
materials

Article

DFT Analysis of NO Adsorption on the Undoped
and Ce-Doped LaCoO3 (011) Surface

Xiaochen Li 1,2 and Hongwei Gao 3,*
1 Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics

and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; lixiaochen16@mails.ucas.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Life Science, Ludong University, Yantai 264025, China
* Correspondence: gaohongw369@163.com; Tel.: +86-535-6685004; Fax: +86-535-6685004

Received: 14 March 2019; Accepted: 24 April 2019; Published: 28 April 2019
����������
�������

Abstract: Using the density functional theory (DFT) method, we investigated the adsorption of NO on
the undoped and Ce-doped LaCoO3 (011) surface. According to our calculations, the best adsorption
site is not changed after Ce doping. When the NO molecule is adsorbed on the perfect LaO-terminated
LaCoO3 (011) surface, the most stable adsorption site is hollow-top, which corresponds to the
hollow-NO configuration in our study. After the substitution of La with Ce, the adsorption energy of
hollow-NO configuration is increased. For the perfect CoO2-terminated LaCoO3 (011) surface, it is
found that Co-NO configuration is the preferential adsorption structure. Its adsorption energy can
also be enhanced after Ce doping. When NO molecule is adsorbed on the undoped and Ce-doped
LaO-terminated LaCoO3 (011) surface with hollow-NO configuration, it serves as the acceptor and
electrons transfer from the surface to it in the adsorption process. On the contrary, for the Co-NO
configuration of undoped and Ce-doped CoO2-terminated LaCoO3 (011) surface, NO molecule
becomes the donor and loses electrons to the surface.
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1. Introduction

Nitric oxide (NO), which is mainly produced from automotive vehicles and coal-fired power plants,
has caused serious environmental pollution such as acid rain and photochemical smog. Therefore, it is
highly urgent to investigate NO removal. To search for good catalytic materials for NO, a great deal of
studies have been done [1–5]. In recent years, perovskites represented by ABO3 have been regarded as
promising materials for NO removal owing to their high thermal stability, excellent oxidation activity,
and low price [6–9]. Although there are a lot of NO removal methods, it is generally accepted that
the oxidation of NO to NO2 is the key step [10]. According to the papers [11,12], lanthanum-based
perovskite-type oxides (e.g., LaCoO3 and LaMnO3) exhibit excellent catalytic activity for NO oxidation
at temperatures of 300–350 ◦C, especially LaCoO3. According to the research of Onrubia et al. [13],
LaCoO3 achieves maximum NO conversion of 71% at 300 ◦C. Its catalytic activity can be enhanced
substantially by modification with suitable transition metals and more and more researchers have an
interest in the field [14–16]. Cerium (Ce), by general assent, is a good promoter in perovskite lattice
due to its two different valence states—Ce4+ or Ce3+—high oxygen storage capability, and excellent
redox properties [16–19]. For example, Wen et al. [14] reported that Ce-doped LaCoO3 samples exhibit
good catalytic activity in the oxidation reaction of NO, with the highest conversion of 80% at about
300 ◦C. Studies have shown that after partial substitution with Ce, the change of oxidation state of Co
ions and/or formation of vacancies contribute to the enhancement of catalytic activity [14,16,20].
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In order to explore catalytic mechanism, some work has been done to investigate the reaction
between adsorbed NO molecule and LaCoO3 surface by employing the density functional theory
(DFT) method [12,21–23]. Liu et al. [21] found that the adsorption of NO on the LaCoO3 surface is
accompanied by the formation of bonds such as Co-N, Co-O, and O-N. The surface reactivity of doped
perovskites may have some differences from that of undoped perovskites. For example, adsorbed
Bader charges of the Sr-doped LaCoO3 (100) surface are reduced by about 0.2 e when compared to the
undoped cases [22]. Sun et al. [24] also reported that CO molecule is only weakly adsorbed on the
pure LaFeO3 (010) surface compared to doped cases. Beyond that, oxygen vacancies can also affect the
interaction between substrate and adsorbate, for instance, CO adsorbs more strongly on the oxygen
defective CoO-terminated LaCoO3 (001) surface when compared to the perfect surface [25]. However,
to the best of our knowledge, DFT calculations about the adsorption of NO molecule on the Ce-doped
LaCoO3 surface have never been reported until now. Adsorption is often seen as the first step in the
oxidation pathway of gases [26–28] and the most important step in studying the gas sensing properties
of substrate [29–31]. Thus, studying adsorption behavior of NO is helpful not only to explore the
reaction pathway of NO catalytic oxidation, but also to investigate the gas sensing mechanism of
substrate. In this paper, the NO adsorption behavior on the undoped and Ce-doped LaCoO3 surface
was studied systematically using the DFT method. What we mainly focused on was the influences of
Ce substitution on adsorption properties (e.g., structures, energies, and electronic properties).

2. Computational Methods and Models

In our study, the adsorption properties of NO were investigated using the program DMol3

package of Materials Studio (MS, Accelrys, San Diego, CA, USA) 8.0 [32,33]. The exchange–correlation
function was treated with the spin unrestricted generalized gradient approximation (GGA) with
the Perdew–Burke–Ernzerhof (PBE) [34]. The DNP set, which stands for the double numerical plus
polarization, was selected to describe the valence orbit of all the atoms. A hardness conserving
semilocal pseudopotential, density functional semicore pseudopotential (DSSP) was applied. After
the convergence test, a global orbital cutoff of 5.0 Å for atomic basis truncation and a k-point mesh of
3 × 3 × 1 for the Brillouin zone sampling were chosen and employed in all calculations. The results of
the convergence test are presented in the Figures S1 and S2. In the geometry optimization progress,
the convergence criteria with respect to the energy, force, and displacement were 1.0 × 10−5 Ha,
2.0 × 10−3 Ha/Å, and 5.0 × 10−3 Å, respectively. To gain electrons difference between adsorbed and
isolated NO molecules, Mulliken Population Analysis (MPA) was paid extreme attention. After
consulting literature regarding the NO adsorption on the surface of perovskite oxides [35,36], it was
found that van der Waals (vdW) interaction function was not employed. Therefore, the vdW interactions
were not considered in our research.

The lattice parameters of rhombohedral LaCoO3 (see Figure 1a) are a = b = 5.4425 Å, c = 13.0929 Å,
α = β = 90◦, and γ = 120◦, which are obtained from a prior experiment [37]. To simplify the calculations,
we adopted the primitive cell of above-mentioned structure to conduct follow-up studies. Its lattice
parameters are a = b = c = 5.3778 Å, α = β = γ = 60.8◦ (see Figure 1b). Before studying NO adsorption,
we needed to determine relative stabilities of the (011), (111), and (010) surfaces, which are the frequently
discussed surface slabs in perovskites such as LaFeO3, LaMnO3, and SrTiO3 [38–42]. The relative
surface energy, Esurf, can be determined using the following formula: Esurf = (Eslab − nEbulk)/2A. In this
equation, Eslab and nEbulk represent the energies of the relaxed LaCoO3 slab and an equal number
(n) of bulk LaCoO3 atoms; A indicates the area of relaxed LaCoO3 slab; and the constant (2) reflects
the fact that every slab has two surfaces [38,43]. By means of the formula, we obtained that surface
energies of the (011), (111), and (010) surfaces are 1.334, 1.883, and 1.887 J·m−2, respectively. This is to
say that the (011) is the most stable among the three surfaces. Therefore, the LaCoO3 (011) surface is
employed in this study.
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Figure 1. Schematic unit cell (a) and primitive cell (b) of LaCoO3. La atoms are shown in wathet 
blue, Co atoms in blue and O atoms in red. (For interpretation of the references to color in this figure 
caption, the reader is referred to the web version of this article). 

The LaCoO3 (011) surface was modeled by cleaving the optimized primitive cell and adding a 
15 Å vacuum layer to the unit cell. Then the 2 × 2 × 1 supercell with three LaO layers and three CoO2 
layers was established and used to study the adsorption behavior of NO. There are LaO-terminated 
and CoO2-terminated surfaces along the (011) direction, whose side views are shown in Figure 2a,b, 
respectively. The top view of exposed (011) LaO termination and possible adsorption sites (La-top, 
O-top, and hollow-top) are displayed in Figure 2c,d, which similarly shows the top view of exposed 
(011) CoO2 termination and the corresponding Co-top, O-top, hollow-top, and bridge-top sites. 
Ce-doped species are modeled by substituting one La atom with one Ce atom. The calculated N-O 
bond length of free NO is 1.163 Å, which is slightly larger than the experimental value of 1.154 Å 
[44] and in excellent agreement with the previously calculated value (1.160 Å) [35,45]. In our study, 
the adsorption energy (Eads) is calculated by the following equation: Eads = Ead + Esub − Etot, where Ead, 
Esub. and Etot refer to the energies of the free NO molecule, the clean LaCoO3 (011) surface, and the 
LaCoO3 (011) surface with adsorbed NO molecule, respectively. By definition, a positive Eads value 
indicates that the adsorbate–substrate system is stable, and the adsorption process is exothermic; a 
negative Eads value indicates that the adsorbate–substrate system is unstable, and the adsorption 
process is endothermic. The bigger the value of Eads, the more stable the adsorption configuration. 

Figure 1. Schematic unit cell (a) and primitive cell (b) of LaCoO3. La atoms are shown in wathet blue,
Co atoms in blue and O atoms in red. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article).

The LaCoO3 (011) surface was modeled by cleaving the optimized primitive cell and adding a
15 Å vacuum layer to the unit cell. Then the 2 × 2 × 1 supercell with three LaO layers and three CoO2

layers was established and used to study the adsorption behavior of NO. There are LaO-terminated
and CoO2-terminated surfaces along the (011) direction, whose side views are shown in Figure 2a,b,
respectively. The top view of exposed (011) LaO termination and possible adsorption sites (La-top,
O-top, and hollow-top) are displayed in Figure 2c,d, which similarly shows the top view of exposed (011)
CoO2 termination and the corresponding Co-top, O-top, hollow-top, and bridge-top sites. Ce-doped
species are modeled by substituting one La atom with one Ce atom. The calculated N-O bond length of
free NO is 1.163 Å, which is slightly larger than the experimental value of 1.154 Å [44] and in excellent
agreement with the previously calculated value (1.160 Å) [35,45]. In our study, the adsorption energy
(Eads) is calculated by the following equation: Eads = Ead + Esub − Etot, where Ead, Esub. and Etot

refer to the energies of the free NO molecule, the clean LaCoO3 (011) surface, and the LaCoO3 (011)
surface with adsorbed NO molecule, respectively. By definition, a positive Eads value indicates that the
adsorbate–substrate system is stable, and the adsorption process is exothermic; a negative Eads value
indicates that the adsorbate–substrate system is unstable, and the adsorption process is endothermic.
The bigger the value of Eads, the more stable the adsorption configuration.
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Figure 2. Side and top views of optimized LaCoO3 (011) surface: (a) the side view of LaO-terminated 
surface, (b) the side view of CoO2-terminated surface, (c) the top view of exposed (011) LaO 
termination, and (d) the top view of exposed (011) CoO2 termination. 

3. Results and Discussion 

3.1. NO Adsorption on the (011) Surface of Perfect LaCoO3 

Both adsorption sites (La-top, Co-top, O-top, hollow-top, and bridge-top) and orientations of 
the NO molecule (N-down and O-down) may affect adsorption results. As previous DFT 
calculations have clarified that the N-down orientation is more benefit for NO adsorption [35,36,46], 
we focused our attention on N-down configurations. The article specifically discusses three initial 
adsorption configurations (La-NO, O-NO, and hollow-NO) for NO adsorption on the perfect 
LaO-terminated surface, and it also investigates four initial adsorption structures (Co-NO, O-NO, 
hollow-NO, and bridge-NO) for NO adsorption on the perfect CoO2-terminated surface. 

3.1.1. Calculation for the Perfect LaO-Terminated Surface 

After optimization of three adsorption structures mentioned above, we found an interesting 
phenomenon that although the adsorption model we built initially was the O-NO configuration, it 
became hollow-NO configuration. This means that the hollow-top site has stronger adsorption 
ability to NO molecule than O-top site. Therefore, only the hollow-NO and La-NO configurations, 

Figure 2. Side and top views of optimized LaCoO3 (011) surface: (a) the side view of LaO-terminated
surface, (b) the side view of CoO2-terminated surface, (c) the top view of exposed (011) LaO termination,
and (d) the top view of exposed (011) CoO2 termination.

3. Results and Discussion

3.1. NO Adsorption on the (011) Surface of Perfect LaCoO3

Both adsorption sites (La-top, Co-top, O-top, hollow-top, and bridge-top) and orientations of the
NO molecule (N-down and O-down) may affect adsorption results. As previous DFT calculations
have clarified that the N-down orientation is more benefit for NO adsorption [35,36,46], we focused
our attention on N-down configurations. The article specifically discusses three initial adsorption
configurations (La-NO, O-NO, and hollow-NO) for NO adsorption on the perfect LaO-terminated
surface, and it also investigates four initial adsorption structures (Co-NO, O-NO, hollow-NO, and
bridge-NO) for NO adsorption on the perfect CoO2-terminated surface.

3.1.1. Calculation for the Perfect LaO-Terminated Surface

After optimization of three adsorption structures mentioned above, we found an interesting
phenomenon that although the adsorption model we built initially was the O-NO configuration,
it became hollow-NO configuration. This means that the hollow-top site has stronger adsorption
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ability to NO molecule than O-top site. Therefore, only the hollow-NO and La-NO configurations,
whose optimized structures are shown in Figure 3, are possibly stable structures. Next, we will
focus on the two configurations and find out which structure is more suitable for NO adsorption.
The Eads is 0.471 eV for the La-NO and 0.593 eV for the hollow-NO, respectively. The values of Eads

are positive, indicating the two adsorption structures are stable and the adsorption processes are
exothermic. Although both two adsorption structures may possibly occur, the NO molecule adsorbed
preferentially on the surface with hollow-NO configuration. Its corresponding computation results,
such as the optimized N-O bond length (dN-O), the N-O bond length difference between adsorbed and
free NO molecules (4dN-O), the equilibrium distance (d) between the NO and the nearest substrate
atom (La or Osurf, the surface oxygen), the Mulliken charges (qNO), and the adsorption energy (Eads),
are listed in Table 1.
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For the hollow-NO configuration, the optimized N-O bond length (dN-O) is 1.204 Å, which is 
longer than the dN-O of free NO (1.163 Å). The elongation of N-O bond has relation to the process of 
electron-transfer between adsorbed NO molecule and perfect LaO-terminated LaCoO3 (011) surface. 
To explain the electron transfer, the analysis of Mulliken charges for the hollow-NO configuration 
was employed (see Table 1). The calculated result indicates that the NO molecule serves as the 
acceptor and takes electrons from surface in the adsorption process, making it negatively charged 
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Figure 3. The optimized (a) La-NO and (b) hollow-NO configurations of the perfect LaO-terminated
LaCoO3 (011) surface; the optimized (c) hollow-NO and (d) Co-NO configurations of the perfect
CoO2-terminated LaCoO3 (011) surface.

Table 1. Summary of the results of the NO molecule adsorbed on undoped and Ce-doped LaCoO3

(011) surface. The properties listed are as follows: The N-O bond length (dN-O), the N-O bond length
difference between adsorbed and free NO molecules (4dN-O), the equilibrium distance (d), Mulliken
charges (qNO), and the adsorption energy (Eads).

Configuration dN-O ∆dN-O (Å) d (Å) qNO (e) Eads (eV)

Perfect LaO-terminated surface (hollow-NO) 1.204 0.041 2.847 −0.295 0.593
Perfect CoO2-terminated surface (Co-NO) 1.178 0.015 1.767 0.126 1.302

Ce-doped LaO-terminated surface (hollow-NO) 1.206 0.043 2.669 −0.317 0.849
Ce-doped LaO-terminated surface (Ce-NO) 1.224 0.061 2.497 −0.371 0.797

Ce-doped CoO2-terminated surface (Co-NO) 1.18 0.017 1.766 0.104 1.380

For the hollow-NO configuration, the optimized N-O bond length (dN-O) is 1.204 Å, which is
longer than the dN-O of free NO (1.163 Å). The elongation of N-O bond has relation to the process of
electron-transfer between adsorbed NO molecule and perfect LaO-terminated LaCoO3 (011) surface.
To explain the electron transfer, the analysis of Mulliken charges for the hollow-NO configuration was
employed (see Table 1). The calculated result indicates that the NO molecule serves as the acceptor
and takes electrons from surface in the adsorption process, making it negatively charged with a net
charge of 0.295e. Subsequently, the density of states (DOS) displayed in Figures 4 and 5 were analyzed
to clarify the interaction between adsorbed NO molecule and perfect LaO-terminated LaCoO3 (011)
surface. Figure 4 shows the DOS of perfect LaO-terminated LaCoO3 (011) surface before and after NO
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adsorption. As can be seen from Figure 4, the peak shapes of DOS have a little change after adsorption,
suggesting that the NO adsorption has only a little influence on the electronic structure of perfect
LaO-terminated LaCoO3 (011) surface. In other words, there is a weak interaction between adsorbed
NO and the surface when hollow-NO configuration occurs. The DOS of adsorbed NO molecule, La
and O atoms on the surface are displayed in the Figure 5. From Figure 5, it can be seen that the orbits
of NO molecule overlap with that of La and O atoms. More specifically, the NO hybridizes with both
La and O atoms near −7.5 eV and the Fermi level. Thus, we can assert that the NO molecule can react
with both La and O atoms on the surface when hollow-NO configuration occurs.
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3.1.2. Calculation for the Perfect CoO2-Terminated Surface

After optimization of the four initial adsorption structures mentioned above, it was found that the
optimized O-NO and bridge-NO configurations were the same as the optimized Co-NO configuration,
indicating that Co-NO configuration was more stable than O-NO and bridge-NO configurations.
The optimized Co-NO and hollow-NO configurations are shown in the Figure 3. From Figure 3, we can
see that for the hollow-NO configuration, the adsorbed NO molecule is detached from the surface,
suggesting that the hollow-top is not the preferential adsorption site. Besides, the Eads of hollow-NO
configuration is 0.877 eV, which is lower than that of Co-NO configuration (1.302 eV). Based on the
above analysis results, it is concluded that among the four adsorption structures we investigated,
the Co-NO configuration is the most stable. The calculated result is consistent with the previous
theoretical calculations that B-site metal has strong adsorption for some gas (e.g., CO and O2) [24,47,48].
Next, we will discuss the Co-NO configuration in detail. Its corresponding parameters including dN-O,
4dN-O, d, qNO, and Eads are listed in Table 1. It is learned from Table 1 that the optimized equilibrium
distance (d) between the NO molecule and adsorbed Co site is 1.767 Å, which is short enough to
form Co-N bond. The N-O bond length (dN-O) of adsorbed NO is slightly longer than that of isolated
NO (1.178 Å against 1.163 Å). This indicates a weakening of the N-O bond when adsorption takes
place [49]. As with Section 3.1.1, the electron transfer process resulted in the elongation of the N-O
bond. According to Table 1, the NO molecule serves as the donor and loses 0.126e to surface in the
adsorption process.

Next, the DOS was calculated to gain further insights into the bonding mechanism of
Co-NO configuration. It is well known that the electron configuration of NO is K K(σ2S)2(σ∗2S)2

(π2px)2(π2py)2(σ2pz)2(π∗2px)1(π∗2py)0 [50]. There are six electrons in the σ orbits, four electrons in the

1 π orbits, and one electron in the 2 π* antibonding orbit. The DOS of free NO molecule is shown
in Figure 6a, where each individual peak represents the interacting molecular orbits of NO. These
orbits are termed as 4 σ, 1 π, 5 σ, and 2 π*, and appear at approximately −12.5, −8.5, −7.0, and
0 eV, respectively. Figure 6b shows the DOS of NO molecule adsorbed on the Co-top site of perfect
CoO2-terminated LaCoO3 (011) surface. It is clear that the variation in shape and position of 5 σ and
2 π* orbits is significant after adsorption, which mainly results from the 5 σ donation and 2 π* back
donation. The donation–back–donation process is that the NO 5 σ orbit donates electrons to the metal
d-bands, while the metal d-bands donate them back to the NO 2 π* orbit [51,52]. As a result, the 1 π

orbit is slightly higher in energy than the 5 σ orbit. After this, we analyzed the DOS of Co atom before
and after NO adsorption (Figure 7). It is clearly seen that the s and p orbits of Co atom show slight
changes in the energy region of 5 σ, and the d orbit shows obvious changes in the energy region of
5 σ of adsorbed NO molecule and near the Fermi level. The above calculation results show that all
orbits of Co atom participate in the Co-N bond formation. The intense reaction between adsorbed NO
molecule and Co-d orbit is confirmed by Figure 8a, showing the DOS of interaction between them.
From Figure 8a, it is seen that there is a significant hybridization between the NO molecule and the Co-d
orbit, certifying that the Co-d orbit plays an important role in the bonding of Co-NO configuration.
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3.2. NO Adsorption on the (011) Surface of Ce-Doped LaCoO3

Adsorption results of Ce-doped LaCoO3 (011) surface may be affected by doping sites. Therefore,
we first tried to calculate the Eads when Ce was doped into different layers. For the Ce-doped
LaO-terminated surface, we took the hollow-NO configuration to calculate the Eads when Ce was
doped into in the first, third, and fifth layer of the perfect LaO-terminated surface. The calculated Eads

of the first, third, and fifth layer are 0.849 eV, 0.621 eV, and 0.609 eV, respectively—implying that when
Ce is doped into the first layer, it has the best adsorption ability. Therefore, we gave attention to the
simulation model that Ce was doped into the first layer. Similarly, for the Ce-doped CoO2-terminated
surface, the Co-NO configuration was chosen to calculate the Eads when Ce was doped into in the
second, fourth, and sixth layer. The calculated Eads are 1.380 eV, 1.252 eV, and 1.240 eV, respectively.
Therefore, we will concentrate our efforts on the structure formed by doping Ce into the second layer.

3.2.1. Calculation for the Ce-doped LaO-Terminated Surface

According to the above discussion (Section 3.1), it has been known that the hollow-NO
configuration is the most stable structure when NO is adsorbed on the perfect LaO-terminated
LaCoO3 (011) surface. To explore the effects of Ce doping on adsorption properties, the hollow-NO
configuration of Ce-doped LaO-terminated LaCoO3 (011) surface, whose optimized structure and
corresponding parameters are displayed in Figure 9a and Table 1, respectively, was selected as a
research object and discussed in detail. After Ce doping, the Eads and qNO for hollow-NO configuration
increased by 0.256 eV and 0.022e, respectively. The N-O bond length of adsorbed NO molecule is
1.206 Å. This makes little difference in N-O bond length (0.002 Å) compared with the undoped case.
When NO is adsorbed on the Ce-doped LaO-terminated LaCoO3 (011) surface, Ce-top is considered
to be a possible adsorption site due to the fact that atoms tends to be attached to the defects [53].
The optimized Ce-NO configuration and corresponding parameters are displayed in Figure 9b and
Table 1 respectively. From our calculations, elongation of N-O bond for the Ce-NO configuration is
longer than that for the hollow-NO configuration of Ce-doped LaO-terminated LaCoO3 (011) surface.
The number of electrons transferred from the surface to NO increased by 0.054e compared to that for
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the hollow-NO configuration of Ce-doped LaO-terminated LaCoO3 (011) surface. However, the Eads

of Ce-NO configuration (0.797 eV) is lower than that of hollow-NO configuration (0.849 eV). The above
calculated results show that for the Ce-doped LaO-terminated LaCoO3 (011) surface, hollow-NO
configuration is still the most favorable adsorption structure. In this structure, the introduction of
Ce can cause the increase in adsorption energy and electron transfer numbers, making the Ce-doped
surface have stronger adsorption ability to NO molecule.
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The influences of Ce doping on the interaction between adsorbed NO and the adsorbate were
obtained by the analysis of DOS. Firstly, we calculated the DOS of Ce atom on the surface before and
after adsorption, as shown in Figure 10. From Figure 10, we can get main results as follows: (1) The
s, d, and f orbits have a noticeable change near Fermi level; (2) the p orbit has a slight change near
−17.0 eV. This means that all orbits of the Ce atom participate in the reaction between the NO and the
surface. Figure 11 shows the DOS of adsorbed NO molecule and Ce atom. We can clearly see that there
is a strong hybridization between the NO molecule and the Ce atom, certifying that the Ce doping has
an active influence on the interaction between adsorbed NO and the surface.
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3.2.2. Calculation for the Ce-doped CoO2-Terminated Surface

The optimized Co-NO configuration that NO molecule is attached to the Co-top site of the
Ce-doped CoO2-terminated LaCoO3 (011) surface is shown in Figure 9c, and the corresponding
parameters are listed in Table 1. As seen from Table 1, the bond length of NO is elongated to 1.180 Å
after adsorption on the Ce-doped CoO2-terminated LaCoO3 (011) surface, which is minimal change
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when compared to undoped case (1.178 Å). The Eads of Co-NO configuration has been increased by
0.078 eV after the introduction of Ce. The number of electrons transferred from the NO molecule to the
surface is 0.104e, which is a slight decline compared with the undoped case (0.126e).

For the Co-NO configuration of Ce-doped CoO2-terminated LaCoO3 (011) surface, the DOS of
adsorbed NO and Co atom are displayed in Figures 6c and 7c respectively. As shown in Figure 6c,
the 5 σ and 2 π* orbits of NO molecule show slight changes when compared to the case for NO
molecule adsorbed on the perfect CoO2-terminated LaCoO3 (011) surface, which may be attributed
to the difference in the number of electrons transferred. Comparing Figure 7b,c, it is found that the
DOS of adsorbed Co site is almost unchanged before and after Ce doping. Furthermore, it is obvious
from Figure 8 that the orbital hybridization between adsorbed NO molecule and Co-d orbit for NO
adsorption on the Ce-doped CoO2-terminated surface is almost the same as that for NO adsorption
on the perfect CoO2-terminated surface. All the calculated results indicate that the introduction
of Ce into CoO2-terminated LaCoO3 (011) surface does not change the bonding mechanism of the
Co-NO configuration.

4. Conclusions

In this work, using the DFT method, the adsorption reactions of NO on the undoped and Ce-doped
LaCoO3 (011) surfaces were carried out and the effects of Ce doping on the adsorption reactions
were analyzed. According to our calculations, when NO is adsorbed on the perfect LaO-terminated
and CoO2-terminated LaCoO3 (011) surface, the most favorable adsorption structure is hollow-NO
and Co-NO configuration, respectively. For the hollow-NO configuration of perfect LaO-terminated
LaCoO3 (011) surface, the NO molecule serves as the acceptor, and about 0.295e electrons are transferred
from the surface to it. The calculated DOS shows that adsorbed NO molecule can react with both La
and O atoms on the surface. As for the Co-NO configuration of perfect CoO2-terminated LaCoO3

(011) surface, the NO molecule becomes the donor and loses 0.126e to the surface in the adsorption
process. The formed Co-N bond is mainly dominated by the hybridization between adsorbed NO and
Co-d orbit.

When NO molecule is adsorbed on the Ce-doped LaCoO3 (011) surface, the most suitable
structure is hollow-NO configuration for the LaO-terminated surface and Co-NO configuration for
the CoO2-terminated surface. Calculated results demonstrate that the best adsorption structure is not
changed after Ce doping. For the hollow-NO configuration of Ce-doped LaO-terminated LaCoO3 (011)
surface, the Ce doping can result in the increase of adsorption energy and the number of electrons
transferred from the surface to the NO. It can also have an active influence on the interaction between
adsorbed NO and the surface. As for the Co-NO configuration of Ce-doped CoO2-terminated LaCoO3

(011) surface, although the number of electrons transferred from the NO molecule to the surface slightly
reduce when compared to the perfect CoO2-terminated LaCoO3 (011) surface, there is an increase in
adsorption energy. In addition, the analysis of DOS has suggested that the bonding mechanism of
Co-NO configuration is not affected by Ce doping. The interaction between adsorbed NO and Co-d
orbit still plays a predominate role in the formation of Co-N bond.
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