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Abstract

Motivation: Synthetic lethality (SL) is a promising gold mine for the discovery of anti-cancer drug targets. Wet-lab
screening of SL pairs is afflicted with high cost, batch-effect, and off-target problems. Current computational meth-
ods for SL prediction include gene knock-out simulation, knowledge-based data mining and machine learning meth-
ods. Most of the existing methods tend to assume that SL pairs are independent of each other, without taking into
account the shared biological mechanisms underlying the SL pairs. Although several methods have incorporated
genomic and proteomic data to aid SL prediction, these methods involve manual feature engineering that heavily
relies on domain knowledge.

Results: Here, we propose a novel graph neural network (GNN)-based model, named KG4SL, by incorporating
knowledge graph (KG) message-passing into SL prediction. The KG was constructed using 11 kinds of entities
including genes, compounds, diseases, biological processes and 24 kinds of relationships that could be pertinent to
SL. The integration of KG can help harness the independence issue and circumvent manual feature engineering by
conducting message-passing on the KG. Our model outperformed all the state-of-the-art baselines in area under the
curve, area under precision-recall curve and F1. Extensive experiments, including the comparison of our model with
an unsupervised TransE model, a vanilla graph convolutional network model, and their combination, demonstrated
the significant impact of incorporating KG into GNN for SL prediction.

Availability and implementation: : KG4SL is freely available at https://github.com/JieZheng-ShanghaiTech/KG4SL.

Contact: wumin@i2r.a-star.edu.sg; zhengjie@shanghaitech.edu.cn.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complex biological systems cannot be composed by a large number
of genes acting independently, but rely on the interactions between
genes which can be further classified into enhancing and suppressive
effects (Dhabhar, 2009). The suppressive effects characterize the
situation that, when mutations occur simultaneously in a pair of
genes, some important functions will be deactivated which seriously
decrease cell viability, whereas the mutation in a single gene might
not affect the cell viability. A common type of suppressive effect is
synthetic lethality (SL; Dobzhansky, 1946), which has been a prom-
ising strategy for cancer medicine (Ashworth et al., 2011). If a spe-
cific gene is found to be inactivated in tumor cells, drugs that
suppress its SL partner gene can cause tumor cells to die but spare
normal cells (Hartwell et al., 1997). Hence, SL is a gold mine of
anti-cancer drug targets, and intensive efforts have been exerted to

identify SL gene pairs. High-throughput wet-lab screening methods,
including chemical liraries (Simons et al., 2001), pooled RNAi
screening (Luo et al., 2009) and CRISPR-based genome editing tech-
nology (Du et al., 2017) have been used to find SLs, but they are
thwarted by varius barriers such as high cost, off-target effects, and
batch effects (Liu et al., 2020). Hence, it is compelling to devise effi-
cient computational methods to complement the downsides of the
wet-lab screening techniques.

A spectrum of computational methods has been proposed for SL
prediction. These methods can be categorized into three classes. The
first class involves simulating in silico knockouts using metabolic
network models. Folger et al. (2011) proposed to characterize SLs
by modeling effects of the single- and double-knockouts of candi-
date genes in those networks. The second class, referred to as know-
ledge-oriented methods, is mostly conducted by feature engineering
with domain-specific knowledge. To predict SL pairs, these methods
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employ network topology features such as graph centrality (Kranthi
et al., 2013), network flow (Zhang et al., 2015), connectivity hom-
ology (Jacunski et al., 2015) and features derived from genomic data
including somatic copy number alteration (Jerby-Arnon et al.,
2014), short hairpin RNA profiles (Jerby-Arnon et al., 2014), and
gene expression profiles (Jerby-Arnon et al., 2014). However, the
two classes mentioned above rely heavily on the metabolic network
models, domain knowledge and genomic data, without fully exploit-
ing the valuable information of known SL pairs.

To exploit the exiting SL data, the third class of methods apply
machine learning algorithms, where features are engineered based
on both domain knowledge and heuristic functions. Paladugu et al.
(2008) proposed to train a support vector machine (SVM) for SL
prediction where the features were extracted from a protein–protein
interaction (PPI) network. MetaSL (Wu et al., 2014) integrated 17
features and weighted outputs of 10 classifiers to predict SLs. Aside
from the traditional machine learning methods, graph representa-
tion learning approaches have been proposed, which mostly adopt
an encoder–decoder paradigm. In this paradigm, an encoder tries to
map the nodes into a low-dimensional embedding, whereas a de-
coder takes the embedding and utilizes it to reconstruct the node
similarities in the original graph (Hamilton, 2020), thereby recover-
ing missing links. This paradigm can be generalized to matrix factor-
ization (MF)-based methods and graph neural network (GNN)-
based methods. Those methods use distinct designs of encoders, but
resemble each other in the choices of decoders (mostly taking the
form of inner product predictor or its normalized variants). MF
methods adopt a MF encoder. SL2MF (Liu et al., 2020) proposed a
MF encoder which decomposes the SL matrix, gene ontology (GO)
similarity matrix, and PPI matrix to a low-dimensional latent space.
GRSMF (Huang et al., 2019) introduced a self-representative MF
encoder which focuses on learning a representation matrix from
known SL pairs and further integrates the functional similarities
among genes derived from GO. Liany et al. (2020) adopted
Collective Matrix Factorization (CMF) based methods to integrate
data from heterogeneous sources to predict SLs.

The MF-based encoders are just shallow embedding methods,
which simply optimize a unique embedding vector for each node,
without sharing any parameter between nodes or leveraging node
features (Hamilton, 2020). GNN, a state-of-the-art framework for
deep learning on graphs, enhances the aforementioned methods by
adopting a different embedding strategy. GNN defines a message-
passing (MP) process on the original graph, i.e. at each iteration,
each node aggregates all the embeddings from its local neighbor-
hood as a message which is combined with its previous embedding
to generate a new embedding. Based on GNN, Cai et al. (2020)
adopted a novel regularization technique called dual dropout to ad-
dress the sparsity of SL networks.

However, the existing GNN-based methods often regard each SL
pair as an independent sample, and make no attempt to take their
underlying biological mechanisms into account. However, some
shared factors (such as biological processes, pathways, cellular com-
ponents etc.) might latently invalidate the assumption of independ-
ency. For instance, poly (adenosine diphosphate-ribose) polymerase
1 (PARP1) and breast cancer 1 (BRCA1) are a famous SL gene pair,
leading to the first clinically approved SL-based cancer drug, PARP
inhibitor (Lord and Ashworth, 2017). PARP1 and BRCA1 are both
key players in DNA repair process. Meanwhile, ATM and TP53 are
another widely known SL pair (Kwok et al., 2016), and ATM is also
a key instrument in DNA repair process (Sanders et al., 2020). Here,
the DNA repair process might be the common mechanism underly-
ing the two SL pairs.

A subset of existing methods [e.g. SVM, random forests (RFs),
SL2MF and GRSMF] have injected some genomic and proteomic
data to facilitate the SL prediction, and the results of these studies
have underscored the significance of integrating additional informa-
tion. Meanwhile, GNN-based methods can also encode such infor-
mation as input features. However, these methods extracted features
manually based on domain knowledge and some features might be
left out. Therefore, to attain a more comprehensive set of features to

improve the performance of SL prediction, we need a new method
capable of automatic knowledge integration and feature extraction.

Knowledge graphs (KGs) are a type of multi-relational graph,
where nodes and edges have different types. A KG is denoted by
G ¼ ðV;EÞ, where edges in set E are defined as triplets e ¼ ðh; s; tÞ
indicating a particular relationship s 2 T between two nodes
(Hamilton, 2020). By incorporating a KG into a GNN, one can miti-
gate the aforementioned independency issue by directly introducing
those latent factors as nodes in the graph. Lin et al. (2020) proposed
an end-to-end knowledge GNN (KGNN) and achieved good per-
formance in drug–drug interaction prediction.

Here, we propose a novel KGNN-based method for SL predic-
tion, named KG4SL, which utilizes KG MP as a back-end. We ap-
proach the independency issue by injecting various factors including
biological processes, diseases, compounds etc. that could be pertin-
ent to SL, into our KG. Our model comprises three parts. In the first
part, we derive a gene-specific subgraph from the original KG for
each gene. In the second part, we conduct MP on the gene-specific
subgraph, to automatically associate genes with factors that could
be decisive in identifying an SL pair. In the third part, we define a
decoder to reconstruct gene–gene similarity in a supervised fashion.
To the best of our knowledge, this is the first framework to integrate
KG with GNN for SL prediction. We compared our model with 10
state-of-the-art methods for SL prediction, and our model outper-
formed all the baselines in area under ROC curve (AUC), area under
precision-recall curve (AUPR) and F1. Another contribution of our
work is that we studied the impact of KG, which suggests that intro-
ducing a KG combined with MP process in GNN can significantly
improve the performance of SL prediction.

2 Materials and methods

In this section, we first introduce the data and the problem of SL
prediction. Then, we present the details of the proposed KG4SL
model.

2.1 Data Collection
SynLethDB (http://synlethdb.sist.shanghaitech.edu.cn/v2/#/; Guo
et al., 2016) is a comprehensive database of synthetic lethal gene
pairs. Its latest version includes a set of 36,402 human SL pairs, as
well as a KG with 11 kinds of entities and 24 kinds of relationships
as shown in Table 1. SynLethDB also includes negative SL pairs, i.e.
Non-SL and synthetic rescue pairs. However, there are much less
known negative SL pairs than known positive ones. To obtain a bal-
ance between the positive and negative samples, we randomly pick
up unknown pairs as negative pairs so that there are equal numbers
of positive and negative SL pairs. Hence, the final SL dataset con-
tains 72 804 gene pairs between 10 004 genes.

The KG, denoted as SynLethKG, includes 24 kinds of relation-
ships between 11 entities. Among 24 kinds of relationships, 16 of
them are related to genes directly, e.g. (gene, regulates, gene), (gene,
interacts, gene) and (gene, co-varies, gene). And the other 8 relation-
ships are associated with drug and compounds. Besides, 7 out of 11
kinds of entities are directly related to genes, i.e. pathway, cellular
component, biological process, molecular function, disease, com-
pound and anatomy. They are in the format of (gene, relationship,
entity). These entities can be reached from genes in one hop, where-
as the other three kinds of entities (pharmacologic class, side effect

Table 1. Details about the SL data and KG SynLethKG

SL data No. of genes 10 004

No. of interactions 72 804

Density 0.14%

SynLethKG No. of entity types 11

No. of relationship types 24

No. of nodes 54 012

No. of edges 2 231 921
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and symptom) can be reached from genes in two hops. After remov-
ing isolated nodes, the final graph of SynLethKG contains 54 012
nodes and 2 231 921 edges as shown in Table 1. Tables 2 and 3
show the details about the entities and relationships in SynLethKG.
Users can access the SynLethKG through searching the names of the
genes that they want to study in SynLethDB.

The 24 relationships in Table 3 describe the features of genes,
drugs and compounds. These relationships are collected from
Genbank, GO, Drugbank, DrugCental, PubMed, Bgee, String,
LINCS L1000, SIDER4, STARGEO, Uberon and BioGRID. The
specific number of each type of relationship and the number of asso-
ciated nodes are also shown in Table 3. Besides, the types of the enti-
ties in SynLethKG and the number of each entity are shown in Table
2.

2.2 Problem statement
Formally, the SL data can be modeled as a matrix S 2 ð0;1Þn�n,
where n is the number of genes involved in the SL pairs. In this SL
matrix S, an entry si;j is 1 if there is an SL interaction between gene
ei and gene ej, and 0 otherwise. Note that gene pairs with entry value
0 are unknown pairs, some of which could be potential SL pairs not
yet discovered. The KG SynLethKG is denoted by G ¼ ðVe;VrÞ,
which contains a set of entities Ve and a set of relationships Vr. Each
edge in the KG is defined as a triplet T ¼ ðh; r; tÞ, which shows a re-
lationship of type r between head entity h and tail entity t, where
h; t 2 Ve and r 2 Vr.

Given the SL matrix S and the KG G, the problem we aim to
solve is to predict the SL relationship between gene ei and gene ej.
To achieve this goal, we propose a GNN-based model to learn a
scoring function ŝ i;j ¼ Fði; jjW;A;bÞ that estimates how likely gene
ei and gene ej is an SL pair, where W, A and b denote the learnable
parameters in function F.

2.3 Overview of KG4SL
The overall framework of KG4SL is laid out in Table 1. KG4SL uti-
lizes a GNN to encode the gene features from KG for SL prediction
in three steps. First, we derive a gene-specific weighted subgraph for
each SL-related gene from the KG. Specifically, the weight of every
edge is defined by a gene-specific relation scoring function to depict
the importance of the relation for its target gene. Second, we design
an aggregation layer to update the representation for a given gene by
aggregating the representations of its neighbors in the gene-specific
weighted subgraph. Third, we assign a score for each gene pair com-
puted by the normalized inner product based on their learned repre-
sentations. Next, we introduce these three steps in details.

2.3.1 Gene-specific weighted subgraph

Given an SL-related gene, we first construct a weighted subgraph
from the KG. Identifying relevant nodes and determining the edge
weights are two key operations to construct the gene-specific
weighted subgraph.

Assume that e is the central node/entity and N(e) is the set of
neighbors of e (i.e. entities directly connected to e). In SynLethKG,
the size of N(e) varies greatly among the entities. For example, net-
work hubs may have thousands of relations, whereas some nodes
are less studied and thus have a limited number of neighbors. In this
work, we sample a fixed number of k neighbors for each entity to
characterize its local structure and we repeat this process for H hops
(H � 1). In particular, if a node has less than k neighbors, we sample
duplicates, i.e. a neighbor may be sampled more than once. The set
of sampled k neighbors is denoted as P(e). An example of 2-hop sub-
graph with neighbor sampling size k¼4 in each hop can be seen in
Figure 1.

In a gene-specific subgraph, we can assign different weights for
edges to describe the importance of the relations. For an SL pair (ei,
ej), the weight for an edge re;e0 in ei’s subgraph is computed by
xei

e;e0 ¼ gðej; re;e0 Þ, where e is one of the entities in the subgraph of ei,
and e0 2 PðeÞ. Besides, ej and re;e0 are the feature embeddings of gene
ej and relation re;e0 , respectively. g is an inner product function.
Here, xei

e;e0 characterizes the importance of relation re;e0 to gene ej.

2.3.2 Aggregation of node representations

For any central entity e in the subgraph of gene ei, we aggregate the rep-
resentations of all its picked neighbors to update its own representation.
To show the topological neighborhood structure of entity e in the KG,
we compute the weighted average combination of e’s neighborhood:

ePðeÞ ¼
X

e02PðeÞ
~xei

e;e0e
0; (1)

where e is the representation of entity e, gene ei and gene ej are a
pair in the SL matrix, and ~x is the normalized gene-relation score by
applying a softmax function:

~xei

e;e�¼
exp ðxei

e;e�ÞP
ê �2PðeÞ exp ðxei

e;ê�Þ
: (2)

Table 2. Details about the entities in SynLethKG

Type Sample size

Cellular component 1670

Gene 67 062

Biological process 12 703

Side effect 5726

Molecular function 3203

Pathway 2069

Disease 137

Compound 2595

Pharmacologic class 377

Anatomy 402

Symptom 453

Table 3. Details about the relationships in SynLethKG

Type No. of

edges

No. of

source

nodes

No. of

target

nodes

(Anatomy, downregulates, gene) 31 4 24

(Anatomy, expresses, gene) 617 175 241 23 881

(Anatomy, upregulates, gene) 26 5 22

(Compound, binds, gene) 16 323 1922 2306

(Compound, causes, side effect) 139 428 1079 5702

(Compound, downregulates, gene) 21 526 747 2847

(Compound, palliates, disease) 384 215 50

(Compound, resembles, compound) 6266 1034 1055

(Compound, treats, disease) 752 385 77

(Compound, upregulates, gene) 19 200 721 3205

(Disease, associates, gene) 24 328 135 6572

(Disease, downregulates, gene) 7616 44 5730

(Disease, localizes, anatomy) 3373 123 398

(Disease, presents, symptom) 3401 122 427

(Disease, resembles, disease) 404 100 98

(Disease, upregulates, gene) 7730 44 5614

(Gene, covaries, gene) 62 987 9174 9706

(Gene, interacts, gene) 148 379 9633 14 275

(Gene, participates, biological process) 619 712 16 608 12 703

(Gene, participates, cellular component) 97 652 11 916 1670

(Gene, participates, molecular function) 110 042 14 404 3203

(Gene, participates, pathway) 57 441 11 519 2069

(Gene, regulates, gene) 267 791 4649 7105

(Pharmacologic class, includes, compound) 1205 377 837

i420 S.Wang et al.



After obtaining the picked neighbors’ representation ePðeÞ of a
central entity in one hop, similar to (Wang et al., 2019a), it integra-
tes the entity representation e into a single vector to update e:

e½hþ 1� ¼ /
�

W
�

e½h� þ ePðeÞ

�
þ b
�
; (3)

where W and b are the linear transformation weight and bias,
respectively, and / is an activation function such as ReLU.

After aggregating neighbors’ information through H hops, the final
feature representation of gene êi is e½H�: ê j is obtained in the same

way.

2.3.3 SL prediction score

Finally, by passing information from two subgraphs of KG, we at-
tain the final representations êi and ê j for the two genes in the SL

matrix. The predicted interaction probability between gene ei and
gene ej is calculated by ŝ i;j ¼ /

�
f ðê i; ê jÞ

�
, where f is the inner prod-

uct function and / is a sigmoid function, squashing the output to a

range between 0 and 1. Furthermore, this link prediction can be
viewed as a binary classification problem, by setting the threshold to

0.5. ŝ i;j is 1 or 0, which indicates whether an SL relation exists be-
tween a candidate pair of genes.

2.4 Overall loss and optimization
Two kinds of losses are designed for our model, including base loss

and L2 loss. The base loss J is computed through cross-entropy of
the truth label and the predicted label for the edges, represented as

follows.

J ¼ maxðŝ i;j; 0Þ � ŝ i;j � si;j þ logð1þ expð�jŝ i;jjÞÞ; (4)

where ŝ i;j is the predicted label and si;j is the truth label for the edge.
We also add an L2-regularizer defined as:

jjCjj ¼ jjejj þ jjrjj þ jjWjj
2

; (5)

where jj � jj represents the L2 norm for entity embedding, relation
embedding and aggregation weights.

The final loss combines the two kinds of loss functions described
above as follows:

minW; A; b ‘ ¼ minW; A; b

X
i;j

J þ ajjCjj; (6)

where A is the trainable weighted matrix in which each element rep-
resents the gene-relation score and L2 weight a is a balancing hyper-
parameter. Here a was set to 0.0039. The first term corresponds to
the part of GNN that learns the linear transformation weight W,
gene-relation score weight A and bias b simultaneously. The second
term added the L2-regularizer. Adam algorithm is used to minimize
the final loss and the learning rate is set to 0.002. The framework of
KG4SL is outlined in Algorithim 1.

3 Results

In this section, we first introduce the state-of-the-art baseline meth-
ods and their implementation details, and then we compare our
model with the baselines, followed by an analysis of the influence of
the KG. The KG4SL model was implemented with Python 3.6 and
Tensorflow 1.15.0. We adopt AUC, AUPR and F1 as the evaluation
metrics.

Fig. 1. The framework of KG4SL. The workflow of KG4SL can be divided into three modules, including gene-specific weighted subgraph module, aggregation module and

score computation module. (1) Gene-specific weighted subgraph: First, we construct a weighted subgraph from the KG. (2) Aggregation: Second, for each SL pair, we select

the entities and relationships that are directly related to the nodes. Besides, we believe the biological information can flow between nodes through edges. Thus, we also aggre-

gate the information of indirectly connected entities and relationships. Considering the problem of computing power, only two layers of entities and relationships are included.

(3) Score computation: Third, the results of aggregation for two genes are used to compute their SL score through inner product. The loss function of KG4SL is composed of

two kinds of losses, i.e. the base loss computed based on the truth label and the gene–gene score, and the L2 loss computed using the entity embedding, relation embedding

and aggregation weights

KG for SL production i421



3.1 Performance evaluation
3.1.1 Baselines

We compare KG4SL with the following baselines:

• SL2MF (Liu et al., 2020) integrates gene similarities based on

GO biological pathway annotations with SL matrix to predict SL

pairs.
• GRSMF (Huang et al., 2019) is a graph regularized self-represen-

tative MF model which also uses known SL pairs and GO-based

gene similarities to predict SL pairs.
• HOPE (Ou et al., 2016) is scalable to preserve high-order prox-

imity of graphs and capable of capturing the asymmetric

transitivity.
• DeepWalk (Perozzi et al., 2014) is a graph embedding method

which uses short random walks (RWs) to learn representations

for nodes in graphs.
• Node2Vec (Grover and Leskovec, 2016) also learns feature rep-

resentations for node in graphs but adds flexibility in exploring

neighborhoods.
• LINE (Tang et al., 2015) uses an effective edge-sampling method

for model inference and preserves both the first- and second-

order proximities by a fine-grained objective function.
• Convolutional network (GCN) (Kipf and Welling, 2016) is the

most popular GNN architecture, which employs the symmetric-

normalized aggregation as well as the self-loop update approach.
• GraphSAGE (Hamilton et al., 2017) introduces the idea of gener-

alized neighborhood aggregation.
• GAT (Veli�ckovi�c et al., 2017) introduces the attention mecha-

nisms to GNN.

• DDGCN (Cai et al., 2020) is built to adapt to the sparsity of SL

network, which includes a dual form drop out.

These baselines can be divided into three categories, MF-based
baselines (SL2MF, GRSMF and HOPE), RW-based baselines
(DeepWalk, Node2Vec and LINE) and GNN-based baselines
(GraphSAGE, GAT, GCN and DDGCN). We evaluated DeepWalk,
Node2Vec, LINE using CogDL (THUDM, 2020), GraphSage, GCN
and GAT via graph convolution layer in DGL (Wang et al., 2019b).
Note that all the baselines do not utilize KG as inputs, so they are
only trained on the SL interaction matrix. In addition to the SL
interaction matrix, SL2MF and GRSMF also utilize GO semantic
similarity matrices for SL prediction.

3.1.2 Implementation details

All the baselines were evaluated at 5-fold cross validation which
makes the best use of the available data. We viewed the input graph
as an unweighted and undirected graph. For SL2MF and GRSMF,
we utilized all the default parameters in the origin papers. For
HOPE, the parameter beta was set to 0.02. For RW-based methods,
the number of walks to start at each node was set to 5, the length of
the RW start at each node was set to 10, the window size was set to
3. For node2vec, p and q were both set to 1, which respectively con-
trol how fast the walk explores and how fast the walk leaves the
neighborhood of starting. For LINE, the alpha was set to 0.1 and
other was set to 2. For DDGCN, we use the same setting of the ori-
gin paper. For GCN, GAT and GraphSage, we all used two convolu-
tion layers, and the dimensionality of the latent spaces in the first
and second layers were chosen to be 5 and 16. The number of train-
ing epochs was decided via the early stopping strategy. KG4SL was
evaluated using the ratio of training, validation and testing data as
8:1:1. In order to improve the stability of results, we randomly split
dataset into 10 pieces and took one of them as the testing set. Early
stopping strategy is used to control the number of training epochs.

3.1.3 Comparison with baselines

On SynLethKG, KG4SL outperforms all baselines as shown in Table
4. When compared with the second best model GRSMF, KG4SL
improves the performance on AUC, AUPR and F1 by 3.11%,
2.16% and 6.4%, respectively.

In general, GNN-based models achieve better performance than
shallow embedding methods like MF-based and RW-based models.
This may because GNN-based models can learn from the similarity
between SLs and enrich the embedding of genes for SL prediction.
DDGCN represents the state-of-art model for SL prediction, and it
achieves the best performance among the GNN-based baselines.
MF-based method GRSMF is second only to KG4SL, which shows
that the combination of GO gene similarity information and self-
representation matrix decomposition is very effective for SL predic-
tion. The performance of KG4SL is even higher, which shows that
learning gene representations from the KG including GO informa-
tion and other gene features can further improve SL prediction.

3.2 Model Analysis
3.2.1 Parameter sensitivity

We present the sensitivity analysis for some key hyperparameters in
our KG4SL, including the neighbor sampling size k and the dimen-
sion of entity embedding d, as shown in Figure 2.

First, we change the number of samples for neighbor k and ob-
serve the model performance. KG4SL achieves the best AUC, F1 and
AUPR when the neighbor sampling size k¼64. When sampling
more neighbors with higher value of k, the information sampled
may become redundant, and thus the model performance slightly
decreases when k is 128. Next, we also investigate the influence of
the dimension of embedding d. The KG4SL model already has a
good performance when the dimension of embedding is 256. Too
large dimension of embedding is a burden on memory and computa-
tion. Eventually, we set the neighbor sampling size as 64 and the di-
mension of embedding as 256 for our KG4SL model.

Algorithm 1 KG4SL

Input: SL matrix S; KG GðVe;VrÞ; neighborhood field

P(e); hyper-parameters a,d, k, h and epoch;

Output: ŝ i;j

1: Initialization:

2: entity embedding matrix We;

3: relation embedding matrix Wr;

4: step 0;

5: while step < epoch do

6: for ðei; ejÞ 2 S do

7: GSi½h�Hh¼0  Gene-specific Subgraph(ei);

8: GSj½h�Hh¼0  Gene-specific Subgraph(ej);

9: for m 2 ½i; j� do

10: e½0�  GSm½0�;
11: for h¼1,2,. . .,H do

12: for e 2 GSm½h� do

13: ePðeÞ½h� 1�  
P

e02PðeÞ ~xem
e;e0e

0;

14: e½h�  /ðWðe½h� 1� þ ePðeÞ½h� 1�Þ þ bÞ;
15: end for

16: end for

17: êm  e½H�;
18: end for

19: Compute the predicted probability

ŝ i;j  /ðf ðêi; êjÞÞ;
20: Compute the loss ‘;

21: end for

22: step step þ 1;

23: end while

i422 S.Wang et al.



3.2.2 Convergence analysis

With the above parameters set, we observe the convergence of the
model. Figure 3 displays the change of loss and three metrics with
the increase of epochs. The blue-dotted, red-dashed and green dash-
dot lines represent the metrics of training data, validation data and
testing data, respectively. The orange line shows the change of loss.
We find that loss falls rapidly within the first 10 epochs and begins
to converge gradually at the 20th epoch. Under the constraint of the
L2-regularizer, loss converges to 0.3111 and the results of the three
metrics in the training set, validation set and test set have the similar
variation trend which shows that the proposed method can alleviate
the problem of overfitting.

3.3 Impact of KG
While automatically integrating the KG into the node feature con-
struction is crucial in our work, we wonder whether the KG is really
important for the task of SL prediction. To investigate this problem,
we test the SL prediction performance with and without the
SynLethKG separately.

Table 5 shows the prediction performance of several machine
learning models on SynLethKG, SL graph and the combination of
both. KG-based methods intend to learn low-dimensional embed-
dings of entities and relations in SynLethKG automatically. We take
TransE (Bordes et al., 2013), a popular unsupervised KG embedding
learning method as an example, which is trained based solely on
SynLethKG. We also compare the contributions of a single SL
graph, which is called SL-based method, whose performance is
exactly that of GCN in Table 4. Then, a combination of the KG-
and SL-based method, named ‘TransE þ GCN’, is further tested.
From the first three rows in Table 5, we can observe that additional
information from the KG guides the model to achieve better per-
formance than using KG or SL graph alone. TransE, trained on the
KG only, reports an AUC score of 0.5870 and an AUPR of 0.6100,
which are the lowest values among the three models. GCN, operat-
ing on the SL graph directly, leverages Xavier’s uniform distribution

(Glorot and Bengio, 2010) as the initial node features, obtains AUC
score of 0.8329 and AUPR score of 0.8727. The models that inspect
the KG and SL graph together outperform either of the above. All
the evidence supports that the KG information can help with SL
prediction.

After that, an ensemble learning method named RF (Breiman,
2001), which also uses the information extracted from KG and SL,

Table 4. Metrics of KG4SL against baselines in AUC, AUPR and F1

Categories Methods AUC AUPR F1

MF SL2MF 0.7811 6 0.0035 0.8635 6 0.0021 0.7446 6 0.0074

GRSMF 0.9184 6 0.0039 0.9362 6 0.0023 0.8339 6 0.0049

HOPE 0.7776 6 0.0005 0.7410 6 0.0006 0.7089 6 0.0010

RW DeepWalk 0.8451 6 0.0024 0.8600 6 0.0013 0.7562 6 0.0027

node2vec 0.8362 6 0.0010 0.8523 6 0.0014 0.7503 6 0.0031

LINE 0.8233 6 0.0028 0.8327 6 0.0023 0.7380 6 0.0056

GNN GCN 0.8329 6 0.0172 0.8727 6 0.0110 0.8508 6 0.0136

GraphSAGE 0.8398 6 0.0291 0.8775 6 0.0188 0.8569 6 0.0236

GAT 0.7914 6 0.0182 0.8462 6 0.0103 0.8152 6 0.0129

DDGCN 0.8491 6 0.0106 0.8998 6 0.0056 0.8154 6 0.0074

KG4SL 0.9470 6 0.0003 0.9564 6 0.0005 0.8877 6 0.0017

Note: The best results for each index are in bold.

Fig. 2. Parameter sensitivity analysis with varying k and d for KG4SL. Left: AUC,

AUPR, and F1 at different neighbor sampling sizes k, ranging from 2 to 128. Right:

AUC, AUPR and F1 at different node embedding dimensions d, ranging from 8 to

512

Fig. 3. Convergence analysis of KG4SL. In the first subgraph, the orange line repre-

sents the change of training loss during the training process. In the other three sub-

graphs, the blue-dotted line represents the variation trend of three metrics (AUC, F1

and AUPR) during the training process. The red-dashed line displays the values of

the above metrics for validation set as the increase of epochs. The green dash-dot

line denotes the results for test set. At the first 10 epochs, the training loss drops rap-

idly and the three metrics for training set, validation set and test set increase with a

uniform trend. Although at the 20th epoch, the training loss and three metrics begin

to converge

Table 5. Impact of KG analysis on AUC and AUPR

Method AUC AUPR

KG-based TransE 0.5870 6 0.0086 0.6100 6 0.0109

SL-based GCN 0.8329 6 0.0172 0.8727 6 0.0110

KG þ SL-based TransE þ GCN 0.9063 6 0.0071 0.9138 6 0.0056

RF 0.8882 6 0.0130 0.9218 6 0.0098

KG4SL 0.9470 6 0.0003 0.9564 6 0.0005

Note: The best results for each index are in bold.
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is selected to be compared with ‘TransE þ GCN’. The difference be-
tween RF and ‘TransE þ GCN’ is that whether the features are
extracted automatically. The features of RF should be carefully
selected manually, whereas the gene embeddings are automatically
extracted from TransE and fed into GCN to generate SL prediction
results. Here, RF uses six features, namely, minTriangles,
maxTriangles, minCoefficient, maxCoeffiecient, sp and sl. For each
gene pair, minTriangles and maxTriangles reflect the max and min
numbers of triangles that each gene forms. The minCoeffiecient and
maxCoeffiecient reflect the min and max likelihood that the neigh-
bors of these two genes are connected. sp is a Boolean value that rep-
resents whether the two genes are in the same community detected
by the label propagation algorithm. sl means whether two genes are
in the same community detected by Louvain algorithm (Blondel
et al., 2008). The results show that ‘TransE þ GCN’ achieves slight-
ly higher AUC and slightly lower AUPR than RF.

Comparing all these models with KG4SL which is an end-to-end
model using the information extracted from KG and SL automatic-
ally, KG4SL yields the top AUC of 0.9470 and AUPR of 0.9564.
This signifies the benefit of adding a suitable KG in SL prediction.

Furthermore, to qualitatively interpret the above models’ learn-
ing abilities, we draw the link features extracted from these models.
First, we fix the dimension of node features to 256. Next, the fea-
tures for each node of an SL pair in test data are concatenated to-
gether, representing the link embedding between them. Then, the
high-dimensional feature vectors are mapped into a 2D space by
using visualization technique t-SNE (Van der Maaten and Hinton,
2008). As Figure 4 shows, orange dots denote there is an SL relation
between a pair of test genes and blue dots are the opposite. We are
curious whether the models can tell the differences between the two
kinds of link types. Clearly, on one hand, TransE has the weakest
distinguish capacity, as the SL label information is not taken into ac-
count. On the other hand, although both ‘TransE þ GCN’ and
KG4SL are integrated with the KG, KG4SL makes better use of this
information, separating the two types of links more thoroughly.

4 Conclusion and discussions

In this article, we proposed a novel framework named KG4SL for
predicting SL, which incorporates a knowledge graph (KG) into the

GNN model. Many existing methods view each SL pair as an inde-
pendent sample from a latent representation, but this assumption is
an oversimplification in the biological context of cancer cells. KG
can bring additional information such as biological processes which
could be crucial for discovering new SL pairs. By injecting the KG,
our model was capable of harnessing the aforementioned issue,
without manual feature engineering. Extensive experiments have
been conducted to examine the impact of KG. The results show that
both KG and MP in GNN are essential for boosting the model per-
formance. Therefore, KG4SL represents a breakthrough in applying
supervised machine learning to SL prediction.

Our future work will focus on the following directions. First, we
plan to further improve our model, using the strategy of contrastive
learning, which is a self-supervised approach to learn graph repre-
sentation. Secondly, the degrees of some nodes in a KG might be
very large, while sampling a fixed-sized neighborhood may not fully
capture the neighborhood topological structures of the nodes. To
address this issue, it will be a highly desirable future work to con-
trast multiple receptive fields for a given node, to learn a more ro-
bust and enriched embedding. Moreover, inspired by the recently
proposed KG attention network (Wang et al., 2019c), we are inter-
ested in incorporating the attention mechanism into the KG MP.
Considering there might be some promiscuous and uninformative
neighbors for MP, the attention could play the role of a filter
(Hamilton, 2020). By inspecting and visualizing the attention
weights, interpretability analysis could be done to account for deci-
sions made by GNN models. Thirdly, since our model outperforms
most of the state-of-the-art models, it is desirable to utilize our
model to discover novel SL pairs and collaborate with biologists to
validate candidate SL pairs as drug targets. Last but not least, the
Cancer Dependency Map (DepMap) project (Tsherniak et al., 2017)
aims to examine how perturbing a given target gene in a specific
cancer type might affect the tumor growth, including cases when the
best targets are SL partners of an altered gene. Das et al. (2019) pre-
dicted the SL pairs in the different cancer types which considered the
tissue context. Wan et al. (2020) introduced the cell-line-specific
gene expression information to help predict SL interaction, since
most SL pairs remain cell-line specific. It is believed that such con-
text-specific information can provide useful features for the SL pre-
diction problem. Integrating the DepMap data into our KG4SL
model, we can develop an AI system to facilitate the discovery of
SL-based anticancer therapeutics. As many gene mutations cause
cancer cells to inactivate, it is possible to kill the cancer cells by iden-
tifying the SL partners of these genes (O’Neil et al., 2017). In the
area of drug discovery or drug repurposing, using AI methods to
narrow candidate drug targets set can speed up the research process.
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