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ABSTRACT
Disruption of sleep due to acute or chronic stress can lead to changes in emotional memory
processing. Sleep disturbances are highly prevalent in post-traumatic stress disorder (PTSD), but
still, the contribution of sleep deprivation on the susceptibility to PTSD has received little
attention. To determine whether rapid eye movement sleep deprivation (SD) alters the
development of fear expression or fear-associated memory impairment in adolescent rats, we
performed animal emotional behavior tests using an SD animal model with the flowerpot
technique. SD rats showed an increase in locomotor activity frequency and a decrease in
sucrose consumption compared to control rats. An increase in freezing behavior during shock
trials was observed in SD rats. Noticeably, it was observed that when applying the SD condition
after fear stimuli exposure, fear extinction was delayed more in SD rats than in control rats.
Overall, these results indicate that SD in adolescent rats leads to increased locomotor activity
and anhedonic behavior, as well as increased fear expression and delayed fear extinction,
suggesting that SD would lead to increased severity of PTSD-like phenotype.
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Introduction

Disruption of sleep by acute or chronic stress may lead
to alterations in emotional memory processing and,
thereby, contribute to psychiatric illnesses such as
post-traumatic stress disorder (PTSD) (Battle 2013). Epi-
demiological and prospective studies show that sleep
disturbances that exist prior to traumatic exposure or
that occur immediately after traumatic exposure are
strong risk factors for poor psychiatric outcomes, includ-
ing PTSD, anxiety disorders, and mood disorders (Breslau
et al. 1996; Bryant et al. 2010).

Rapid eye movement (REM) sleep is crucial for main-
taining a regular mood in humans. The transition to REM
sleep is accompanied by a rapid decrease in monoami-
nergic tone (serotonin, norepinephrine, and dopamine)
and a concomitant increase in cholinergic tone (Pace-
Schott and Hobson 2002). This suggests the possibility
of REM SD affecting emotions. Several previous studies
have reported the effects of REM SD on alterations in
emotional behavior; however, the results are still
controversial.

Anxiogenic behaviors were observed not only in 72-h
REM sleep-deprived male EPM-M1 mice and in 48-h REM
sleep-deprived female BALB/c mice, but also in chronic

REM sleep-deprived male Wistar rats during 21 consecu-
tive days for 18 h/day (Gonzalez-Castañeda et al. 2016;
Da Silva Rocha-Lopes et al. 2018). However, anxiolytic
behaviors were observed in 24-h REM sleep-deprived
Wistar rats and naive male albino mice (Pokk et al.
1996; Pokk and Vali 2001; Silva et al. 2004; Parsa et al.
2016). Depressive behavior was observed in 120-h REM
sleep-deprived C57BL/6 mice; however, anti-depressive
behavior also occurred in mice with 72-h REM SD (De Oli-
veira et al. 2004; Zhen et al. 2017). In the sucrose con-
sumption test to measure taste aversion, a reduction in
sucrose intake in the 48-h REM sleep-deprived male
Wistar rats was reported when compared with the
control rats (Pezzato et al. 2009). However, in the
forced swimming test to measure depressive behavior,
an increase in swimming activity was examined follow-
ing 24-h REM SD (Asakura et al. 1993).

Sleep-deprived C57BL/6 mice by gentle stroking
selectively impairs memory consolidation for contextual
fear conditioning (Graves et al. 2003), but REM SD by
flowerpot technique shows normal retention and extinc-
tion of a contextual conditioning task in Sprague–
Dawley rat (Silvestri 2005). REM SD reduces cued fear
extinction and induces impairment of conditioned fear
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responses, as seen in many experiments (Graves et al.
2003; Ruskin et al. 2004; Yang et al. 2012; Hunter 2014;
Qureshi and Jha 2017; Straus et al. 2017), but on the con-
trary, it is suggested that prolonged REM SD in adult
male Sprague–Dawley rats impairs contextual fear learn-
ing but not cued fear learning (Ruskin et al. 2004). The
phenomenon of insomnia in PTSD is likely to result in
the inability of these negative memories to be easily
eliminated (Cohen et al. 2012). As the fear effect by
REM SD could be different depending on the timing of
fear conditioning and the type of fear conditioning
tests, it would be necessary to investigate the various
REM SD-induced effects in fear expression and fear
extinction based on exposure before and after fear con-
ditioning and effects in contextual and cued fear
expression tests.

Notably, most patients with schizophrenia, bipolar
depression, male obsessive-compulsive disorder, and
panic attacks develop the psychiatric disorder during
puberty, with unipolar depression having a high occur-
rence among adolescents (Garcia-Rill 1997). Moreover,
like insomnia, high rates of sleep problems occur
among children with psychiatric disorders (Ivanenko
et al. 2004; Gregory and Sadeh 2016). Many adult psy-
chiatric patients indicate that their sleep problems origi-
nated during childhood (Philip and Guilleminault 2017),
and impaired REM sleep regulation during adolescence
may lead to major depression, insomnia, Alzheimer’s
disease, and Huntington’s disease (Brand and Kirov
2011). However, studies on behavior change related to
emotion by REM SD during adolescence are still
insufficient.

This study aimed to clarify the contribution of SD on
the susceptibility to PTSD-like phenotype. To determine
this issue, a 48-h REM SD rat model via the flowerpot
technique was proposed, particularly in an adolescence
period that is more developmentally critical and more
sensitive to SD (Shaffery et al. 2006; Yang et al. 2012).

Materials and methods

Animals

Adolescent female Sprague–Dawley rats (3 weeks,
weight 40–80 g) were obtained from Orient Bio Inc.
(Seongnam, South Korea). All experiments were con-
ducted according to the Dankook University Ethics
Committee’s Guidelines for the Care and Use of Lab-
oratory Animals (DKU-17-033). The rats were housed
in Plexiglas cages (46 × 23 × 20 cm) with wooden
bedding with a 12:12 h light–dark cycle (lights on at
9 AM). Except for the SD test, other tests and the
measurement of body weight and water consumption

proceeded till almost 1 PM Food and water were pro-
vided ad libitum. The experiments were conducted in
a sound-insulated room with controlled temperature
(23 ± 1°C) and humidity (45 ± 5%). The experimental
schematic timeline is shown in Figure 1(A) (Experiment
1), Figure 3(A) (Experiment 2) and Figure 4(A) (Exper-
iment 3). In experiment 1, the elevated plus-maze
(EPM), the sucrose consumption test, and the fear
memory test after a 48-h SD test were sequentially
examined. In experiment 2, a 48-h SD test after fear
conditioning was performed, and then the contextual
fear expression tests were examined. In experiment
3, a 48-h SD test after fear conditioning was per-
formed, and then the cued fear expression and extinc-
tion test were examined. The rats were assigned to
one of the following two treatment groups: (1) the
None group, which was exposed to a controlled con-
dition without water (n = 21; experiment 1, n = 8;
experiment 2, n = 7; experiment 3, n = 6), (2) the SD
group, which was deprived of sleep using the
flowerpot technique with water (n = 20; experiment 1,
n = 7; experiment 2, n = 7; experiment 3, n = 6).

REM sleep deprivation (SD) model

The REM SD model was induced using the inverted
flowerpot technique (Mendelson et al. 1974). Individual
rats were placed on top of platforms (6.5 cm in diam-
eter, 4 cm in height) surrounded by water located in
Plexiglas cages (46 × 23 × 20 cm). Food and water
were provided through a grid on the top of the
cage. Sleep was disturbed when the body contacted
the water as a result of muscle atonia associated
with REM sleep onset, thus awakening the animal.
For the sleep-deprived rats, the base of the cage was
submerged under 1 cm of water for two consecutive
days (48 h) (Youngblood et al. 1997; May et al. 2005;
Wei et al. 2007; Li et al. 2009; Aleisa et al. 2011; Cola-
vito et al. 2013; Hajali et al. 2015). Some reports
suggest the result of reduced REM-related EEG by
flowerpot technique (Endo et al. 1997; Mueller et al.
2008).

Sucrose consumption test

For acclimation to the sucrose solution, 1% sucrose
(Sigma, St. Louis, MO, USA) solution and tap water con-
tained in two bottles were provided to the individual
rats for 24 h. The volume of both the sucrose solution
and tap water was the same (250 mL), and the remainder
of both the sucrose solution and tap water were checked
to measure consumption. The initial positions of the two
bottles were randomized to prevent a positional
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preference, and after 24 h, the positions of the bottles
were switched to avoid adjustment to the position of
the liquids.

Elevated plus-maze (EPM) test

The EPM test consisted of two open arms (50 × 10 cm)
and two closed arms (50 × 10 × 40 cm) with a central
platform (10 × 10 cm), which was elevated 50 cm
above the floor. The open arms had a very short
(0.5 cm) wall to decrease the number of falls, and
the closed arms had a high (40 cm) wall. The time
spent in the open or closed arms was recorded for
10 min using a camcorder (HMX-H304BD, Samsung,
South Korea). The camcorder was placed 150 cm
above the floor with a view of the plus-maze. The fre-
quency of open or closed arm entries (number of open

or closed arm entries) and the time spent in the open
or closed arms (time spent in open or closed arms /
time spent in [open + closed arms] × 100) was calcu-
lated for each rat.

Fear conditioning test

After a 24-h acclimation period, all rats were introduced
into a shock box (Jeung Do Bio & Plant, Seoul, South
Korea) consisting of two equal-sized rooms (24.5 ×
24.5 × 23.5 cm) separated by a transparent window.
Before commencing conditioning exposure, there was
an initial 2-min baseline period to adapt to a black
room with an opaque plate that prevented passage to
another room. During the 8-min conditioning period,
all rats were exposed to eight 3-s light cues that co-ter-
minated with a 1-mA electric foot shock for 1 s, delivered

Figure 1. Decrease in sucrose consumption and increase in movement frequency in the arms by sleep deprivation (SD). (A) Schematic
timeline of Experiment 1 procedures. Rats were deprived of sleep (sleep deprivation [SD]) or not deprived of sleep (None) for 48 h.
After SD, an elevated plus-maze (EPM) test, sucrose consumption test, and a fear memory (fear conditioning and fear expression) test
was carried out. ED, experimental day. (B) All consumption was calculated as their liquid consumption divided by their weight per
hour. Sucrose consumption (**P < 0.01, None vs. SD; unpaired t-test). (C) Water consumption. (D) Time spent in the open arm
during 10 min. Movement frequency into the closed arm, the open arm, and the whole arm during 10 min (*P < 0.05, **P < 0.01,
None vs. SD; unpaired t-test).
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through the floor, which consisted of a 22-square grid
(0.4 cm in diameter with intervals of 1.1 cm). Four cues
were randomly arranged at 30 s, and the other four
were randomly arranged at 90 s to learn that the electri-
cal stimulus given after the cue was based on the inter-
val, not the pattern. The light cue was produced by a
150-lx lamp placed on the ceiling of the shock box
black room, in an environment where external lights
were extinguished. Freezing behaviors were recorded
using a camcorder (HMX-H304BD) and analyzed as the
fear response of the rats. Freezing behavior was
defined as the absence of all observable movements of
the skeleton and the vibrissae, except for those related
to respiration (Hashimoto et al. 1999). Freezing behavior
was blindly scored by two independent observers (one
of whom did not know the experimental grouping of
the animals). We compared the ratio of freezing behavior
across different lengths of time by dividing the eight
stimuli given by random time differences into eight
blocks and calculated the ratio of freezing behavior in
each block.

Contextual and cued fear expression test and
fear extinction test

For experiment 1, the fear expression tests were con-
ducted at 24-h intervals from the fear conditioning test
and performed for 10 min as the same pattern as that
of the fear conditioning test. The rats were individually
re-introduced into the same shock box and exposed
only to the light cue without electric foot shocks. After
2-min exploration without a cue in the black room, in
the 8-min stimulus period, the rats were exposed to a
cue as a randomized different pattern consisting of
four 30-s intervals and four 90-s intervals. Different cue
patterns allow the target to focus more on the cue them-
selves, rather than on the intervals.

The contextual fear expression test was performed
after 48-h REM SD test and the rats were individually
re-introduced into the shock box. The freezing behavior
duration was estimated during a 2-min exploration in
the shock box to observe response of fear memory
when exposed to the same contextual situation before
(Experiment 2).

The cued fear expression test was performed after 48-
h REM SD test and the rats were individually re-intro-
duced into the shock box with different contextual con-
dition. When the conditioned stimulus (CS) is
subsequently presented repeatedly without the uncon-
ditioned stimulus (US), extinction of the cue-conditioned
response typically takes place. However, behavior
studies of extinction suggest that it is rather than
erasing the CS-US association or processing ‘unlearning’,

extinction represents a process of the new learning of
fear inhibition or a formation of extinction memory, sig-
nifying CS-no US (Phelps et al. 2004; Milad and Quirk
2012). The cued fear extinction tests were conducted
at 24-h intervals twice over two days and rats were per-
formed for 10 min as the same pattern as that of the fear
conditioning test without foot shock (Experiment 3). The
freezing behavior duration was estimated during an 8-
min stimulus period in the shock box to compare each
period’s freezing and measure delay of fear memory
extinction gradually.

Data analysis

The data were analyzed using GraphPad Prism 8 soft-
ware (GraphPad Software, Inc., San Diego, CA, USA),
and statistical descriptions were made using the mean
± standard error mean. Statistical significance for the
two groups was evaluated using an unpaired t-test for
EPM, and sucrose test. Statistical significance for multiple
groups was evaluated using a two-way ANOVA followed
by Bonferroni’s multiple comparisons test for the dur-
ation of freezing behavior during the fear conditioning,
expression, and extinction test. For all statistical tests,
the rejection criterion was set to P < 0.05.

Results

Decreased sucrose consumption and increased
movement frequency after SD

In all experiments (experiment 1, 2, and 3), the reduction
of water consumption in the SD group was observed
during the 48-h SD period compared with the none
group, and there were no significant differences in
water consumption during the remainder of the test
and in body weight between the SD group and the
none group (Table 1).

In sucrose consumption test to determine the effects
of SD on depressive behavior, sucrose consumption in
the SD group was significantly lower than that in the
none group on the second day (P = 0.0014) and during
the entire day of the test (P = 0.01) (Figure 1B). Water
consumption for the entire day did not significantly
differ among groups (Figure 1C).

The EPM test was performed to determine the effects
of SD on anxious behavior. No significant differences
among the groups were observed in terms of the percen-
tage of time spent in the open arm. However, compared
with the none group, the SD group showed a significant
increase in the movement frequency in the closed
arm (P = 0.008), and the open arm (P = 0.01), and the
total frequency in the whole arm (P = 0.01) (Figure 1D).
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A reduction in the sucrose consumption and an increase
in the movement frequency were observed in the SD
group, suggesting that SD could induce an increased
locomotor behavior and transient depressive behavior.

Increased fear expression in shock-exposed rats
after SD (Experiment 1)

To determine the effects of SD on the fear expressed
response after fear conditioning, the freezing behavior
in each trial session of each group was measured and
compared. The effect of trials (F (7, 84) = 8.97, P <
0.0001) was only statistically significant, based on a
two-way ANOVA (groups, F (1, 12) = 3.38, P = 0.09;
group × trial interaction, F (7, 84) = 0.72, P = 0.65;
Figure 2A, left). To compare each no stimuli (before
stimulus) and during stimuli (after stimulus), the dur-
ation of freezing behavior (%) between the none
group and the SD group, the effect of trials (F (1, 12) =
207.2, P < 0.0001) and the group × trial interaction

(F (1, 12) = 5.95, P = 0.03) were statistically significant,
based on a two-way ANOVA (groups, F (1, 12) = 3.69,
P = 0.08, Figure 2A, right). Comparing the change in
the duration of freezing behavior (%) from no stimuli
to during stimuli, a significant increase was seen in
both the none group and the SD group (no stimuli vs.
during stimuli; None, P < 0.0001; SD, P < 0.0001; Figure
2A, right). Under stimulus-exposed conditions, the
duration of freezing behavior of the SD group was
significantly higher than that of the none group (None
vs. SD, P = 0.01; Figure 2A, right).

In the fear expression test, to compare each no stimuli
and during stimuli the duration of freezing behavior (%)
between the none group and the SD group, the effect
of trials (F (1, 13) = 19.65, P = 0.0007) was only significant,
based on a two-way ANOVA (groups, F (1, 13) = 2.35, P =
0.15; group × trial interaction, F (1, 13) = 4.13, P = 0.06;
Figure 2B). Comparing the change in the duration of freez-
ing behavior (%) from no stimuli to during stimuli, the
none group showed a significant increase (no stimuli vs.

Table 1. Changes in water consumption and in body weight.
Experiment 1
ED 0 1 (SD) 2 (SD) 3 4 5 6
Body weight (g) None 61.25 ±16.18 69.76 ±16.45 76.25 ±16.98 82.15 ±17.62 89.73 ±17.63 96.68 ±17.62 104.10±18.09

SD 58.56 ±14.39 61.50 ±15.41 66.51±16.27 74.47 ±17.73 82.69 ±18.08 90.06 ±19.06 97.04 ±19.41
Water Consumption (ml) None 11.34±2.87 8.92 ±1.42 1.15 ±0.37 1.24 ±0.32 9.81 ±1.95 8.78 ±2.22

SD 5.62±1.44*** 2.22±0.57*** 1.24 ±0.97 2.02 ±2.27 8.34 ±0.48 7.59 ±0.61
Experiment 2
ED 1 2 (SD) 3 (SD) 4
Body weight (g) None 58.51±8.10 63.26 ±8.32 69.61 ±8.22 76.89 ±8.83

SD 61.91 ±7.02 63.43 ±8.07 69.40 ±7.29 76.84 ±7.52
Water Consumption (ml) None 9.59 ±1.04 9.80 ±1.11 10.00 ±0.72

SD 3.27±2.31*** 3.79±1.92*** 7.05 ±2.85
Experiment 3
ED 1 2 (SD) 3 (SD) 4
Body weight (g) None 52.37 ±2.24 57.80 ±1.97 63.05 ±3.01 69.02 ±3.72

SD 47.87 ±3.49 51.82 ±3.09 54.52 ±2.71 60.98 ±2.44
Water Consumption (ml) None 15.51 ±1.19 11.90 ±1.27 13.58 ±1.39

SD 9.96 ±2.18*** 4.25±0.94*** 14.83 ±1.28

Two-way ANOVA, Bonferroni post-hoc tests; ***P < 0.001, None vs. SD.

Figure 2. Increased freezing behavior by sleep deprivation (SD) during fear conditioning. (A) Left, The comparison of the freezing
behaviors in each session over the fear conditioning period between none and SD group. Right, Fear acquisition by electric stimuli
in the fear conditioning period (two-way ANOVA; ####P < 0.0001, no stimuli vs. during stimuli; *P < 0.05, None vs. SD; Bonferroni
post-hoc test). (B) Left, Freezing behaviors in each session over the fear expression period. Right, Fear acquisition by electric
stimuli in the fear expression period (two-way ANOVA; ###P < 0.001, no stimuli vs. during stimuli; Bonferroni post-hoc test).
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during stimuli, P < 0.001; Figure 2B). Under both no stimu-
lus and during stimulus-exposed conditions, there were
no significant difference in the duration of freezing
behavior between none and SD group (Figure 2B).

Effects of SD in contextual fear memory after fear
conditioning (Experiment 2)

In experiment 1, SD exposure induced an increase in
freezing behavior during fear conditioning, but in fear
memory through fear expression test, no significant
difference was found between SD and none group. To
clarify the direct effect of SD on fear memory, we exam-
ined the contextual and cue fear expression behaviors
after fear conditioning (Figure 3).

In experiment 2, the freezing behavior was compared in
each session of each group to determine the effects of SD
on the contextual fear response after fear conditioning
(Figure 3A). The effect of trials (F (1, 12) = 25.1, P = 0.003)
was only statistically significant (group × trial interaction,
F (1, 12) = 0.89, P = 0.57; groups, F (1, 12) = 0.0001, P =
0.99), based on a two-way ANOVA (Figure 3B). Comparing
the change in the duration of freezing behavior (%), no
significant difference was shown in both the none group
and the SD group in contextual fear memory expression
(Figure 3B). It seems that effects of SD after fear condition-
ing was not valid in contextual fear memory.

Delay of cued fear extinction in shock-exposed
rats by SD (experiment 3)

In experiment 3, the freezing behavior was compared in
each session of each group to determine the effects of
SD on the cued fear response after fear conditioning
(Figure 4A). Comparing the change in the duration of

freezing behavior (%) between none group and SD
group in each conditioning, extinction 1, and extinction
2 session. In conditioning, the effect of trials (F (7, 70) =
9.61, P < 0.0001) was significant, based on a two-way
ANOVA (groups, F (1, 10) = 0.37, P = 0.56; group × trial
interaction, F (7, 70) = 1.10, P = 0.38; Figure 4B). In extinc-
tion 1, the effect of trials (F (7, 70) = 2.70, P = 0.02) was
significant (groups, F (1, 10) = 0.28, P = 0.61; group ×
trial interaction, F (7, 70) = 0.63, P = 0.73; Figure 4B). In
extinction 2, all the effect of trial, groups and group ×
trial interaction were not significant, based on a two-
way ANOVA (trials, F (5, 50) = 0.79, P = 0.56; groups, F
(1, 10) = 1.45, P = 0.26; group × trial interaction, F (5,
50) = 1.85, P = 0.12; Figure 4B). Freezing behavior dur-
ation in none group significantly increased in the extinc-
tion 1 session compared to the conditioning session (P =
0.0002) and decreased in the extinction 2 session com-
pared to the extinction 1 session (P = 0.0289) (Figure
4C). However, in SD group, freezing behavior duration
increased in the extinction 1 compared to the condition-
ing session (P = 0.0002), but there was no significant
difference in freezing behavior duration between the
extinction 1 and the extinction 2 session (Figure 4C). In
addition, in SD group, freezing behavior duration
increased in the extinction 2 compared to conditioning
session (P = 0.0293). It seems that SD after fear con-
ditioning delayed cued fear extinction.

Discussion

The present study shows that REM SD by flowerpot tech-
nique can lead to increased fear response during fear
conditioning and delayed fear memory extinction, as
well as anhedonic behavior and hyperactive behavior
in adolescent female rats.

Figure 3. No change of contextual fear expression in shock-exposed rats by SD. (A) Schematic timeline of experiment 2 procedures.
Rats were deprived of sleep (SD) or not deprived of sleep (None) for 48 h after fear conditioning, and then, contextual fear expression
were carried out. ED, experimental day. (B) Freezing behaviors duration in each session between none and SD group (two-way
ANOVA).
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The most commonly prescribed antidepressant medi-
cations increase the monoaminergic tone and reduce
REM sleep (Murphy and Peterson 2015). In this study,
the sleep-deprived rats showed lower sucrose consump-
tion than the control rats, suggesting that REM SD
induces anhedonic depressive behavior (Figure 1B),
which is consistent with previous reports that sucrose
consumption was lower in female mice after 48-h and
96-h of REM SD compared with control mice (Gonza-
lez-Castañeda et al. 2016). Thus, depression-related
behavior resulting from REM SD can be caused by a
problem with the dopaminergic reward system, which
can be seen by a decrease in the anhedonic experimen-
tal condition, the sucrose test results.

In the EPM test, an anxious animal is expected to
spend the most time in the enclosed arms, demonstrat-
ing low exploratory and locomotor behaviors (Carobrez
and Bertoglio 2005). However, the opposite behavior is
expected from an animal with increased impulsivity or
mania; it would spend more time in the open arms,
demonstrating increased locomotor and exploratory
behaviors (Pires et al. 2016). REM SD in rats can cause
an increase in locomotor activity (Van Hulzen and
Coenen 1981; Pokk and Alexander 1998), which has

even been suggested as a model of mania (Gessa et al.
1995). Our finding showed an increased number of
entries and time spent in the open arms after SD
(Figure 1D). This might be a result of hyperactivity
rather than it being due to the anxiolytic effects of
sleep perturbations. The reason for the increase in loco-
motor activity after SD is assumed to be the survival
advantage of an increase in boldness when faced with
an aversive cue (McBlane and Handley 1994). As a
result, the phenomenon of anxiety resulting from REM
SD is shown as hyperactivity, which can be seen as a
result of enhanced response to survival by the adverse
environment given in REM SD.

It was observed that after undergoing SD, fear
response increased during exposed to fear conditioning
conditions such as PTSD (Figure 2A), suggesting that
REM sleep-deprived rats are more sensitive to aversive
stimuli (Albert et al., 1970 ). This supports previous
findings of enhanced fear acquisition following SD, an
SD-associated generalized failure to habituate during
fear acquisition, and higher sensitivity to a negative
stimulus in sleep-deprived rats (Anderson and Platten
2011; Peters et al. 2014; Feng et al. 2018). This increase
in exposure to fear is linked to an increase in

Figure 4. Delay of cued fear extinction in shock-exposed rats by SD. (A) Schematic timeline of experiment 3 procedures. Rats were
deprived of sleep (SD) or not deprived of sleep (None) for 48 h after fear conditioning, and then, cued fear extinction 1 and extinction
2 were carried out. (B) The comparison of freezing behaviors in each session, conditioning, extinction 1 and extinction 2 (two-way
ANOVA). (C) Freezing behaviors duration in each session between none and SD group (two-way ANOVA; Bonferroni post-hoc test,
*P < 0.05, **P < 0.01).
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vulnerability to SD, which has also been suggested in
previous human studies (Lautenbacher et al. 2006). In
the case of a short sleep interval, the increased risk of
relapse of the disease resulted in increased SD associ-
ated with depression (Nutt et al. 2008). Because animal
models have confirmed that an increase in vulnerability
to this pain disappears with monoamine (Ukponmwan
et al. 1986), a study of monoamine will need to verify
the mechanism of SD. The results can be linked to
earlier results showing differences in sucrose intake in
relation to monoamines associated with depression,
and we argue that this commonality can cause SD pro-
blems in monoaminergic systems.

When experiencing SD after exposure to fear con-
ditioning, there was no effect on contextual fear
memory (Figure 3B), which is consistent with previous
reports (Silvestri 2005). Meanwhile, we found that cued
fear extinction was delayed after SD (Figure 4C), which
is consistent with previous study (Kumar and Jha
2012). Previous research has shown that N-methyl-D-
aspartate (NMDA) receptors play an important role in
fear extinction (Davis 2011), the results of a decrease in
the surface stress of the NMDA receptor in hippocampal
neurons when sleep is deprived (Chen et al. 2006). It also
highlighted the role of NMDA receptors in memory
impairment caused by REM SD by checking the results
of the decrease in the NMDA–α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) ratio and the
amplitude of NMDA current after 72-h SD (Li et al.
2009). This suggests that REM deprivation-induced
impairment of fear memory extinction is rescued by
the NMDA receptor agonist, D-cycloserine (Silvestri and
Root 2008). Together with the present findings, it
suggests that a REM SD-induced fear extinction delay
was induced by NMDA receptor dysfunction, and their
underlying mechanism should be studied in the future.

Many REM SD experiments were conducted in male
and female rats, but no significant sex differences were
found (Koehl et al. 2006; Fernandes-santos et al. 2012;
Baratta et al. 2018; Carter et al. 2019; Oyola et al.
2019). However, in some reports, it suggest that
female rats are more vulnerable to REM sleep depri-
vation-induced cognitive impairments than male rats
(Hajali et al. 2012) and females show a greater increase
in anxiety as a result of sleep deprivation than males
(Gonzalez-Castañeda et al. 2016). In addition, acquisition
of conditioned fear in woman with PTSD is reported to
be enhanced than male (Shansky 2015).

In early adolescent rats, REM SD has been shown to
lead to unstable long-term potentiation and low gluta-
matergic signals, suggesting that REM sleep plays a
crucial role in the development of the hippocampus
(Lopez et al. 2008). In addition, REM SD before the end

of the critical period in young rats is known to delay ter-
mination of the critical period in the visual cortex
(Shaffery et al. 2006). In sleep-deprived young rats, the
ratio of serotonin decreases in the hypothalamus
(Senthilvelan et al. 2006). This study demonstrates that
48-h of REM sleep deprivation in adolescent rats leads
to increased locomotor activity, susceptibility to fear,
and induced depression-like behavior. This suggests
that poor or altered sleep in adolescence may trigger
and maintain many psychiatric and physical disorders
or combinations of these conditions, which presumably
hinder recovery and may continue into later stages of
life. Given the vital importance of sleep, adolescence is
a critical period for normal growth and development
in which sleep, which has a complex association with
many other processes, plays a crucial role. Therefore,
timely diagnosis and management of sleep problems
appear critical for growth and development, and par-
ticularly mental health, in adolescence.
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