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Many children born very preterm (≤32 weeks) experience significant cognitive difficulties, but the biological
basis of such problems has not yet been determined. Functional MRI studies have implicated altered functional
connectivity; however, little is known regarding the spatiotemporal organization of brain networks in this pop-
ulation. We provide the first examination of resting-state neuromagnetic connectivity mapped in brain space in
school age children born very preterm. Thirty-four subjects (age range 7–12 years old), consisting of 17 very
preterm-born children and 17 full-term born children were included. Very preterm-born children exhibited
global decreases in inter-regional synchrony in all analysed frequency ranges, from theta (4–7 Hz) to high
gamma (80–150 Hz; p b 0.01, corrected). These reductions were expressed in spatially and frequency specific
brain networks (p b 0.0005, corrected). Our results demonstrate thatmapping connectivity with high spatiotem-
poral resolution offers new insights into altered organization of neurophysiological networkswhichmay contrib-
ute to the cognitive difficulties in this vulnerable population.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Very preterm birth has profound consequences for public health
worldwide (Saigal and Doyle, 2008). Infants born very preterm
(≤32 weeks gestation) now represent up to 2% of all live births, with
rates steadily increasing. Despite ongoing improvements in the man-
agement of preterm infants, morbidity among these survivors remains
high (Horbar et al., 2002). Approximately 50% of very preterm-born
children exhibit neurodevelopmental impairments at school age, and
up to two-thirds will need educational or psychological support during
their school years (Larroque, 2011). Even when intelligence is broadly
normal, selective difficulties in areas such as executive functions and
visual perceptual abilities often become apparent at school age
(Aarnoudse-Moens et al., 2009a,b, 2012; Anderson, 2014).

Advances in magnetic resonance imaging (MRI) have enabled a
large body of work characterizing the effects of prematurity on brain
spital for Sick Children, 555
el.: +1 416 816 7654x309131;
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structure and its relation to outcome (Ment et al., 2009). It is widely
hypothesized that infants born very prematurely express atypical devel-
opment of the subplate, a large transient cerebral structure maximal in
the last trimester of gestation (Kostovic and Rakic, 1980). During this
period, there is rapid growth of thalamocortical fibres and cortical
dendritric trees, leading to a substantial increase in total cerebral vol-
ume from 28 to 40 weeks (Kapellou, 2006). At term-equivalent age, in-
fants born preterm exhibit significantly reduced cortical grey matter
volume (Soria-Pastor, 2009) and continue to display impaired cortical
growth even in childhood and adolescence (de Kieviet et al., 2012) in
the absence of significant medical complications. In volumetric MRI
studies conducted at school age, very preterm-born children have
reduced volumes of the basal ganglia (Peterson, 2000), amygdalae
(Peterson, 2000), thalami (Lax, 2013), and hippocampi (Omizzolo,
2013). White matter development has also been shown to be altered
in middle childhood (Duerden et al., 2013), indicating that structural
connections among brain regions do not develop typically in this popu-
lation (Miller and Ferriero, 2009). This has been attributed to height-
ened vulnerability of oligodendrocyte progenitor cells due to early
exposure to the extrauterine environment.
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Table 1
Gestation, age, and sex in very preterm and full term control children included in the
study.

Very preterm Full term

N 17 17
Boys, n 9 9
Age at assessment, years (SD) 10.2 (2.0) 10.2 (1.9)
Birth weight g (SD) 1077.5 (286) –

Gestation, weeks (SD) 28.0 (2.0) –

32 weeks, n (%) 1 (6) –

31 weeks, n (%) 1 (6) –

30 weeks, n (%) 2 (12) –

29 weeks, n (%) 2 (12) –

28 weeks, n (%) 5 (29) –

27 weeks, n (%) 2 (12) –

26 weeks, n (%) 4 (23) –
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To study the effects of prematurity on brain function, resting state
functional MRI (fMRI) has been used to characterize BOLD signal corre-
lations and their organization into large-scale resting state networks
(RSNs). Altered functional connectivity of RSNs in children born very
preterm is present in the neonatal period (Damaraju, 2010) and con-
tinues into adulthood (White, 2014). Although fMRI provides excellent
spatial resolution, it has limited temporal resolution (b0.1Hz), therefore
preventing the measurement of neurophysiological oscillations occur-
ring at faster time scales. This presents a critical gap in knowledge, as
cognition and perception (Palva and Palva, 2007; Uhlhaas, 2009) are
mediated by synchronous neuronal oscillations occurring across a
broad frequencybeyond that obtained using fMRI.Magnetoencephalog-
raphy (MEG) offers a uniquely good combination of spatial and tempo-
ral resolution, thereby enabling the imaging of network interactions on
amillisecond basis that are accurately resolved at the level of functional
neuroanatomy.

MEG investigations have revealed atypical cortical responses in
extremely preterm infants (Rahkonen, 2013) and altered task-
dependent functional connectivity at school age (Doesburg, 2011a).
Disruptions in resting state MEG oscillations have also been reported
in very preterm children at school age (Doesburg, 2011b) and are asso-
ciated with adverse neonatal experience (Doesburg, 2013). As previous
investigations of atypical resting state MEG phase synchronization in
very preterm children have been conducted exclusively at the sensor
level, the relevance of specific brain regions and networks to altered
connectivity remains poorly understood. The present study investigated
resting state network synchrony among MEG signals reconstructed
from brain regions throughout the cortex and sub-cortex. Middle child-
hood (7–12 years of age) represents a vital period of rapid neural devel-
opment and coincideswith the periodwhen cognitive delays associated
with pretermbirth aremost frequently identified (Fair, 2009; Giedd and
Rapoport, 2010; Shaw, 2008). Based on prior studies in this population,
we hypothesized that functional connectivity would be reduced in very
preterm children in comparison to their full-term born peers at school
age.

We describe, for the first time, global reductions in restingMEG syn-
chrony in multiple frequency bands in very preterm-born children. We
also show these reductions in connectivity manifest in different net-
works at particular frequencies, and suggest poor integration of neural
networks are related to higher-order cognitive flexibility such as task/
executive control, working memory, and visuospatial abilities. These
findings of reduced neurophysiological network connectivity open
newpossibilities of linking adverse neonatal eventswith long-term cog-
nitive and behavioural outcomes in this population.

2. Material and methods

2.1. Participants

Inclusion criteria for this study were age between 7 and 12 years at
the time of testing and gestational age at birth≤32 weeks for very pre-
term and≥37weeks for full-term born children. Exclusion criteria were
a history of focal traumatic brain injury, cerebral palsy or other neuro-
logical diagnosis, motor or sensory impairments, the use of psychoac-
tive medication, or a history or existing diagnosis of psychiatric
disorder or learning disability. None of the children were diagnosed
with autismspectrumdisorder. The initial dataset contained 50 children
(23 very preterm and 27 full-term born children). After age- and sex-
matching, as well as exclusion for head motion in the MEG scanner, 34
subjects (17 very preterm and 17 term born children) were entered
into the final analysis.

Participant demographic and behavioural data are shown in
Table 1. Data regarding gestational age and birth weight was collect-
ed from all very preterm participants. None of the very preterm partic-
ipants had history of cerebral palsy, grade III/IV intraventricular
haemorrhage, or periventricular leukomalacia by retrospective chart
review and parental questionnaire. All studies were performed with
written informed parental consent and child assent and approval by
theHospital for Sick Children Research Ethics Board and theDeclaration
of Helsinki.
2.2. Data acquisition

MEG data were acquired using a third-order synthetic gradiometer
configuration of 151-channel whole-head, adult-sized CTF system
(CTF Systems Inc., Coquitlam, Canada). Subjects were supine in the
scanner and viewed a centrally presentedfixation crosswhile 5minutes
of datawere recorded at a sampling rate of 600Hz. Spongeswere placed
on both sides of the head to reduce head movement. Subjects were
monitored via video and audio recording to ensure wakefulness and at-
tentiveness. Head positionwas recorded continuously bymeasuring the
location of three fiducial coils, located at the nasion and left and right
preauricular points. Fiducial head coils were energized at 1470 Hz,
1530 Hz, and 1590 Hz, respectively. Immediately following theMEG re-
cording, a 3 T structural MR image (MPRAGE) was acquired. MRI scans
were read as normal for all participants by experienced paediatric
neuroradiologists.
2.3. Behavioural data analyses

2.3.1. Neuropsychological assessment
Participants were assessed using a battery of neuropsychological as-

sessments consisting of a selection of subtests from the following:
Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 2002),
Working Memory Test Battery for Children (WMTB-C) (Pickering and
Gathercole, 2001), NEPSY — Second Edition (NEPSY-II) (Korkman
et al., 2007), and Behavior Rating Inventory of Executive Function
(BRIEF) (Gioia and Isquith, 2000). We report scores from 12 subtests
that characterize intelligence, working memory, executive functioning
and social perception of the two groups (Table 2). To aid in interpreta-
tion, the typical data distributions associated with each test are as fol-
lows: WASI and WMTB-C (standard scores: mean = 100, standard
deviation (SD) = 5); NEPSY-II (scaled scores: mean = 10, SD = 3);
and BRIEF (T scores: mean= 50, SD= 10). A more detailed description
of each subtest is provided in Supplemental Materials.
2.3.2. Statistical analysis of neuropsychological data
Differences in neuropsychological variables between the very pre-

term and full-term groups were compared via unpaired two-tailed t-
tests. All results were FDR-corrected for 12 tests (p b 0.05, corrected,
q = 0.05) (Benjamini and Hochberg, 1995). Cohen3s delta coefficient d
served as a measure of effect size, with r = 0.20 representing small,
r = 0.50 a medium, and r = 0.80 a large effect.



Table 2
Scores for term-born controls and very preterm children on standardized and neuropsy-
chological assessment.

Dependent variable Very
preterm,
mean
(SD)

Full
term,
mean
(SD)

p value
(FDR
corrected)

Effect
size
(Cohen3s
d)

WASI
n 17 16
Two-subtest IQ 106.7 (12.6) 115.9 (12.2) .178 −0.77

NEPSY II
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2.3.3. Brain–behaviour relations
We assessed correlations between global functional connectivity

and neuropsychological scores for the very preterm-born children
using mean-centring partial least square (PLS) analysis. PLS analysis is
a multivariate statistical technique that can be used to relate two sets
of variables to each other, and is valuable when the sample sizes are
not large (McIntosh and Lobaugh, 2004). Nonparametric resampling
was used to assess statistical significance and reliability of experimental
effects. We refer the reader to the original description of the technique
for further details (McIntosh and Lobaugh, 2004; Lobaugh et al., 2001;
McIntosh et al., 1996; McIntosh and Mišić, 2013).
n 17 17
Animal sorting, scaled score 8.9 (2.4) 10.7 (4.1) .218 −0.52
Inhibition — naming
combined scaled score

8.8 (3.0) 10.0 (3.8) .391 −0.33

Inhibition — inhibition
combined scaled score

9.4 (3.6) 11.1 (3.2) .226 −0.49

Inhibition — switching
combined scaled score

9.6 (2.5) 11.5 (4.0) .201 −0.57

Affect recognition Total
scaled score

11.4 (1.3) 11.5 (2.1) .838 −0.10

n 17 12
Theory of mind Total score 22.5 (2.6) 24.2 (3.1) .908 −0.04

WMTB-C
n 17 16
Forward digit recall 102.4 (13.2) 110.5 (20.5) .247 −0.46
Backward digit recall 90.3 (10.3) 101.6 (20.5) .178 −0.69

BRIEF
n 16 15
2.4. MEG data analyses

2.4.1. Data preprocessing
MEG data were preprocessed to verify data quality and to reduce

contamination fromartefacts. A third-order spatial gradientwas applied
to correct for environmental noise using themanufacturer3s compensa-
tion system (CTF Systems Inc., Coquitlam, Canada). Recordings were
band-pass filtered from 1 to 150 Hz with a notch filter at 60 Hz (8 Hz
bandwidth). Participants with head movements greater than 10 mm
for more than 10% of the recordingwere excluded from further analysis
(n = 7), resulting in a total of 34 participants in the final study. This
standard of tolerance is typical for MEG studies of paediatric popula-
tions, allowing collection ofMEGdata froma clinical populationwithout
creating a biased sample (Taylor et al., 2011).
GEC 49.3 (9.7) 42.5 (8.0) .178 0.74
BRI 47.5 (10.3) 42.1 (6.2) .201 0.61
MCI 49.9 (9.1) 43.5 (9.2) .178 0.69
2.4.2. Source reconstruction

We reconstructed time series representing activity of multiple loca-
tions in the brain using a scalar beamformer (Cheyne et al., 2006).
Beamformer analysis implements an adaptive spatial filter, where the
aim is to estimate the signal from a given brain location through the
weighted sum of surface field measurements while attenuating activity
from other sources. Each participant3s MEG data were co-registered
with his/her individual MRI for accurate neuroanatomical localization.
We used statistical parametric mapping (SPM2, Wellcome Department
of Imaging Neuroscience, London, UK) for MR image preprocessing. In-
dividual anatomical MR imageswere normalized into standardMontre-
al Neurological Institute space using a nonlinear transform in SPM2.
Seed regions representing all 90 cortical and subcortical brain areas
from the Automated Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer, 2002) were then warped back into each individual3s brain
space (Table 3).
2.4.3. Inter-regional phase synchrony
Data were filtered into theta (4–7 Hz), alpha (8–14 Hz), beta

(15–30 Hz), low gamma (30–80 Hz), and high gamma (80–150Hz) fre-
quency ranges. For each frequency bin, phase synchrony between
sources was estimated by computing a weighted phase lag index
(wPLI) (Vinck et al., 2011) across all possible source pairs for the entire
5 minute recording, resulting in five 90 × 90 symmetric matrices for
each subject. WPLI is a metric of phase synchrony that estimates non-
zero phase lag interdependencies by weighting the contribution of the
observed phase leads and lags by the magnitude of the imaginary com-
ponent of the cross-spectrumbetween each pair of sources.WPLI values
range between 0 and 1, with 0 indicating random distribution of phase
and 1 indicating constant non-zero lag phase difference between
sources. To ensure that the observed phase synchrony values were not
attributable to systemic differences in distance of head to sensor array,
we calculated the absolute value of the analytic signal across all sources
for all five frequencies. No significant differences in global oscillatory
power were found between very preterm-born and full-term born chil-
dren (p N 0.05, Supplemental Materials).
2.4.4. Global connectivity analysis
To test for overall group differences in connectivity within each

analysed frequency range, we averaged across all source pairs for each
matrix to obtain a single value representing global functional connectiv-
ity for each participant. Group differences at each frequency were eval-
uated using Mann–Whitney U tests. Bonferroni correction was applied
to account for multiple comparisons across the frequency bins studied
(i.e. threshold for significance, p b (0.05/N), where N= 5, thus p b 0.01).
2.4.5. Group network differences
To compare connectivity at the network level between the very pre-

term and full-term groups, we used the Network Based Statistic (NBS)
(Zalesky et al., 2010). In this context, a network refers to a contiguous
set of inter-regional connections that differs between the very preterm
and full-term groups. The NBS method protects against false positives
due to multiple comparisons in brain network connectivity analysis.
Since statistical significance is assigned at the level of the network as a
whole, rather than at the level of each pairwise connection, the choice
of the primary test statistic threshold only affects the sensitivity of the
method. To target strong, topologically focal differences between
groups, we chose conservative thresholds that were adapted to the
data distribution under investigation (Zalesky et al., 2010, 2012). Specif-
ically, significant group differences in network connectivity were evalu-
ated using a primary threshold of p b 0.00004 in two-tailed t-tests, and
then family-wise error (FWE) corrected at p b 0.0005 using 10,000 per-
mutations. In the NBS method, effective control for multiple compari-
sons is achieved irrespective of this initial threshold selection (Zalesky
et al., 2010, 2012). To ensure that the choice of statistical significance
did not bias our findings, validation tests for the NBS analysis were per-
formed with more liberal and typical FWE corrections at alpha levels of
0.05 and 0.001 (Supplemental Materials).
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3. Results

3.1. Demographic and neuropsychological data

Table 1 describes the clinical and demographic characteristics for the
very preterm and full-term groups. The two groups had similar propor-
tions of males, and did not differ by age at scan. The very preterm-born
group performed more poorly than full-term born participants on all
measures of general intelligence and executive function (Table 2). Par-
ents reported that children born very preterm were more likely to ex-
hibit clinically significant behavioural problems as a result of
executive dysfunction on the Metacognition Index (MI), Behavioural
Regulation Index (BRI), and Global Executive Composite (GEC). None
of the neuropsychological variables investigated were significantly
different between very preterm-born and full-term participants at
school age after correction for multiple comparisons (p N 0.05, FDR
corrected).
3.2. Global and network-level connectivity differences

Whole-brain, global functional connectivity was reduced in very
preterm compared to full-term born children (p b 0.01, corrected,
Fig. 1). This reduction was observed in all five analysed frequency
bands. To delineate the extent of disrupted network organization in
the very preterm versus full-term groups, we applied a non-
parametric statistical approach, NBS. Across five frequency bands, we
identified 12 networks with reduced connectivity in the very preterm
group, hereinafter referred to as ‘Network 1–12’ (p b 0.0005 corrected,
Fig. 2, Table 4). We did not identify any networks with significantly in-
creased connectivity in the very preterm-born group.

Some networks expressed densely anatomically focused reductions
in connectivity, whereas other networks exhibited a more distributed
pattern. Networks such as those shown for theta (i.e. Networks 1 and
2) and alpha (i.e. Network 5)were densely confined, involvingmultiple
focal connections between adjacent lobes. In Network 1, the reduced
connectivity was anchored in the frontal region, whereas in Network
5, diminished connectivity was prominent in occipital regions and ex-
tended to the basal ganglia and the dorsal visual stream. Very preterm
Fig. 1. Average functional connectivity for each group and frequency range,measured bywhole-
weighted phase lag index for theta (red), alpha (yellow), beta (green), low gamma (blue) and
preterm-born subjects. Significant differences (p b 0.01, corrected) between groups are presen
children also demonstrated decreased connectivity encompassing
more distributed networks such as those in the alpha (i.e. Network
4) and beta (i.e. Network 7), and high-gamma frequencies. These diffuse
network differences encompassed connections involving the frontal
lobes and midbrain regions.

3.3. Brain–behaviour relations

In the PLS analysis, we found no significant correlations between the
global functional connectivity in any of thefive frequencies and theneu-
ropsychological scores in the very preterm-born children (p N 0.05,
corrected).

4. Discussion

Employing a novel, whole-brain analysis of neurophysiological net-
work connectivity, we present the first source-resolved evidence for re-
duced resting state network synchrony expressed across multiple
temporal scales in very preterm-born children. This study confirms
that, at school age, resting neural synchrony is disrupted atmultiple fre-
quencies in children born very preterm. We also delineate 12 spatially
constrained networks that contribute to these global reductions in func-
tional connectivity. The majority of the 12 networks encompass brain
regions corresponding to established structural and resting state net-
works implicated in executive functioning. In addition, several net-
works segregate into specific frequency bands involved in attention
andworkingmemory. Such findings suggest the possibility that discon-
nection of these networks may contribute to developmental difficulties
associated with very preterm birth.

4.1. Subplate and cortico-basal ganglia-thalamo-cortical loop

Atypical development of white matter in very preterm-born chil-
dren has been shown to involve reduced thalamocortical connectivity
in preterm infants (Ball, 2013) which is associatedwith worse cognitive
outcome in childhood (Ball, 2015). Thalamocortical interactions are
known to play a critical role in the generation of neural oscillations
supporting neurophysiological network interactions and cognition
brain average of synchrony between each pair of regions in the brain. Values represent the
high gamma (purple) broadband frequencies. FT= full-term control subjects, VPT= very
t at each frequency.



Fig. 2. Very preterm-born (VPT) children demonstrated reduced network connectivity compared to full-term control children at various frequencies in 12 different networks (p b 0.0005,
corrected). Sagittal, axial, and coronal views are shown. Each dot represents a region of the brain in which functional connectivity of that particular region to its connecting region was
reduced in VPT children. Colour of dots corresponds to Fig. 1 (θ= red, α = yellow, β = green, low γ = blue, high γ = purple).
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(Hughes and Crunelli, 2005; Ribary, 2005). Adverse neonatal experience
may impact the development of thalamocortical systems via influences
on the subplate, which is key in establishing thalamocortical circuits.
This may cause long-lasting impact on neurophysiological oscillations
and networks subserving brain function and cognitive abilities. In sup-
port of this view, slowing of spontaneous MEG oscillations, which
have been associated with disturbance of thalamocortical interactions
(Llinas et al., 1999; Schulman, 2011), has been reported in school age
children born very preterm (Doesburg, 2011b) and is associated with
worse cognitive outcome in this group (Doesburg et al., 2013).

Thalamic input and thalamocortical interactionswith the limbic sys-
tem are thought to be modulated by theta band oscillations, and to be
important in successful memory processing (Buzsáki, 2005; Siegle and
Wilson, 2014). We identified one network (Network 3) in the theta
band which encompassed the thalamus and other limbic structures,
which suggests that very preterm-born children may demonstrate
disrupted information transfer that may disrupt memory encoding
and working memory processes.

In the gamma frequency range, we found two Networks (9 and 11)
which included connections within the thalamocortical system as well
as connections to the basal ganglia. The relation between cortex, the
basal ganglia, and the thalamus is thought to be anatomically and func-
tionally organized as the cortico-basal ganglia-thalamo-cortical loop
(Cummings, 1993) allowing simultaneous processing of cognitive, sen-
sorimotor and motivational information (Alexander and Crutcher,
1990). Structural connectivity within this loop has been reported to be
reduced in school age children born extremely preterm with intrauter-
ine growth restriction (Fischi-Gómez, 2015), and is thought to reflect a
biological blueprint of less efficient simultaneous information process-
ing seen in these populations. Gamma band synchrony has been
associatedwith perceptual binding at early levels of sensory processing,
attention, and working memory (Tallon-Baudry and Bertrand, 1999;
Fries et al., 2001), and is purported to be involved in top-downmodula-
tion of sensory signals and large-scale integration of distributed neural
networks (Uhlhaas, 2009). If functional coupling among regions of the
cortex, thalamus and basal ganglia is interpreted to represent feed-
forward and/or feedback activity, these results suggest that information
transfer along these pathways follows ill-formed connections in very
preterm children, possibly due to reduced structural brain connectivity.
Future investigations using structural and functional data obtained in
the same preterm cohort will help clarify such structure–function
relations.

4.2. Executive and control networks

Cognitive control is a complex, multi-system process that appears to
involve two distinct networks: a frontoparietal network (FPN), which
serves as an adaptive control network, as well as a cingulo-opercular
network (CON), which shows sustained activity across task (i.e. see
Dosenbach, 2007). These two functional networks are hypothesized to
support top-down control of executive functioning, and atypical func-
tional connectivity within these networks may underlie cognitive defi-
cits (for example, in schizophrenia (Meyer-Lindenberg, 2010; Repovs
et al., 2011)). We found decreased neural synchrony in very preterm
children in four networks (Network 4 in alpha, Network 7 in beta, and
Networks 9 and 11 in gamma), which overlap with the FPN and CON.
These disconnected networks include core hub regions involved in cog-
nitive control, namely, the dorsolateral prefrontal cortex (listed as SFG
in Table 4) in both Networks 4 and 9, the insula in Network 4, and the
anterior cingulate (listed as ACG in Table 4) in Networks 7 and 11. The



Table 3
The 90 brain regions (left and right for each region) corresponding to the AAL atlas, their MNI coordinates, and short-form abbreviations.

Region name Abbreviation MNI coordinates

Left Right

X Y Z X Y Z

Precentral gyrus PreCG −38.65 −5.68 50.94 41.37 −8.21 52.09
Superior frontal gyrus, dorsolateral SFG.L −18.45 34.81 42.2 21.9 31.12 43.82
Superior frontal gyrus, orbital part SFGorb −16.56 47.32 −13.31 18.49 48.1 −14.02
Middle frontal gyrus MFG −33.43 32.73 35.46 37.59 33.06 34.04
Middle frontal gyrus, orbital part MFGorb −30.65 50.43 −9.62 33.18 52.59 −10.73
Inferior frontal gyrus, opercular part IFGoper −48.43 12.73 19.02 50.2 14.98 21.41
Inferior frontal gyrus, triangular part IFGtri −45.58 29.91 13.99 50.33 30.16 14.17
Inferior frontal gyrus, orbital part IFGorb −35.98 30.71 −12.11 41.22 32.23 −11.91
Rolandic operculum ROL −47.16 −8.48 13.95 52.65 −6.25 14.63
Supplementary motor area SM A −5.32 4.85 61.38 8.62 0.17 61.85
Olfactory cortex OLF −8.06 15.05 −11.46 10.43 15.91 −11.26
Superior frontal gyrus, medial SFGmed −4.8 49.17 30.89 9.1 50.84 30.22
Superior frontal gyrus, medial orbital SFGmorb −5.17 54.06 −7.4 8.16 51.67 −7.13
Gyrus rectus REC −5.08 37.07 −18.14 8.35 35.64 −18.04
Insula INS −35.13 6.65 3.44 39.02 6.25 2.08
Anterior cingulate and paracingulate gyri ACG −4.04 35.4 13.95 8.46 37.01 15.84
Median cingulate and paracingulate gyri DCG −5.48 −14.92 41.57 8.02 −8.83 39.79
Posterior cingulate gyrus PCG −4.85 −42.92 24.67 7.44 −41.81 21.87
Hippocampus HIPP −25.03 −20.74 −10.13 29.23 −19.78 −10.33
Parahippocampal gyrus PHG −21.17 −15.95 −20.7 25.38 −15.15 −20.47
Amygdala AMYG −23.27 −0.67 −17.14 27.32 0.64 −17.5
Calcarine fissure and surrounding cortex CAL −7.14 −78.67 6.44 15.99 −73.15 9.4
Cuneus CUN −5.93 −80.13 27.22 13.51 −79.36 28.23
Lingual gyrus LING −14.62 −67.56 −4.63 16.29 −66.93 −3.87
Superior occipital gyrus SOG −16.54 −84.26 28.17 24.29 −80.85 30.59
Middle occipital gyrus MOG −32.39 −80.73 16.11 37.39 −79.7 19.42
Inferior occipital gyrus IOG −36.36 −78.29 −7.84 38.16 −81.99 −7.61
Fusiform gyrus FUSI −31.16 −40.3 −20.23 33.97 −39.1 −20.18
Postcentral gyrus PoCG −42.46 −22.63 48.92 41.43 −25.49 52.55
Superior parietal gyrus SPG −23.45 −59.56 58.96 26.11 −59.18 62.06
Inferior parietal lobule IPL −42.8 −45.82 46.74 46.46 −46.29 49.54
Supramarginal gyrus SMG −55.79 −33.64 30.45 57.61 −31.5 34.48
Angular gyrus ANG −44.14 −60.82 35.59 45.51 −59.98 38.63
Precuneus PCUN −7.24 −56.07 48.01 9.98 −56.05 43.77
Paracentral lobule PCL −7.63 −25.36 70.07 7.48 −31.59 68.09
Caudate nucleus CAU −11.46 11 9.24 14.84 12.07 9.42
Lenticular nucleus, putamen PUT −23.91 3.86 2.4 27.78 4.91 2.46
Lenticular nucleus, pallidum PAL −17.75 −0.03 0.21 21.2 0.18 0.23
Thalamus THA −10.85 −17.56 7.98 13 −17.55 8.09
Heschl gyrus HES −41.99 −18.88 9.98 45.86 −17.15 10.41
Superior temporal gyrus STG −53.16 −20.68 7.13 58.15 −21.78 6.8
Temporal pole: superior temporal gyrus TPOsup −39.88 15.14 −20.18 48.25 14.75 −16.68
Middle temporal gyrus MTG −55.52 −33.8 −2.2 57.47 −37.23 −1.47
Temporal pole: middle temporal gyrus TPOmid −36.32 14.59 −34.08 44.22 14.55 −32.23
Inferior temporal gyrus ITG −49.77 −28.05 −23.17 53.69 −31.07 −22.32
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dorsolateral prefrontal cortex is thought tomaintain neural representa-
tions of task-related goals (Miller and Cohen, 2001), while the anterior
insula communicates with multiple large-scale networks to facilitate
the processing of informationmarked as salient for attention andwork-
ingmemory processes (Menon andUddin, 2010). The anterior cingulate
has been shown to facilitate outcome-monitoring and conflict resolu-
tion during task (Botvinick et al., 2004).

In a task-based EEG-fMRI study requiring sustained vigilance as a
marker of sustained alertness, alpha oscillations in EEG were found
to correspond to neural activity in the CON network found in fMRI
(Sadaghiani, 2010). Alpha band oscillations are understood to play
a critical role in inhibition (Klimesch et al., 2007) and therefore a de-
crease in alpha synchrony in the CON (Network 4) in the very preterm
children may reflect decreased ability to suppress distraction, or
reduced task ability in processes requiring selective attention or inhibi-
tion. Whether these networks are truly similar in nature to those iden-
tified in fMRI studies is questionable given that the networks
encompass association regions outside the defined set of frontoparietal
and cingulo-opercular networks. A possible explanation is that the
maturation of these executive control systems in very preterm-born
children at school age is disrupted, and therefore this network
demonstrates less segregation and integration than what is seen in
term-born children.

4.3. Working memory and the prefrontal cortex in theta frequency, and
visuospatial abilities in alpha frequency

Sustained attention relies on frontomedial theta oscillations, where-
as selective excitation and inhibition of cognitive processing occurs
through gamma and alpha oscillations, respectively (Womelsdorf and
Fries, 2007). In electrophysiological studies involvingworkingmemory,
these theta oscillations localize to the dorsomedial prefrontal and ante-
rior cingulate cortices (Tsujimoto et al., 2006; Roberts et al., 2013; Hsieh
et al., 2011). Activity among cortical areas involved in workingmemory
was less synchronized in the very preterm group, notably in frontal, pa-
rietal and temporal lobes. Specifically, verypreterm children showed re-
duced connectivity among prefrontal areas (such as the dorsolateral
prefrontal cortex) and the inferior parietal lobule and middle temporal
gyrus in theta (Networks 1 and 2), alpha (Network 4), beta (Network
6) and low-gamma (Network 9).

Altered cortical activation of prefrontal cortex during language pro-
cessing has also been described in preterm-born adolescents (Frye,



Table 4
Disconnected networks at each frequency band and their participating brain regions in
very preterm children in comparison to full term controls. Refer to Table 3 for full region
names.

Network (very
preterm b full
term, p b 0.0005)

Frequency
band

Region names

1 Theta (θ) L.PreCG, R.PreCG, L.SFG, R.SFGorb, R.MFGorb,
R.SMA, LSFGmed, R.SFGmorb, R.REC, L.ACG,
R.PoCG, R.ANG, R.PCL, R.TOPsup

2 R.SFG, R.MFG, R.IFGorb, L.OLF, R.OLF, L.DCG,
R.PCG, R.HIPP, R.PHG, L.PCL, R.PUT, R.HES,
L.STG, L.TOPsup, R.MTG, R.TOPmid

3 L.MFG, L.SMA, L.SFGmorb, R.INS, L.AMYG,
R.CUN, L.THA, L.TOPmid

4 Alpha (α) R.SFG, L.INS, R.PoCG, R.IPL, L.TOPsup, L.MTG
5 L.SMA, L.HIPP, L.CUN, L.LING, R.LING, R.SOG,

L.MOG, L.IOG, L.SPG, L.IPL, L.ANG, L.PCUN,
R.PCUN, L.CAU, L.PUT, R.STG

6 Beta (β) L.MFG, R.MFG, L.IFGorb, R.ROL, R.SFGmed,
L.SFGmorb, R.AMYG, R.PAL, L.HES, R.HES, R.STG

7 L.MFGorb, L.ACG, L.PHG, R.PoCG
8 L.SMA, R.SMA, L.REC, R.PHG, L.SOG, R.SMG
9 Low gamma

(λ)
L.SFGorb, R.SFGorb, L.ROL, R.ROL, L.SFGmed,
L.SFGmorb, R.SOG, L.IPL, L.PUT, R.THA, R.HES

10 High gamma
(λ)

R.PreCG, L.ROL, R.ACG, R.PCL
11 L.IFGorb, R.ROL, L.REC, L.INS, L.ACG, R.DCG,

L.PCG, L.AMYG, R.CAL, R.LING, R.SOG, R.FUSI,
R.PoCG, L.IPL, R.IPL, L.SMG, R.SMG, R.CAU,
R.PUT, R.THA, L.HES, L.STG, L.TOPsup, L.TOPmid,
R.TOPmid

12 L.OLF, R.INS, L.CAL

382 A.X. Ye et al. / NeuroImage: Clinical 9 (2015) 376–384
2010), and atypical activation and reduced functional connectivity in-
volving prefrontal cortex, involving theta oscillations, have been report-
ed in school age children born very preterm (Moiseev et al., 2015).
Network 1 supports and extends such findings from task-based studies.
These prior results indicate that information transfer in distributed neu-
ral systems supporting working memory may be diminished in school
age children born very preterm, and our present findings suggest this
may also be reflected in intrinsic brain activity.

Alpha rhythms support vision and perception (Palva and Palva,
2007). Throughout development, very preterm children have been
shown to be at high risk for cognitive impairment and educational
underachievement, especially in domains related to working memory/
executive functions and visuospatial abilities (Aarnoudse-Moens et al.,
2009b; Anderson et al., 2004). These cognitive skills involve dorsal visu-
al circuits, and are abnormal in task-based investigations in the very
preterm population (Ment et al., 2009). Using MEG, reduced network
synchronization at the sensor level during task performance has
been linked to visual–perceptual abilities in very preterm children
(Doesburg, 2011). Our results in the alpha frequency (Network 5)
support and extend these findings.
4.4. Advantages and limitations

An important advantage of our study is that investigating neural os-
cillations offers comparable indexes of rhythmic activity across different
species and spatial scales. This allows for direct comparison between
human data assessed with MEG and invasive recordings in animals as
well as fMRI. This can also facilitate understandingmechanistic relations
between physiological disruptions due to preterm birth and behaviour-
al and cognitive phenomena.

The analysis approach we used has also been used to investigate
atypical network connectivity in adolescents with autism spectrum dis-
order (Ye et al., 2014). Our study further demonstrates the robustness
of using resting-state MEG recordings as a new approach to examine al-
terations of the neurophysiological connectome in clinical child popula-
tions. Elucidation of relations between spontaneous network synchrony,
neonatal variables and cognitive outcomewill require further studywith
a larger cohort, ideally longitudinally followed from birth.

Numerous factors including targeted early intervention may impact
neurodevelopment in very preterm-born children. Due to the cross-
sectional nature of our study, we did not have access to interventional
history of the children. To maximize the current utility in the clinical
context, future studies of resting state MEG data need to be done with
knowledge of complementary clinical and social information.

It is feasible that the reduced neurophysiological network interac-
tions identified in the present study contribute to wide-ranging func-
tional deficits. Although frequency-specific topology of connectivity
reductions is intriguing, links between such brain alterations and
neurocognitive outcomes remain speculative in terms of the results of
the present study. A continuing central challenge is to determine how
the longitudinal trajectories of specific functional systems relate to cog-
nition and behaviour in these very preterm-born school age children.

5. Conclusions

We provide the first evidence that very preterm-born children at
school age express large-scale reductions in neurophysiological resting
brain connectivity, and that these effects occur in brain networks under-
lying cognitive functions frequently reported deficit in this population.
Our findings demonstrate the potential of MEG for investigating brain
network integration and segregation across multiple frequency do-
mains pertinent to cognitive function and its relation to cognitive
long-term outcome. The presence of the focally disconnected networks
identified in this study in a task-free state at these frequencies, and con-
centrated in specific anatomical brain networks, offers novel clues to
understanding the neurophysiological underpinnings that place very
preterm-born children at risk for cognitive difficulties.
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