation is utterly dependent on each subject, being potential universal features 
impossible to decipher. In order to investigate those potential features, we propose two levels of filtration as 
follows.

The method here proposed is based on a systematic scanning of the HR series computing the Nth-order 
forward moving averages. This procedure generates, from the original one, a number of alternative series with 
M −  N +  1 elements. We propose the following algorithm:

1. Normalize the complete RR set in the HR with its average (circadian filtration level), i.e.

=
∑

,
( )= , ...,

x M X
X 20

i
i

j M j1

where i =  1, ..., M.
2. Calculate the normalized Nth-order forward moving averages (N–th order, local filtration level):

∑= ,
( )

−

= ,..., −
+x N x

21i
k N

i k
1

0 1

where i =  1, ..., M −  N +  1, and 〈 x〉 i is the value of the local Nth-order forward average at the position i of 
the original HR series.

3. The plane defined by the equations

∑ =
( )= , ..., −

+ ,
x N x

22k N
i k i N

0 1

in a N-dimensional space is a N −  1-dimensional subset of that space. Then, the vector distance from the normal-
ized point {xi,k} ≡  {xi+k} to the identity line is given by:

∆ = − ( )+ ,
x x{ } 23i i k i N

for k =  0, ..., N −  1 and i =  1, ..., M −  N +  1. Alternatively, one can also define the locally averaged vector of dis-
tances as:

δ = / − ( )+ ,
x x{ 1} 24i i k i N

The simple algebraic equation (22) can be written for convenience in terms of the vectors of differences Δ i,k or 
δi,k simply as:

∑ ∑ δ∆ = , =
( )= , ..., −

,
= , ... , −

,or0 0
25k N

i k
k N

i k
0 1 0 1

where Δ i,k and δi,k are the components of vectors Δ i and δi, respectively, and i =  1, ..., M −  N +  1. Obviously, given 
the first N −  1 components of vector Δ i. i.e. for k =  0, ..., N −  2, the last component Δ i,N−1 is known from equation 
(25). Thus, one can form a set of M −  N +  1 vectors {Δ i,k}k = 0, ...N−2 truncated by the last component Δ i,N−1 which 
are representable as dots in a (N −  1)-dimensional space. The same applies to δi. This representation defines a 
specific multi-dimensional body which constitutes a compact codification of the complete original series. When 
N =  5, that body can be represented in a three-dimensional space +  color range (a 4-dimensional space).

Identification of sequences. To verify whether a given sequence belongs to a given standard sequence (e.g. 
l1, l2, etc.) in a generalized space of N dimensions, we introduce the generalized angle θ formed by any sequence 
Δ i with the line defined by any of the identified arrhythmia A, whose cosine is:

θ( ) =
∆ ⋅
∆ ( )

A
A

cos
26

i

i

where  indicated the generalized norm of a (N −  1) dimensional vector. Thus, θ measures the deviation of any 
sequence from a given standard arrhythmia A. A way to quantify the presence of a given sequence along a HR is:

1. Measure θ around each beat of the series,
2. Count the number of times m that θ is below a certain tolerance .
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3. Multiply previous number by (N −  1) and divide by the total number of beats in the sequence minus N. The 
coefficient 100 ×  m(N −  1)/(M −  N) is the percentage of presence of the sequence A in the series.

Experimental databases used. Holter records (HR) analyzed in this paper have been obtained from 
Physionet.org49. We have used the following Databases:

•	 Non-pathologic, normal activity records (normal sinus rhythm, NSR): MIT-BIH Normal Sinus Rhythm Data-
base. This database includes 18 long-term ECG recordings of subjects referred to the Arrhythmia Laboratory 
at Boston’s Beth Israel Deaconess Medical Center. Subjects included in this database were found to have had 
no significant arrhythmias and include 5 men, aged 26 to 45, and 13 women, aged 20 to 50.

•	 Non-pathologic, awaked at rest (under homogeneous visual input): We studied Fantasia Database44,45, com-
posed for twenty young (21–34 years old) and twenty elderly (68–85 years old) rigorously- healthy subjects in 
sinus rhythm, each subgroup including equal numbers of men and women. All subjects underwent 120 min-
utes of continuous supine resting watching the movie Fantasia (Disney, 1940) to help maintain wakefulness, 
while continuous ECG is recorded.

•	 Ischemic Cardiopathy (MI): European ST-T Database47. This is a project which goal was to prototype an ECG 
database for assessing the quality of ambulatory ECG monitoring systems. Thirteen research groups from 
eight countries provided 90 ECG records. From these records, we have selected those exhibiting MI, 29 cases 
in total.

•	 Heart Failure (HF): HRs were obtained from Congestive Heart Failure RR Interval Database46. This database 
includes the RR intervals for 29 patients aged 34 to 79, diagnosed with congestive heart failure NYHA classes 
I, II, and III.

•	 Sudden Death (SD): HRs, as used in50, were obtained from Physionet49.
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